S.Ha.R.K. User Manual

Scuola Superiore di Studi e Perfezionamento S. Anna
ReTiS Lab

Volume V
The S.Ha.R.K. Tracer

Written by
Paolo Gai (pj@sssup.it)

Original text by
Massimiliano Giorgi (massy@gandalf.sssup.it)

RETIS Lab.
Scuola Superiore S. Anna
Via Carducci, 40 - 56100 Pisa

16th December 2004

Contents

1 The S.Ha.R.K. Tracer

2

1.1 Tracer Architecture. e e e e e e e e e e e 2
1.2 Implementation L L e e e 3
1.2.1 Tracerfileformat e 3
1.2.2 Event queueso e e e 4
1.2.3 Expanding the tracer behavior L. 5

1.3 Initialization and use L 7
1.3.1 Standard Initialization 10

Chapter 1

The S.Ha.R.K. Tracer

The S.Ha.R.K. tracer is a small module into the kernel that allow the system to write a log of all
the meaningful events that happened during the execution. Typical events that can be traced
are, for example, the scheduling decision made by the kernel, the hard disk head seeks, and so
on.

1.1 Tracer Architecture

The Architecture of the tracer is composed by three subsystems (see Figure 1.1):

1. A set of callbacks inserted into the Kernel. These callbacks are always called during kernel
execution. The tracer of course only work if the tracer support is compiled and linked into
the application. Otherwise, the tracer callbacks become null functions, with a negligible
overhead.

2. A module that exports general functionalities of the tracer; this part redefines the callbacks
with the correct behavior, replacing the null functions compiled by default.

3. A set of optional modules that implement the event handling policies. Basically, the tracer
uses a set, of event queues, and each queue can use a different policy. It is a user responsi-
bility to choose the kind and how many queues to use, and which are the events that have
to be sent to each queue.

not found!

Figure 1.1: Tracer Architecture

Time Event Optional

Figure 1.2: Tracer file format.

The tracer basically records events. An events is an information about something that happened
at a given time. The tracer do not interpret the semantic of these events: it just records them.
Every event is characterized by a time, a number, and by some additional parameters. Events
can be masked (that is, whe an event fires, it is not recorded by the tracer).

For efficiency reasons events number are global to the whole system. If an application or the
kernel have to increase the number of events, the file (include/trace/types.h) have to be modified.
The numbers of the new events however have to be set between the given boundary, and event
numbers have to be consecutive.

Events are divided in classes. Every class groups all the events with similar meaning.
Classes are used by the tracer to simplify event management: basically all the events can be
masked /unmasked with a single function call.

Currently, there are five classes:

tracer These are a set of events reserved by the tracer for internal use.

system These events are generated by the Generic Kernel or by the modules. For example, task
creation, end, activation, scheduling, and so on.

user This event class can be used by the application. They are not generated by the Kernel.

11 This class only contains the low level event “interrupt”, that is generated at each interrupt
request.

semaph This class contains all the semaphore events: wait, signal, and so on.

1.2 Implementation

1.2.1 Tracer file format

In a way independent with event queue handling, the event informations are saved somewhere
(at system shutdown the queues can be saved on the disk or sent through the network during
execution). After that, they can be analyzed.

Figure 1.2 shows the format of every event. A trace file is simply a finite sequence of these
records. Every event is characterized by three fields:

1. The time when the event was recorded (32 bit big endian, in microseconds).
2. The event number (16 bit).

3. A set of optional informations. This field has always the same size on the disk.

Please note that given the definitionof the trc_allevents_t structure, a tracer event has
always the same size. That means also that every application that will use data files pro-
duced by the tracer will have always to consider the size of an event structure including the

Algorithm 1 An event data structure

/* generics event */

typedef union TAGtrc_allevents {
trc_tracer_event_t trc;
trc_system_event_t sys;
trc_user_event_t usr;
trc_ll_event_t 11;
trc_sem_event_t sem;

} trc_allevents_t;

/* event struct */

typedef struct TAGtrc_event_t {
u_int32_t time;
u_intl16_t event;
trc_allevents_t x;

} trc_event_t;

include/tracer/types.hfile and using sizeof (). See the tracer examples (into demos/tracer/*)
for more details.
Table 1 shows the C structure used to store an event (see include/trace/types.h).

