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Chapter 1

Kernel Overview

1.1 Scheduling Architecture

S.Ha.R.K. is a research kernel expressly designed to help the implementation and testing of
new scheduling algorithms, both for the CPU and for shared resources. In order to achieve
independence between applications and scheduling algorithms (and between the schedulers and
the kernel), S.Ha.R.K. is based on a Generic Kernel, which does not implement any particu-
lar scheduling algorithm, but postpones scheduling decisions to external entities, the scheduling
modules. In a similar fashion, the access to shared resources is coordinated by resource modules.
External modules can implement periodic scheduling algorithms, soft task management through
real-time servers, semaphore protocols, and resource management policies. The modules imple-
menting the most common algorithms (such as RM, EDF, Round Robin, and so on) are already
provided, and it is easy to develop new modules. A scheme of the kernel architecture is depicted
in Figure 1.1.

The OS Lib layer implements an abstraction of a generic machine capable of exporting some
services, as for example context switching, time management, interrupts handling, and a subset
of the run-time C library. For detailed information about the OS Lib, see [1][2].

The Generic Kernel provides the mechanisms used by the modules to perform scheduling
and resource management thus allowing the system to abstract from the specific algorithms that
can be implemented. The Generic Kernel simply provides the primitives without specifying any
algorithm, whose implementation resides in external modules, configured at run-time with the
support of the Model Mapper (see Section 1.2).

Another important component of the Generic Kernel is the Job Execution Time (JET) esti-
mator, which monitors the computation time actually consumed by each job. This is a generic
mechanism, independent from the scheduling algorithms, that can be used for statistical mea-
surements, for enforcing temporal protection, or for resource accounting (see Section 7.6).

The API is exported through the Libraries, which use the Generic Kernel to support some
common hardware devices (i.e., keyboard, sound cards, network cards, graphic cards) and provide
a compatibility layer with the POSIX Real-time Controller System Profile [10].

An Application can be considered as a set of cooperating tasks' that share a common address
space. There is no memory protection implemented into the Kernel. Intertask communication is
performed using shared memory buffers accessed through some synchronization mechanisms (as

1Tn this document, a process is a set of computations performed in a private address space. A thread is a
single execution flow in a process. Each thread is identified by an unique ID, plus some specific parameters. The
term Task is used as a synonymous of the term thread.



T1|...|] In

Application

ML | Libraries

I
M2 . R1

r Generic
M3 Kernel @

I
M4 R2

0S Lib
Hardware

Figure 1.1: The S.Ha.R.K. Architecture

mutexes, condition variables, semaphores, CAB, message queues). Each task is characterized by
a Task Model, some optional Resource Models, and a body. The body of a task is simply a C
function with the prototype void *body(void *arg).

An Application can use the following sets of functions:

e The functions exported by the OS Lib;

e The Generic Kernel primitives;

e Some Module-dependent functions;

e Some functions exported by libraries, device drivers, or the standard C library;
e The library implementing of the POSIX standard interface.

Each Module consists of a set of data and functions used for implementing a specific algorithm,
whose implementation is independent from the other modules in the system, thus realizing a
trade-off between user-level and in-kernel schedulers. In this way, many different module con-
figurations are possible. For example, a Polling Server can either work with a RM or an EDF
scheduling Module without any modification.

Currently, S.Ha.R.K. provides two basic modules:

e modules that implement scheduling algorithms and aperiodic service policies (Scheduling
Modules);

e modules that manage shared (hardware or software) resources (Resource Modules);

All resource access protocols, such as Priority Inheritance, are implemented as a mutex module
whose interface is derived from the resource module interface. A POSIX mutex interface is also
provided on top of the implemented protocols.



Each type of Module provides a well defined interface to communicate with the Generic Kernel
(user programs do not directly interact with the modules). The interface functions are called by
the Generic Kernel to implement the kernel primitives. When modules need to interact with the
hardware (for example, the timer), they can use the service calls provided by the Generic Kernel.

Finally, each Module has some unique identifiers to allow the implementation of some con-
sistency checks (for example, a module that implements a Total Bandwidth Server cannot work
with Rate Monotonic).

1.2 QoS Specification

One of the goals of S.Ha.R.K. is to allow the user to easily implement and test novel scheduling
algorithms. In particular, the kernel has been designed with the following objectives:

e achieve independence between the kernel mechanisms and the scheduling policies for tasks
and resource management;

e configure the system at run-time by specifying the algorithms to be used for task scheduling
and resource access;

e achieve independence between applications and scheduling algorithms.

These requirements are particularly useful for comparing the performance of similar algorithms
on the same application. In fact, module independence allows the user to configure and test
applications without recompile them, only relinking them.

Independence between applications and scheduling algorithms is achieved by introducing the
concept of model. Each task asks the system to be scheduled according to a given Quality of
Service (QoS) specified by a model. In other words, a model is the entity used by S.Ha.R.K.
to separate the scheduling parameters from the QoS parameters required by each task. In this
way, the kernel provides a common interface to isolate the task QoS requirements from the real
scheduler implementation.

Models are descriptions of the scheduling requirements expressed by tasks. S.Ha.R.K. pro-
vides three different kinds of models:

Task Models. A task model expresses the QoS requirements of a task for the CPU scheduling.
Requirements are specified through a set of parameters at task creation time. Some of the
task requirements are mandatory (e.g., the stack size of a task), while others depend on
the specific task model (e.g., a deadline). For this reason, all task models are characterized
by a general common part, which can be extended by a model-dependent part. Usually,
the model-dependent part abstracts from a specific scheduling algorithm (for instance, the
concept of period or deadline is independent from a specific algorithm like EDF or RM).
The task models have a function similar to the pthread_attr_t structure defined in the
POSIX standard.

Resource Models. A resource model is used to define the QoS parameters relative to a set of
shared resources used by a task. For example, the resource model can be used to specify the
semaphore protocol to be used for protecting critical sections (e.g., Priority Inheritance,
Priority Ceiling, or SRP). In other cases, the resource model can be used to specify a
hardware resource scheduling algorithm (e.g. a File System Scheduling Algorithm).

Mutex Models. When a mutex semaphore is created, these Models are used to specify the
resource access protocol to be used, in a way similar to that done with Task Models. The
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Figure 1.2: The interaction between the Model Mapper and the QOS Mapper.

mutex models have a function similar to the pthread_mutexattr_t structure defined in
the POSIX standard.

Each task is characterized by a single mandatory QoS parameter, the task criticality (hard, soft,
firm, non real-time, and so on). This parameter belongs the common part of the task model,
together with a model identifier and some other parameters, such as the stack size.

Each task model is implemented as a C structure, in which the first field is the model identifier,
the next fields are the mandatory parameters and the last field is a sequence of bytes containing
the model-dependent parameters, that only the specific module can interpret. Resource models
are completely generic, and depend on the resource they describe: the only mandatory parameter
is the model identifier.