Implementing a trace analyzer

Implementing a trace analyzer is quite simple:

1. Include the file include/trace/types.h, after having defined the typesu_int8_t,u_int16_t,
u_int32_t (that are unsigned integers at 8, 16, 1nd 32 bits).

2. Read the trace file storing the data into trc_event_t structures.
3. Use these structures to know what happened.

As an example, demos/tracer/utils/tdump.c and demos/tracer/utils/jdump.c read a trace
file and print it on the standard output or to a JTracer File. the JTracer is a small Java graphical
application that can be used to visualize the trace files.

These two programs use another file called util.c, that exports some utility functions like:

read trace This function can read a trace file pissed as parameter. For each event found,
a function is called. If that function return 0, the next event is processed, otherwise,
read trace terminates.

event class This function find the event class of an event.

event name This function find an event name and returns a meaningful (string) description.

1.2.2 Event queues

Currently, the following event handling policies have been implemented:

dummy A dummy queue simply discards all the events inserted in it. This module can be used
as a template for the implementation of other policies. This module is contained into the
files include/tracer/qdummy.h and into kernel/modules/trcdummy.c.

Algorithm 2 Log functions.

int trc_logevent(int event, void *info);
int trc_suspend (void);
int trc_resume (void);

fixed This is a fixed queue whose dimension is defined at system startup. When the queue is
full, all the events are discarded. There are two kind of fixed queues: one use the Shark
filesystem, the other uses the DOSFS filesystem calls.

circular This is a fixed size queue handled in a circular way. In this case, data can be saved
online during system execution or all the data can be saved at system shutdown. In the
latter case, when the queue is full, a new event replaces the oldest one.

In the online queue, the data is saved using a server task: the events are stored into the
queue; when the queue is full, events are discarded (until the queue becomes again empty);
then, the server tries to write the data on a file during system execution. Of course, there
is no guarantee, and events can be lost. Also note that the server task can produce an
interference, specially if other tasks concurrently uses the file system.

udp All the events that arrives in this queue are sent using UDP to another PC. This module
is still in development phase.

1.2.3 Expanding the tracer behavior

The tracer can be extended adding new event or extending the supported queue policies.
The tracer exports the following functions (see Table 2):

trc_logevent this is the main tracer function. When this function is called, an event is regis-
tered into its queue. info contains the optional parameters, or NULL.

trc_suspend This function suspend the tracer. it returns 0 in case of success, different from 0
otherwise. This function is called before staring system shutdown.

trc _resume This function resume the tracer (that was previously suspended using trc_suspend).

Creating new event classes

As introduced in section 1.1, events number are global to the whole system. To add a new event
class or to modify an existing one some internal files have to be modified (the modifications are
simple, don’t worry).

Basically, the file include/trace/types.h have to be modified adding new identifiers and
new data structures:

e New event identificators must be added after the existing ones. new class identifiers can be
added also (solething like TRC_CLASS_777. Then, the constants TRC_F_LAST, TRC_NUMCLASSES,
and TRC_NUMEVENTS have to be updated.

e If a new class is created, a new data structure whit the optional parameters should be
created. An instance of that structure should be inserted into the union trc_allevents_t.

e The table named classtable should be modified (see the file kernel/modules/trace.c) to
include the new class identifier.

typedef struct TAGtrc_queue_t {
int type;
trc_event_t *(*get) (void *);
int (*post) (void *);
void *data;

} trc_queue_t;

int trc_register_queuetype(
int queuetype,
int (*create) (trc_queue_t *,void *),
int (xactivate) (void *,int),
int (*terminate) (void *)

)

Table 1.1: The trc_ queue__t structure.

In that way a new event class can be created. Of course, it is not guaranteed that the new trace
files are compatible with the previous ones (it depends on the size of the optional part; the best
thing to do is recompile all the system). Once a new event or a new event class is created, it can
be used in all the system as the ones that where previously defined.

Creating new tracer queue modules

Basically, each trace module has an init function that have to register the queue type in the
system.

The function that is used to register a new queue is showed in Figure 1.1 together with
the trc_queue_t structure. This function must be called during the initialization phase qith a
number that specifies the type of the queue, ane three pointer to functions that are used by the
tracer to implement the following behaviors:

create This is called when the user ask for the creation of a new queue of a given type. The
structure passed as parameter must be filled with the correct values.

activate Called when the system is already in protected mode (typically, into the __init_
task). A pointer to the queue data field is passed, together with an identification number.

terminate This is called before the system shuts down. A pointer to the queue data field is
passed.

During the creation of a new queue, the create function is called. That function fills a descriptor
structure of type trc_queue_t, that is passed as parameter. The field of that structure are used
by the generic part of the tracer to implement its behavior. Here is a short description of these
fields:

type Is the queue type.

get This function is called when the system have to handle a new event: it must retuen a pointer
to a structure trc_event t (the generic part will fill the structure with the event data).
The function can return NULL if the queue can not handle the new event (e.g., the queue
is full). A pointer to the generic data field is passed.

int trc_assign_event_to_queue(int event, int queue);
int trc_assign_class_to_queue(int class, int queue);
int trc_notrace_event(int event);

int trc_trace_event(int event);

int trc_notrace_class(int class);

int trc_trace_class(int class);

Table 1.2: Tracer utility functions.

int TRC_init_phasel(void);
int TRC_init_phase2(void);
int trc_create_queue(int queuetype, void *arg);

Table 1.3: Logging functions

post Thios function is called when the generic part of the tracer filled the data structure returned
by the get function. This function should store the event somewhere (i.e., the data structure
can be sent to another PC, stored in memory, or in a file).

data Pointer to a generic data structure that contains all the informations that allow to handle
the particular queue behavior.

Note that the function get and post are called into the kernel at interrupt disabled. For that
reason, they must be efficient, and they must not block.

1.3 Initialization and use

The tracer can be initialized calling a set of functions into the __kernel_register_levels__
function and into the __init__ task.
The functions in Table 1.2can be used to modify the behavior of event tracing:

trc_assign event to queue This function assign an event to a particular queue. The
queues can be identified by an handler returned by the function trc_create queue. The
first queue that is registered has index 0, the second 1, and so on.

trc_assign class_to queue This function assigns an event class to a queue. Calling trc_ assign_event _to_ queu
on all the events of a class brings the same results.

trc_notrace event and trc_trace event These functions enable or disable the tracing for
the events passed as parameters

trc_notrace class and trc_trace class These functions enable and disable the tracing for
all the events of an event class.

Tracer initialization is done using the functions in Table 1.3 and 1.2:

1. First, the function TRC_init_phasel is called during __kernel_register_levels__
2. Then, the queue types used must be registered into the kernel.

3. Then, the events that must be logged must be enabled and assigned to the queues.

typedef struct TAGtrc_fixed_queue_args_t {
char *filename;
int size;

} TRC_FIXED_PARMS;

#define trc_fixed_default_parms (m)
#define trc_fixed_def_filename(m,s)
#define trc_fixed_def_size(m,s)

int trc_register_fixed_queue(void);
int trc_register_dosfs_fixed_queue(void);

Table 1.4: The fixed queue.

4. Finally, the function TRC_init_phase2is called just before __call_main__intothe __init__
task.

The function trc_create_queue is called passing the queue type that must be created , and a
pointer to some specific parameters (NULL if the defaults can be used). The function returns a
negative number in case of error, or a positive number or 0 in case of success (and that number
is the handle of the queue ti be used with the functions in Table 1.2).