Models are required to make the generic kernel independent from the implemented scheduling
algorithms: since the generic kernel does not implement any algorithm, it does not know how
to serve a task but invokes a service request to scheduling entities realized as external modules.
Hence, the generic kernel does not interpret the models, but just passes them to the modules;
each module, by reading the common part of the model, can verify whether the task can be
served or not.

Using models an application is able to specify the requested QoS, independently from the
modules used into the system. For example, an application that creates a task using an Hard
Task Model can be executed on an EDF, a RM, or a Deadline Monotonic Module.

Task creation works as follows (see Figure 1.2): when an application issues a request to
the kernel for creating a new task, it also sends the model describing the requested QoS. A
kernel component, namely the model mapper, passes the model to a module, selected according
to an internal policy, and the module checks whether it can provide the requested QoS; if the
selected module cannot serve the task, the model mapper selects a different module. When a
module accepts to manage the task described by the specified model, it converts the model’s
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Figure 1.3: An aperiodic Server that inserts its tasks into a master module.

QOS parameters into the appropriate scheduling parameters. Such a conversion is performed by
a module component, called the QoS Mapper. For example, a hard periodic task may have a
model consisting of a period and a worst-case execution time (WCET); when a task is created
with that model, the EDF module will convert such parameters into deadlines, reactivation times,
and so on. In general, a module can manage only a subset of the models, and the set of models
is not limited by the kernel. This is possible because the kernel does not handle the models, but
it simply passes them to the Model Mapper, that selects a module and passes the model to that
module. Currently, the Model Mapper uses a simple strategy, according to which modules are
selected based on fixed priorities (see Section 1.3.1 for more details).

1.3 Scheduling Modules

Scheduling Modules are used by the Generic Kernel to schedule tasks, or serve aperiodic re-
quests using an aperiodic server. In general, the implementation of a scheduling algorithm
should possibly be independent on resource access protocols, and handle only the scheduling be-
havior. Nevertheless, the implementation of an aperiodic server relies on the presence of another
scheduling module, called the Master Module (for example, a Deferrable Server can be used if
the base scheduling algorithm is RM or EDF, but not Round Robin; see Figure 1.3). Such a
design choice reflects the traditional approach followed in the literature, where most aperiodic
servers insert their tasks directly into the scheduling queues of the base scheduling algorithm.
Again, our modular approach masks this mechanism with the task models: an aperiodic server
must use a task model to insert his tasks into the Master Module.

The Model Mapper distributes the tasks to the registered modules according to the task
models the set of modules can handle. For this reason, the task descriptor includes an additional
field (task_level), which points to the module that is handling the task.

When the Generic Kernel has to perform a scheduling decision, it asks the modules for the
task to schedule, according to fixed priorities: first, it invokes a scheduling decision to the highest
priority module, then (if the module does not manage any task ready to run), it asks the next
high priority module, and so on. In this way, each module manages its private ready task list,
and the Generic Kernel schedules the first task of the highest priority non empty module’s queue.

A Scheduling Module must include all the data structures needed. It can be thought as an
object in an Object oriented language; this implies that many instances of a module can be
created (for example, many TBS servers with different bandwidth).

1.3.1 Module Organization

The Scheduling Modules are organized into levels, one Module for each level. These levels can
be thought as priority scheduling levels (index 0 has the maximum priority).
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Figure 1.4: Kernel Level Organization.
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Figure 1.5: A fixed priority Module configuration.

Modules are selected for scheduling by the Model Mapper by a fixed priority strategy. When
a task is given to a module, the module owns the task. The task_level field of the generic task
descriptor is used to save the level index of the Module that handles the task (see Section 3.2.1).

Each Scheduling Module handles all the events that belong to its owned tasks. A task owned
by a module is scheduled in background with respect to the tasks owned by a Module with higher
level index. For example, in Figure 1.4, the tasks scheduled? by the XXX Scheduling Module are
run in foreground; the tasks scheduled by the WWW Module run in background with respect to
those of the XXX and YYY Modules, and in foreground with respect to the tasks scheduled by
the ZZZ Module.

1.3.2 Sample scheduling architectures

The approach followed in the organization of the Scheduling Modules is very versatile and al-
lows to implement different Kernel configurations. In the following, some typical scheduling
architectures are described.

Fixed Priority Scheme. This is the most typical approach used in the real-time systems (see
Figure 1.5). In this example, hard tasks (periodic and sporadic) are served at the highest
priority, whereas aperiodic tasks are handled by a Sporadic Server. At the lowest priority
level non-realtime tasks can be handled by a Round Robin scheduling policy.

Dual Priority Scheme. This configuration (described in Figure 1.6) proposes a combination
of modules which were not developed to work together at implementation time. In this
example, the highest priority tasks are scheduled by the RM with a Deferrable Server linked
to it. Other tasks are scheduled at medium priority using EDF with a Total Bandwidth
Server. At the lowest priority level, non-realtime tasks can be handled by a Round Robin
scheduling scheme.. This configuration can be used to reduce the jitter of some important
tasks [4].

2Note that the word scheduled is emphasized: the tasks scheduled by a Module are the tasks owned by the
Module itself and the tasks that other modules have inserted in it.



Level 0
Level 1
Level 2
Level 3
Level 4

Rate Monotonic

Deferrable Server

Earliest Deadline First

Non Real-Time

Total Bandwidth Server

Figure 1.6: A Dual Priority Module configuration. Note that the TBS Module is put at the
lowest priority level to prevent the TBS algorithm from using the background time left by other
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Figure 1.7: Dynamic Module Configuration.

Dynamic Multiserver. This example (described in Figure 1.7) shows how to create a complex
scheduling architecture. In the example, some Hard tasks are scheduled with a set of ape-
riodic tasks, each one handled by a different server. Note that the EDF Module is designed
to accept tasks from a generic Module, independently from the algorithm implemented by
that Module. Note also that in the system there are many instances of a single module,
and each instance can only manage the tasks that it owns.

Timeline Scheduling. The example illustrated in Figure 1.8 shows a Timeline scheduler inte-
grated with a fixed priority algorithm, such as RM. Note that S.Ha.R.K. does not force the
developer to use classic approaches, like prioritary task queues. The Generic Kernel does
not impose any restrictions to developers.

Level 0
Level 1
Level 2
Level 3

Timeline Scheduling

Rate Monotonic

Deferrable Server

©

Non Real-Time

Figure 1.8: A hybrid Timeline-RM approach.
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Figure 1.9: Configuration of the example in Section 1.3.6.

1.3.3 Module Interface

The interface functions provided by a scheduling module can be grouped in two classes: public
and private functions. In general, a scheduling module has an interface that implements a specific
behavior for each event in the system generated by a task.

In the following paragraph the various classes of functions are explained in a general way.
Each function will be then described in detail in Chapter 4.

1.3.4 Public Functions

The public functions are those fuctions that are directly called by the Generic Kernel to imple-
ment the behavior of the primitives. Some of the functions are directly related to the life of a
single task (e.g. task creation, task end), whereas other functions are related to the module as a
whole (the scheduler, and the acceptance test).