Here are the functions that have to be used to register a particular event queue:

Dummy queue

The function trc_register_dummy_queue do not have optional parameters. It always returns
0.

Fixed queue

Table 1.4 shows the functions (that uses the filesystem or the DOSF'S functions) and the optional
data structure that can be used to initialize a fixed queue. A set of macro is also available to
manipulate the optional data structure:

trc_fixed default parms Stores the default values into the parameter. The filename is set
to NULL and the queue dimension is set to 8192..

trc_fixed def filename Sets the name used for the file wher the trace have to be saved. If
NULL is used, the name fix followed by a number is used.

Circular queue

As described in section1.2.3, the circular queue exists in two flavours. In the first case the
queue is saved at system shutdown, in the second cades the queue is saved online during system
execution.

Table 1.5 shows the data structure that can be used during queue creation; also in that case,
the structure can be manipulated using the provided macros:

trc_circular _default parms Set the default parameters.

trc_circular _def filename Defines the file name where the trace must be saved. If NULL, a
default filename is used.

typedef

struct TAGtrc_circular_queue_args_t {

char *filename; int size;
long period;
long slice;
int flags;
} TRC_CIRCULAR_PARMS;

#define
#define
#define
#define
#define
#define

int trc_

typedef

trc_circular_default_parms(m)
trc_circular_def_filename(m,s)
trc_circular_def_size(m,s)
trc_circular_def_onlinetask(m)
trc_circular_def_period(m,p)
trc_circular_def_slice(m,s)

register_circular_queue(void);

Table 1.5: The circular queue

struct TAGtrc_udp_queue_args_t {

int size;
UDP_ADDR local,remote;
TASK_MODEL *model;

} TRC_UDP_PARMS;

#define
#define
#define
#define
#define

int trc_

trc_udp_default_parms(m,local,remote)
trc_udp_def_size(m,size)
trc_udp_def_local(m,local)
trc_udp_def_remote (m,remote)
trc_udp_def_model (m,model)

register_udp_queue(void);

Table 1.6: The UDP queue

trc_circular def size Set the queue size (8192 by default).

trc_circular _def onlinetask If this function is called, a flag is set, and the queue is saved

online.

trc_circular _def period This is the period of the task that is used to save the queue online.
By default, it is 500 milliseconds. A soft task is used by default.

trc_circular _def slice This is the mean execution time of the task. By default, it is set to

25 milliseconds.

UDP queue

The udp queue is basically a circular queue. The queue is filled when an event arrives, and is
flushed by a dedicated periodic task that sends maximum one packet every period. The packets
are sent using UDP, and the network driver must be configured and running before calling the

tracer initialization phase 2.

int TRC_init_phasel_standard(void);
int TRC_init_phase2_standard(void);

Table 1.7: Standard tracer initialization

You can use the udpdump demo into demos/tracer/utils to read the UDP packets sent by
this module.

Table 1.6 shows the data structure that can be used during queue creation; also in that case,
the structure can be manipulated using the provided macros:

trc_udp default parms Set the default parameters. Source and destination IP /ports must
also be provided

trc_udp def size Set the queue size (8192 by default).

trc_udp def local, trc_udp def remote These functions can be used to set the local
or remote IP.

trc_udp def model Use this function to give a custom task model to be used for the tracer
task. The default model is obtained using the following initialization (the argument to the
task is set by the module):

SOFT_TASK_MODEL model;
soft_task_default_model (model) ;
soft_task_def_system(model) ;
soft_task_def_periodic(model);
soft_task_def_period(model,250000) ;
soft_task_def_met (model,10000) ;
soft_task_def_wcet (model,10000) ;

1.3.1 Standard Initialization

If you get bored of all these functions, you can use a “standard” tracer initialization. The first
function must be called into the __kernel_register_levels__ (as soon as possible); the second
function must be called into the __init__ task, just before calling the __call_main__ function.

The standard initialization creates two queues. Queue 0 is a circular queue, queue 1 is fixed.
All the system events are then sent to queue 0.

10