1.3.5 Private Functions

On the other side, a module can export an interface to the public part of the same or of an-
other module. For example, an EDF Module can export an interface (smaller than the Public
Functions) that allows a generic aperiodic server to insert tasks in the EDF reqdy queue.

That is, Private Functions are called ONLY by other Public and Private Functions. They are
NEVER called by the Generic Kernel.

1.3.6 An Example

In this paragraph an useful example is explained to show the use of the various functions of a
Scheduling Module Interface. The interface will be described in detail in Chapter 4.

The example (see Figure 1.9) considers a configuration made using two scheduling modules,
registered in the first two levels:

e at Level 0 there is a Module that implements a generic Scheduling Algorithm;

e at Level 1 there is a Module that implements a generic Aperiodic Server (that inserts his
tasks into the first Module).

Then, we consider two tasks in the system:

e Task A is a task created into the Module that implements the scheduling algorithm (reg-
istered at level 0); therefore its task_level = 0.

e Task B is a task created into the Module that implements the aperiodic server (registered
at level 1); therefore its task_level = 1. Moreover, the task B is inserted into the level 0
using level-0’s private functions.

11



Both the tasks are scheduled by the level 0 public_scheduler: task A because it was created in
that level; task B because it was inserted into the level 0 through the level-0’s private functions.

When the scheduling procedure is called, the Generic Kernel scheduler will call the pub-
lic_scheduler, stating from that of the Module Registered at level 0. In this case, the level 0
public_scheduler will choose which task really schedule between A and B. If task A is selected,
the Generic Kernel will call the public_dispatch of the level 0 (because Task A’s task_level is
0). If task B is selected, the Generic Kernel will call the public _dispatch of the level 1 (because
Task A’s task_level is 1). To handle the public_dispatch event that function will call the
level-0 private dispatch of Level 0.

1.4 Resource Modules

Resource Modules are normally used to implement some parts that do not directly interact
with task scheduling, but need some information that has to be provided at task creation and
termination time.

Such Modules are, for example, those that implement shared resource access protocols (they
require some parameters like system ceiling, the set of mutexes used by a task, etc.), or the
Modules that implements a file system that supports the specification of a disk bandwidth to be
guaranteed to each task.

Like Scheduling Modules, also Resource Modules are organized into levels, one module for
each level. The level number influences only the order in which events are notified to modules.

The only events that can be notified to a Resource Module are the creation and the termina-
tion of a task. At creation time an application can specify one or more Resource Models, which
will be handled by the modules registered in the Kernel.

Note that the Resource Module interface is not complete, because in general a Module will
need a larger interface which depends on the resource that the module itself handles. Usually,
the Modules extends the interface used by the Generic Kernel, by adding a set of new functions,
in a way similar to that used in an Object Oriented Language when a class is inherited from
another base class.

1.5 Shared Resource Access Protocols

S.Ha.R.K. is based on a shared memory programming paradigm, so communication among tasks
is performed by accessing shared buffers. In this case, tasks that concurrently access the same
shared resource must be synchronized through mutual ezclusion: real-time theory [8] teaches
that mutual exclusion through classical semaphores is prone to priority inversion. In order to
avoid or limit priority inversion, suitable shared resource access protocols must be used.

As for scheduling, S.Ha.R.K. achieves modularity also in the implementation of shared re-
source access protocols. Resource modules are used to make resource protocols modular and
almost independent from the scheduling policy and from the others resource protocols. Each
resource module exports a common interface, similar to the one provided by POSIX for mutexes,
and implements a specific resource access protocol. A task may also require to use a specified
protocol through a resource model.

Some protocols (like Priority Inheritance or Priority Ceiling) directly interact with the sched-
uler (since a low-priority task can inherit the priority from a high-priority task), making the
protocol dependent on the particular scheduling algorithm (see Figure 1.10). Although a solu-
tion based on a direct interaction between the scheduler and the resource protocol is efficient in
terms of runtime overhead, it limits the full modularity of the kernel, preventing the substitution

12



Figure 1.10: Priority inheritance implemented with an out of order queue insertion: (1) Ta blocks
when it tries to access a resource; (2) Ta goes in the blocked queue; (3) Tbh replaces the position
of the high priority task.

Figure 1.11: Priority Inheritance implemented through shadows: (1) Ta blocks when it tries to
access a resource; (2) Ta indicates a shadow task and remains into the ready queue; (3) Tb is
scheduled in place of Ta.

of a scheduling algorithm with another one handling the same task models (for example, Rate
Monotonic could be replaced by the more general Deadline Monotonic algorithm).

To achieve full modularity, the S.Ha.R.K. Generic Kernel supports a generic priority inheri-
tance mechanism independent from the scheduling modules. Such a mechanism is based on the
concept of shadow tasks. A shadow task is a task that is scheduled in place of the task selected
by the scheduler. When a task is blocked by the protocol, it is kept in the ready queue, and a
shadow task is binded to it; when the blocked task becomes the first task in the ready queue,
its binded shadow task is scheduled instead. In this way, the shadow task executes as if it “in-
herited” the priority of the blocked tasks, but no inheritance takes place, thus decoupling the
implementation of the scheduling algorithm from that of the shared resource access protocol (see
Figure 1.11).

To implement this solution, a new field shadow is added to the generic part of the task
descriptor. This field points to the shadow task (see Figure 1.12). Initially, the shadow field is
equal to the task ID (no substitution; see Figure 1.13). When a task blocks on a shared resource,
its shadow field is set to the task ID of the task holding that resource (see Figure 1.14). In
general, a graph can grow from a blocking task (see Figure 1.15). In this way, when the blocked
task is scheduled, the blocking (shadow) task is scheduled, thus allowing the scheduler to abstract
from the resource protocol. This approach has also the benefit of allowing a classical deadlock
detection strategy: cycles have to be searched in the shadow graph when a shadow field is set.

Using this approach, a large number of shared resources protocols can be implemented in a

Shadow task

Figure 1.12: Meaning of the Task Descriptor’s shadow field.
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Shadow Task

Figure 1.13: Typical scenario with no substitution.

Blocked Task Blocking Task
4 U

Figure 1.14: In this scenario a blocked task waits for a resource; the blocking task inherits its
priority.

Blocked Task

Blocked Task

Blocked Task

Blocking Task

Figure 1.15: Using the shadow mechanism a graph can grow...
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way independent from the scheduling implementation. The classical approach, however, can also
be pursued. In addition to this method, a classical synchronization mechanism is available (see
the User Manual for informations about semaphores interfaces).

1.6 The Generic Kernel

The Generic Kernel implements the primitives which form the interface if with the Libraries
and the User Applications.

The term Generic is used because the kernel is developed abstracting from the implementation
of a particular scheduling algorithm. This means that it does not provide the concept of priority,
deadline, task queues, and so on. All the peculiarities of an algorithm are encapsulated in the
Modules, interacting with the Kernel.

In general Applications use the Kernel through the generic primitives, asking the Kernel to
handle a task set. The Kernel tries to handle the tasks passing them to the modules according
to the Task Models specified for the tasks. Any module modification that does not affect the
Model interface, does not require any modification to the Kernel and the Applications.

The generic kernel divides the task set in two parts: the system tasks and the user tasks.
System tasks are used to manage external devices (like keyboard, mouse, file system, etc.). User
tasks are tasks that belong to the Application.

Moreover, it distinguishes between scheduling and dispatching:

scheduling is the activity by which the Generic Kernel asks a module the indication of the task
to be executed;

dispatching is the activity by which the Generic Kernel orders a module the execution of a
task.

The following section describes some new additions implemented in the kernel to achieve modu-
larity. They mainly concern the task descriptor and the task states.

1.6.1 Task descriptor

To have full modularity, the Generic Kernel should not be modified when implementing a new
algorithm.

For this reason the task descriptor is split in several parts: one generic part, common to all
the modules, and a set of parts that are dependent from the used Modules and are local to the
modules.

The generic descriptor part contains all the data used by the Generic Kernel to implement
the generic primitives, like context, stack address and size, error codes, statistical information,
etc.

The generic part does not contain any information like deadlines, priorities, time slices, reac-
tivation times, etc. These data are used by specific scheduling algorithms and must be contained
in the corresponding scheduling modules. In particular:

e The Generic Kernel does not implement a specific scheduling policy.

e Each instance of a module has a private memory where it can store information about the
owned tasks.

e Each Module uses the information stored in the generic task descriptor plus his private
information, but not the information of other modules.
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| State | Description

FREE Descriptor not used

SLEEP Default state in which a task go after creation; this is the state in

whichthe task returns after a call to thetask sleep primitive
EXE State of the task currently being executed

WAIT * | State in which a task is put after blocking on a synchronization-

primitive

Table 1.1: Task states defined by the Generic Kernel.

| State name | Description |

READY This is the classical ready state in which a task waits to be exe-
cuted.
BLOCKED | This is the state of a task blocked on a semaphore.

ZOMBIE This is the state of a Hard Periodic Task afterhis termination,
when it waits the end of the period tofree his used bandwidth.
LOBBY In some implementation of the SRP protocolthis state is used to
postpone the activation of atask while the system waits that for
system ceiling to become zero.

IDLE This is the typical state in which a periodic task is putat the end
of an instance, to wait for reactivation at the beginning of the
next period.

Table 1.2: Examples of states defined in the Modules.

e Typically, an Aperiodic Server does not use the internal structures of the Master Module,
but interacts with it using the available interface functions.

1.6.2 Task States

One of the consequences of the modular approach is that many task states are local to the
modules. The Generic Kernel defines only a subset of the states in which a task can be, giving
freedom to the Modules to create their private subsystem.

In particular, the Generic Kernel defines only the states described in Table 1.1.

These states must be integrated with other internal states defined into the Modules. Some
typical states implemented in modules are reported in Table 1.2.

1.7 Initialization and termination of the system

Before an Application can be executed, the user has to tell the Generic Kernel the modules used
by the system. This is done through an initialization function in which the specified modules are
registered and initialized.

Normally, the registration creates a non-realtime task, that initializes some devices and calls
the standard C startup function main().

When the system ends (because a function like sys_end () or sys_abort () is called) or when
the last user task terminates, all the devices are closed and all the system tasks are terminated
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in a clean way.
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Chapter 2

Models

In this chapter we will described in detail the Models used in the Generic Kernel. For a general
description of the Models see Section 1.2.

2.1 Data structures

The approach used in the definition of the kernel data structures is similar to that used in Object
Oriented Languages.

In fact, there are many situations in which the kernel needs to define data structures that
can be thought as a base class, which will be extended by the Modules that use it. For example,
the Kernel has to manage Task Models to know the stack size of a task, but it does not have to
know fields like priorities, deadlines, and so on. Such data have to be stored into the task model,
because they represent a QoS specification for the Module that will handle the task.

For this reason, the Generic Kernel only defines a C struct that contains only the information
that it needs (and that is common to all the derived structures). If a Module needs to extend
that base class, it creates another struct whose first field specifies the base class type', whereas
the other fields extend the base class.

In this way, both the Generic Kernel and the Modules can accept a pointer to the base class
to access the required information.

When the Kernel primitives are used, a pointer to a derived class is passed instead of a pointer
to the base class. Because the first field of a derived class is of the base class type, the pointer
passed addresses the correct memory structure (the C structures are stored using the declaration
order), and the Generic Kernel can safely handle the generic part of the structure.

Viceversa, when a Module interface function receives from the Generic Kernel a pointer to a
base class, it will cast explicitly the struct to the correct derived type, getting the extensions of
the derived class.

As it can be seen, this approach is a way to implement single inheritance and polymorphism
in the C language.

2.2 Task Models

The Task Models are implemented, as described in the previous paragraph, through extensions
to a base class. In the following paragraph base class is described with the main extensions to it.

!n this way the derived struct will inherit the fields from the base class.
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typedef struct {
WORD pclass;
LEVEL level;
size_t stacksize;
void *stackaddr;
WORD group;
void *arg;
DWORD control;

} TASK_MODEL;

Figure 2.1: the struct TASK_MODEL.

The Task Models that are included in the official distribution of the Kernel are declared into
the file include/kernel/model.h.

2.2.1 TASK_MODEL

This is the base structure for the Task Models. Its definition is showed in Figure 2.1. In the
following paragraph each field of that structure is described.

pclass this field contains an identifier that represents the real (derived) type of the structure.
The pclass fields of the derived class that are included into the official distribution are
included into the file include/kernel/model.h. The pclass field is a 16 bit integer

level this field identifies a particular level to which the task must be inserted in preference. 0
992

means “all levels”>.

stacksize this is the dimension (in bytes) required for the stack of the task to be created. The
Generic Kernel provides allocation and deallocation of the stack of the tasks (only if the
parameter stackaddr is not specified).

stackaddr this is a memory pointer that can be used as stack for the task to be created. If this
parameter is specified, the stacksize field is ignored when a task is created. The memory
pointed by stackaddr is not deallocated at the termination of the task (deallocation must
be done by the creating task. There is no check on the dimension of the memory area
pointed by stackaddr.

group the tasks in the Generic Kernel are divided into groups. The group of a task is specified
when a task is created, using this field. A group is a number that is common to a set of tasks
in the system. This identifier is used by the primitives group_activate and group_kill
to activate or kill a set of tasks in an atomic way.

arg the body of a task created into the system is a function that accepts a void * parameter.
That parameter is passed at the first activation of a task and it is specified in this field.

2We recall that the Scheduling Modules are organized in levels. The Task Models are used when a task is
created and they are passed to the Modules to find a Module that can handle the Model. All the Modules accepts
Models in which the level field are 0 or the level number in which the Module is registered. In this way it is
possible to distinguish Task Models that are related to different Modules when there are many Modules that can
accept the same Model.
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control this field contains a set of flags that represents features of the task to be created and
represents also some particular states of a running task. Flags are set by the user at creation
time or they can be set by some primitives. The defined flags are:

USE_FPU This flag is used by the OS Lib to notify the system that the task uses in its code
some floating point operation. This information is used by the OS Lib to guarantee
that the FPU state is saved at each context switch.

NO_KILL If this flag is set the task cannot be killed through a task_kill primitive. This
flag is also used at the shutdown of the kernel (see Section 7.1), and it can be specified
only at the task creation.

NO_PREEMPT If this flag is set, the running task cannot be preempted by another task, but
it can be interrupted by a device handler. In other words, the scheduler is disabled.
This flag is modified by the primitives task_preempt and task_nopreempt.

SYSTEM_TASK If set this flag marks the task as a system task. It can be specified only at
creation time. The fact that a task is or not a system task affects the system shutdown
(see Section 7.1).

JET_ENABLED This flag can be set only at task creation time and when set specifies that
the Generic Kernel must register the Job Execution Time statistics.

TASK_JOINABLE This flag is set if another task can wait for the task termination through
the task_join primitive (see Section 7.9).

STACKADDR_SPECIFIED This flag is set by the creation primitive if the stackaddr field was
specified. At termination time, if this flag is not set, the stack space is deallocated by
the Kernel; otherwise, the stack space is left according to the POSIX standard.

TRACE_TASK This flag is set if the tracer has to monitor the task events.

KILLED_ON_CONDITION This flag is used in the implementation of the condition variables.
This flag is set by the Generic Kernel if a task is killed while it is blocked on a condition
variable. In this case the task must be rescheduled to reaquire the mutex linked to
the condition variable.

KILL_ENABLED This flag is set if the cancellation (in a POSIX meaning) is or not enabled.

KILL_DEFERRED This flag is set if the cancellation (in a POSIX meaning) is deferred (the
cancellation is asynchronous if not).

KILL_REQUEST This flag registers a cancellation request made with one of these primitives:
task_kill, group_kill, pthread_testcancel.

CONTROL_CAP This flag is used in the Scheduling Modules to tell Generic Kernel to generate
an OS Lib event when the running task terminates its capacity.

TASK_DOING_SIGNALS This flag is set by the Generic Kernel when the task is executing a
signal handler. This flag is used only in the function kern_deliver_pending_signals,
contained in the file kernel/signal.c.

FREEZE_ACTIVATION This flag blocks the task activations done through the primitives
task_activate and group_activate.
The flag is modified by the primitives task_block_activationand task_unblock_activation.
WAIT_FOR_JOIN This flag is set when a task terminates, but only if a task is joinable. The

flag is used to register that the task is terminated and it is waiting for someone to do
a join on it to die.
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DESCRIPTOR_DISCARDED This flag is used in the implementation of the join primitive, and
it is set by the primitive task_create to notify that a task descriptor, whose task is
terminated and is waiting for a join, has been chosen and discarded for the creation
of a new task.

SIGTIMEQUT_EXPIRED This flag is set for the task blocked on a sigtimedwait primitive,
when the timeout event fires.

The internal data structures of a TASK_MODEL should be used only into the Generic Kernel and
into the Modules. For this reason the system provides a set of macros that can be used to set
the required values in a base class object. In all the described macros the parameter m is a
TASK_MODEL. The macro are described below:

task_default_model(m,p) This macro initializes the Model m to a default value. The pclass
of m becomes equal to the p parameter.

task_def_level (m,1) This macro specifies the scheduling level 1 of Model m.

task_def_arg(m,a) This macro specifies the parameter passed to the first activation of the task
initialized with Model m.

task_def_stack(m,s) This macro is used to specify the stack dimension of the task initialized
with Model m.

task_def_stackaddr(m,s) This macro is used to specify a memory address pointer to be used
as a stack for the task initialized with Model m.

task_def_group(m,g) This macro is used to specify the group of tasks initialized with Model
m.

task_def_usemath(m) This macro is used to specify that the task initialized with Model m uses
the mathematical coprocessor.

task_def_system(m) This macro is used to specify that the task that is initialized with Model
m is a system task.

task_def_nokill(m) This macro is used to specify that the task initialized with Model m cannot
be killed.

task_def_ctrl_jet(m) This macro is used to specify that the task initialized with Model m
requires the monitoring of the job execution time.

task_def_joinable(m) This macro is used to specify that the task initialized with Model m can
be passed as a parameter into the join primitive.

task_def_unjoinable(m) This macro is used to specify that the task initialized with Model m
cannot be passed as parameter into the join primitive.

task_def_trace(m) This macro is used to specify that the task initialized with Model m is a
task for which the system tracer will register some information about the events related to
it.

task_def_notrace(m) This macro is used to specify that the task initialized with Model m is a
task for which the system tracer will not register any information.
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2.2.2 Used conventions

In normal situations the final user never needs to instantiate an object of type TASK_MODEL, but
objects of a type derived from it. Also the macro described in the previous paragraph cannot be
used directly; instead, there are similar macros redefined for the derived types.

The standard used in the inheritance of a Model from the base model are the following:

1. The name of the derived class is obtained from the name of the base class by adding a
prefix. For example, the task Model for the Soft task is called SOFT_TASK_MODEL.

2. The first field of a derived structure is a structure with name t and type TASK_MODEL.

3. The specific parameters added to the models (e.g., period, wcet, etc.) are inserted as
normal fields after the first field. These fields represent a specification of the Quality of
Service required by a task to the system at creation time. The Scheduling Modules can
be structured in a way that they may use only a subset of the fields of a Model®. This
approach limits the growth of the number of Models and achieves better independence of
the applications from the task models®*.

4. The macros defined for the TASK_MODEL struct and described in the previous paragraph
must also be defined for the new model. They should be rewritten with a name derived
from the old name, like the example below:

#define soft_task_def_level(m,l) task_def_level((m).t,1l) ‘

5. The new model should provide a set of private macros similar to those provided with the
TASK_MODEL to handle the new fields of the derived structure. For example, if the new
model has a field called period (that contains for example a reactivation period), the new
macro should be similar to the one shown below:

#define soft_task_def_period(m,p) (m).period = (p) ‘

The five rules described above simplify the definition of new models allowing the user to cut and
paste the code of a similar model and to modify some prefixes.

2.2.3 Examples of Models currently integrated into the Kernel

Currently the Kernel defines a set of Task Models directly derived from the base TASK MODEL
class. In the following paragraphs they are briefly described (for their definition look in the file
include/kernel/model.h).

HARD_TASK_MODEL

This Task Model can be used to model Hard Periodic and Sporadic tasks. A Hard Periodic
Task® is a task guaranteed using an activation period and a wcet®, whereas a Hard Sporadic
Task” is an aperiodic task guaranteed on a minimum interarrival time and a wcet.

3For example, to create a Soft Task Model it is useful to insert two parameters like period and mean execution
time; these parameters are mandarory for the Scheduling Module that implements CBS, whereas they are ignored
by a Scheduling Module that implements a Polling Server.

4For example, an Application can use a Soft Task Model specifying all the Model parameters, without knowing
which Scheduling Module is really used, e.g. CBS or Polling Server).

5The periodicity field of the model must be set to PERIODIC.

SWorst Case Execution Time.

"The periodicity field of the model must be set to APERIODIC.
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The Model allows the specification of a relative deadline. If not specified, the deadline is
assumed to be equal to the next reactivation time (as in the classical task model proposed
by Liu and Layland [7]).

The Model also allows a release offset to be specified. This means that any activation
should be delayed by the given offset.

A Module that accepts tasks with this Model can raise the following exceptions:
XDEADLINE_MISS This exception is raised if the task misses a deadline.

XWCET_VIOLATION This exception is raised if the task tries to use more CPU time than
declared.

XACTIVATION This exception is raised if a sporadic task is activated with a frequency
greater than that declared.

SOFT_TASK_MODEL

This Task Model is used to specify the QoS required by a soft task. A soft task is a periodic
or aperiodic task, which is handled by a server with a given (guaranteed) bandwidth (i.e.,
which allocates a budget Qs every interval Ts).

A soft task can specify, using a specific field, if it wants to save or skip pending activations.

A pending activation occurs when a task is activated before the end of its current instance®.

The Scheduling Modules can choose whether to handle or not this situation. Pending
activations influence the behavior of the task_sleep and task_endcycle primitives.

The Soft Task Model has also a field which contains a wcet. This field can be required by
some algorithm that requires this information (for example, the TBS algorithm.

Usually, the Modules that accept the soft task model do not raise any exception.

NRT_TASK_MODEL

This Task Model is typically used to support non real-time computations performed by
tasks without temporal requirements.

Typical Modules that use these Models are Modules that implement scheduling algorithms
like Round Robin, Proportional Share, priority scheduling, and POSIX scheduling.

The model has also a field to specify whether a Task have to save or skip pending activations.
Finally, the Model has two other fields (inherit and policy) used in the implementation
of the POSIX scheduling algorithm °.

JOB_TASK_MODEL

This Task Model is normally used by an Aperiodic Server to pass a task to a Master
Module. It is not explicitly used in the Application code.

This Model extends the Base Model with a deadline and a period. A Job is a single a task
instance which starts and stops without synchronization points in between.

Typically, an aperiodic server inserts a Job in the Master Module to ask for service. When
that task ends its instance or it blocks on a synchronization variable, the Job dies and it
is newly recreated when the task is reactivated or when it resumes from blocking.

8Tt may happen when the reserved bandwidth is less than the maximum task’s utilization.
9This is one of the (rare) cases in which the Task Model depends on a specific Scheduling Module.
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There are no fields that specify computation times (i.e., wcet, met) because the Aperiodic
Servers that use that Model generally handle a budget.

The Model contains another field that specifies whether a Master Module should raise a
deadline exception when a deadline is reached and the Job is still alive.

2.3 Resource Models

The resource Models are implemented in a way similar to the Task Models. The difference
between Task Models and Resource Models is that it is not possible to group a set of fields
common to all Resource Handlers. For this reason, the C structure that represents the base class
of a Resource Model contains only a field that provides information about the real type of a
Resource Model. As done for the Task Models, that field is called rclass.

The Resource Models available in the kernel are used in the implementation of the Priority
Ceiling Protocol and the Stack Resource Policy.

In the case of Priority Ceiling, the Resource Model only adds a static priority of the task to
be created.

In the case of SRP, the Resource Model only adds the definition of the Preemption Level of
the task.

The Resource Models contained into the official distribution of the Kernel are included into
the file include/kernel/model.h.

2.4 Mutex attributes

The protocol used by a mutex is decided when the mutex is initialized (at run time).

To implement the mutex initialization in a modular fashion we derived a structure, called
mutexattr_t, from a base structure similar to that used in the Resource Models

We derived a set of mutex attributes to be used in the initialization of a mutex (a mutex is
contained in a mutex_t type, which is similar to the POSIX’s pthread_mutex_t).

The Mutex Attributes are declared into the file include/kernel/model.h.
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Chapter 3

Kernel Internals

Since the Generic Kernel does not implement any memory protection, all the Modules have access
to the internal data structures used for scheduling. Although the Modules could modify these
data structures, typically they do not need to do so.

3.1 Kernel types
The Generic Kernel defines a set of primitive data types, that are briefly described below:

PID This type is used to contain a task index. It is an integer pointing to an entry of the task
descriptor table. This type can have values in the range [0...MAXPROC-1], plus an invalid
value, NIL (that is, -1).

IQUEUE This type is used to implement the task queues typically used in scheduling opera-
tions. For more information see Section 3.6.5.

TASK This type is simply a redefinition of the void * type and it can be used for readiness ad
the returned value in the task function declaration.

LEVEL, RLEVEL They are used to index the Module descriptor Tables. They are integers
and they point to a particular entry. The values of these types are [0...MAX_SCHED_LEVEL-1]
for the LEVEL type and [0...MAX_RES_LEVEL] for the RLEVEL type.

bandwidth t This type is used to store a real number in the range [0,1]. It is a 32 bit unsigned
integer and its value is interpreted as y—FpsaNpWwIDTH -

task key t This is an integer type and it is used as an index for task specific data (similar to
POSIX’s Thread Specific Data).

3.2 Descriptors

In this section we present all the descriptors defined in the Generic Kernel. If not specified, these

data structures are defined in the include/kernel/descr.h file and they are used (usually as
arrays) in the kernel/kern.c file.
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3.2.1 Task Descriptor

The proc_des structures used to define task control blocks'. In the following paragraphs the
fields of the task descriptor are described?.

DWORD task ID Progressive number assigned to a task at its creation.

LEVEL task level This field points to the Module that owns the task. The Generic kernel
uses this field to redirect the calls to the Module owning the task.

CONTEXT context This field contains an index in the OS Lib context array that handles
the context of a task.

BYTE *stack This field is a pointer to the memory used as a task stack.

TASK (*body)() This field is the pointer to the first instruction of a task body, and it is used
at initialization time.

char name[MAX TASKNAME] This is a symbolic name, whose length is defined by the
MAX_TASKNAME constant.

WORD status This is the task status.

WORD pclass This field is the Class code of the Task Model used during task creation. It can
be used by Modules to know the typology of the task (useful if the task supports many
types of Models; see Section ??, level_accept_task_model function).

WORD group This is the task group. The value 0 is used to index a single task. This field is
not used as a GID in classical Unix systems but is used to kill or activate a group of tasks
in an atomic way.

WORD stacksize Stack dimension (in bytes).

DWORD control Task Status flags. A description of the bits in this field is reported in
Section2.2.1.

int frozen activations Number of frozen activations. Useful only if the FREEZE_ACTIVATION
flag of the control field is active (see Section 7.4).

int sigmask This is the blocked signal task mask (see kernel/signal.c and also [9]).
int sigpending This is the pending signal task mask (see kernel/signal.c and also [9]).

int sigwaiting This is the mask of the signals on which a task is waiting, blocked on a sigwait
primitive (or similar).

int avail time This field contains the remaining computation time of a task (see Section 3.5).
PID shadow This is the shadow pointer (see Section 1.5).

struct _task handler rec *cleanup stack Pointer to the first element of the cleanup
stack.

IThe name of this structure is derived from the previous versions of Hartik. However, it is a task descriptor
and not a process descriptor.

2The following fields have been removed from the structure in the last releases: request _time, priority, time-
spec_ priority, prev, next.
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int errnumber This is an error number local to the running task. The symbol errno defined
into the C standard is implemented as a macro that refers to this field of the running task.

TIME jet table[JET TABLE DIM] This table contains the computation times consumed
by the last JET TABLE DIM instances of the task. The table is handled as a circular
buffer.

int jet tvalid This is the number of valid items in the jet_table table.
int jet curr This is the current element in the jet_table table.

TIME jet max This field contains the maximum time (in microseconds) consumed by a task,
among all its instances.

TIME jet sum This field accumulates the execution times (in microseconds) of all task in-
stances from the start of the task (or from the last call to jet_delstat). This field, together
with the jet_n field, is used to compute the mean execution time of a task instance.

TIME jet n This field contains the number of instances involved in the computation of jet_sum.

PID waiting for me This field contains the identifier of the task which is currently blocked
for a task_join on the current task. The field value is NIL if no task is blocked for a join
on it.

void *return_value This is the value returned by a task when it dies. This value is memorized
if the task is joinable, waiting for someone to synchronize on it with a join.

void *keys]PTHREAD KEYS MAX] This array contains the task specific data.

struct condition struct *cond waiting This field is NULL or it points to the condition
variable on which the task is blocked?®.

int delay timer This field is used in the implementation of the blocking primitives with time-
out. Usually this field contains the OS Lib index of the event created for the wake-up.

int wcet This field can be used by Modules to store some temporal information. It is generally
used in conjunction with the avail_time field.

3.2.2 Level descriptor

In this Section we describe the fields contained in the level_des structure, that implements the
Scheduling Module Descriptor. These Modules will fill the proposed interface, defining also all
the interface functions. If a Module does not implement an interface function, it redefines that
function in a way that it will raise an exception if called. The fields defined for the level_des
structure are the following:

Private Functions, Public Functions The rest of the interface is made of a set of function
pointers that implements the virtual functions of the Scheduling Modules. That functions
are described in the Chapter 4. All that functions have as first parameter a LEVEL field
that can be used to find the Module Descriptor and then the private structures of that
Modules®.

3This field is present because if a task is killed during a block on a condition wait, the POSIX standard requires
that the task reacquires the mutex linked to that condition before it dies.

4The behaviour of the LEVEL parameter passed to that function is the same of the hidden paramether this
of many Object Oriented languages.
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| Interval reserved to | Codes

Generic Kernel 0...MODULE_STATUS_BASE-1]
Scheduling Algorithm MODULE_STATUS_BASE ...APER_STATUS_BASE-1]
Aperiodic Servers APER_STATUS_BASE ...LIB_STATUS_BASE—I]

Others (Resource Han- | >= LIB_STATUS_BASE
dling, libraries, etc.)

Table 3.1: Partitioning of the codes for the status field of the task descriptor.

3.2.3 Resource module descriptor

In this Section we describe the fields contained in the resource_des structure, which imple-
ments the Resource Module Descriptor. These Modules will fill the proposed interface, defining
all the required functions. If a Module does not implement an interface function, it redefines
that function in a way that it will raise an exception if it is called. The fields defined for the
resource_des structure are the following:

char res name[MAX MODULENAME] This filed contains a symbolic Name of the Mod-
ule, for statistical purposes. The file include/modules/codes.h contains the name of the
Modules distributed with the Kernel.

WORD res_code This field contains a numeric identifier that identifies a Module in an
unique way. The codes of the Modules distributed with the kernel are written in the
file include/modules/codes.h.

BYTE res_version This is a version number for the Module. The version numbers of the
Modules distributed with the Kernel are reported in the file include/modules/codes.h.

int rtype This field is used to identify the extended interface implemented by a Resource Mod-
ule. This field is necessary to implement some primitives that use a particular extended
interface, that need to know which of the resource modules registered in the kernel have a
particular extension.

Resource Calls The rest of the interface is made of a set of function pointers that implement
the virtual functions of the Resource Modules. These functions are described in Chapter 5.
All these functions have as first parameter a RLEVEL field that can be used as the similar
parameter of the Scheduling Module virtual functions.

3.3 System states

As mentioned in Section 1.6.2 the concept of task state has a local meaning, and it is stored in
the status field of its task descriptor.

The values that the status field can have are divided in four intervals, described in Table 3.1.

Each Module Should use the codes in the correct range of values.

This approach allows to handle many Module configurations. The fact that two Scheduling
Modules use the same status code for different meanings is not a problem, because the codes are
used internally to the Modules.
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3.4 Kernel Global Variables

The following global variables are defined in the Generic Kernel and can be used by the Modules.

proc_ des proc_table[|] This variable is the task descriptor array. Not all the entries of this
array are used. The descriptor really allocated are handled by the task_create primitive.

level des *level table[] This variable is the array that memorizes a set of pointers to the
Scheduling Modules Descriptors. When a Module registers itself into the Kernel, an entry
of this array is allocated, and it points to an extension of the level_des descriptor type.
In an object oriented interpretation it can be thought as a polymorphic Module array (see
Section 2.1).

resource_des *resource_table[|] This variable memorizes an array of pointers to extension
of the resource des structure. For this variable the same comments for the level table

apply.

PID exec This variable contains the task returned by the Scheduling Module scheduling oper-
ation. Typically this variable is used only into the scheduler() function of the Generic
Kernel. This variable cannot be modified, it can only be read and checked with the field
exec_shadow. This variable has the value NIL (-1) when a primitive blocks the running
task, and the scheduler is not yet called. This variable does not point to the running task.
Use exec_shadow instead!

PID exec_shadow This variable points to the running task. It can be different from the value
contained into exec because of the Shadow mechanism (see Section 1.5). This variable
cannot be modified, it can only be read and check with the field exec. This variable has
the value NIL (-1) when a primitive blocks the running task, and the scheduler is not yet
called. When a reference to the running task is needed, this variable has to be used.

int cap_timer This variable is different from -1 only if the Generic Kernel or a Module created
a capacity event. This variable can be used by the Scheduling Modules that do not utilize
the CONTROL_CAP flag for their tasks (see Section 3.5).

struct timespec schedule time This variable contains the system time in which the sched-
uler was called the last time. The first thing the Kernel function scheduler () does is
the setting of that variable. This variable is also used as finish time for an execution time
interval.

struct timespec cap lasttime This variable is a copy of the schedule_time variable, done
at each call of the scheduler () function. The value of that variable is used as the start
time of the last interval executed by a task. It is used to implement the time accounting.

DWORD res_levels This variable is the number of resource module level descriptors allo-
cated. It is modified only by the resource_alloc_descriptor function (see Section ?7?).

int task counter This variable is a variable that counts the number of User tasks actually
present into the system (see Section 7.2).

int system counter This variable is a variable that counts the number of System tasks actu-
ally present into the system (see Section 7.2).

int mustexit This variable is used by the system primitives sys_end and sys_abort to block
the context changes into the event handlers.
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int calling runlevel func This variable is a flag. It is set to 1 when the system executes some
system functions (registered through the sys_atrunlevel() function). This flag influence
the task_activate primitive, because that primitive has to do different stuffs depending
on the value of that variable (see the code of the primitive in the file kernel/activate.c).

IQUEUE freedesc This variable is the free task descriptor queue. It is handled by the Kernel
and must be used by a Scheduling Module into the call task_end call to free a task
descriptor of a task terminated correctly.

TIME sys_tick If the OS Lib is initialized with the one shot timer the variable contains the
system tick (in microseconds). Otherwise, the one-shot timer is used, and this variable has
a value of 0.

3.5 Temporal protection

The Generic Kernel supports task temporal protection through a set of procedures and data
structures that may be used by the Scheduling Modules. The generic Kernel does force to use
its own functions, so a Module can define itself a policy to ensure temporal protection. In this
Section the proposed functions to implement the temporal protection are described.

The Generic Kernel handles the time capacity of the tasks in the system using the creation
and the deletion of a specific OS Lib event that simply reschedules the system. The end of the
capacity is seen by the Modules as a normal epilogue done in the case of a preemption.

The timer event is created when a task is dispatched, and it is deleted by all the primitives
that may cause preemption. In an instant there is at least one capacity event pending, that is
the event of the running task.

The Generic Kernel defines for each task the bit CONTROL_CAP that is memorized into the
field control of the task descriptor. That bit is set by the Scheduling Modules to require for a
task the creation of the capacity event at dispatch time.

The Scheduling Modules have also to check the capacity exhaustion each time a task is
descheduled.

Capacities are handled using the following variables provided by the Kernel:

e The wcet field of the task descriptor usually memorizes a characteristic time for a task (i.e.,
it is used to store a worst-case execution time or a mean execution time). It is included in
the task descriptor to avoid the allocation of such an information for all the modules. It is
not used by the Generic Kernel.

e The avail_time field of the task descriptor is used to handle the available execution time
for a task. The capacity event generated by the Generic Kernel at dispatch time has an
activation time that is equal to schedule_time + avail_time. The field is updated by
the generic kernel each time a task is descheduled, decrementing the slice just executed by
the task.

e The cap_timer field is used by the Generic Kernel to know whether a capacity event is
or not pending. If the field is equal to -1, there are no events, otherwise the value is the
index of the capacity event. If the field is not equal to -1 the Generic kernel will delete
automatically the event each time the system is rescheduled. The Generic Kernel does not
check who has created the event pointed by cap_timer, so a Scheduling Module that not
use the flag CONTROL_CAP can create a capacity event and put his index into cap_timer,
avoiding the removal of the event directly in the code of the Module.
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e The cap_lasttime field contains the time of the previous reschedule of the system. The
accounting of the computation times is done from the difference between schedule_time
and cap_lasttime. The time used by the Kernel primitives is accounted in the running
task.

The functions called by the capacity event have only to reschedule the system. The Schedul-
ing Modules that have to generate themselves the capacity event can store their events in the
cap_timer filed if they want an event to be removed at each preemption. The events can call
the Generic Kernel Function called capacity_timer (it does not accept any parameter).

3.5.1 Negative capacities

The contents of the avail_time field can be negative. This fact, theoretically impossible, can
happen for two reasons:

e first, the OS LIb event handler can not guarantee the delivery of a capacity event at exact
time (a small delay of some microseconds may occur). So, a capacity event may be delivered
after the capacity is exhausted, so that the task capacity becomes negative. We can suppose
that negatives values are smaller than the usual time for the tasks;

e second, because the shadow mechanism can execute a task that has finished his budget;
that task will not be descheduled until the shadow of the higher priority task points to
it. This behavior is correct because we want that the blocking task will ends its critical
section to limit the blocking time of the higher priority tasks. This approach is supported
by some theoretical results (see [6]).

Scheduling modules can use two strategies to cope with the problem given by negative capacities.
The first solution is to recharges the capacity with an amount equal to @)s; if the capacity
is still negative, the task will “loose a turn”. This solution is good for algorithms that provide a
periodic replenishment (like for example Round Robin, Polling Server or Deferrable Server) but
not for algorithms like Sporadic Server or Constant Bandwidth Server, where the replenishment
is due to the capacity usage (in these algorithms the server would not become active).
The second solution is to replenish the budget up to Q; this solution is good for all types of

algorithms, but we have to consider that the server utilization factor becomes %.

3.6 Utility functions

This section contains a set of utility functions that can be used to simplify the writing of the
Modules. Often these functions are simple redefinitions of the OS Lib functions. Use these
functions instead of those provided by the OS Lib.

3.6.1 Event Handling

The Generic Kernel uses the Generic kernel event handling provided by the OS Lib. The following
functions should be used (see include/kernel/func.h):

e kern_event_post can be used to post an event. The redefinition adds a check on the
index, raising an exception if the OS Lib event queue is full.

e kern_event_delete can be used to remove an OSLIB event. The unique parameter of the
funcion is the eveni ID returned by the kern event post function.
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void *kern_alloc(DWORD s);

void *kern_alloc_aligned(size_t size, lmm_flags_t flags,
int align_bits, DWORD align_ofs);

void *kern_alloc_gen(size_t size, lmm_flags_t flags,
int align_bits, DWORD align_ofs,
DWORD bounds_min, DWORD bounds_max) ;

void kern_free(void *block, size_t size);

void xkern_alloc_page(lmm_flags_t flags);

void kern_free_page(void *block);

void *D0S_alloc(DWORD size) ;

void DOS_free(void *ptr,DWORD size);

Figure 3.1: Memory allocation functions.

e event_need_reschedule, with no parameters. It has to be called into the event handlers
that have to reschedule the system. The Modules never have to call the schedule function
into event handlers.

3.6.2 Exception Handling

The Generic Kernel exception handling is based on the real-time signal interface of the POSIX
standard. In particular, the exceptions are implemented with the signal number 9, SIGHEXC,
that typically writes a message to the console and ends the system.

The function to use to raise an exception is:

void kern_raise(int n, PID p);

As a result of this function call, a real-time signal is enqueued into the system and the n
parameter is passed into the field si_value of the structure siginfo_t passed as a parameter
to the signal handler.

3.6.3 Memory Management

The Generic kernel provides a memory allocator based on Flux OS-Kit LMM][5]. The LMM is in
the kernel/mem directory; the functions defined in this subsection are in the file kernel/mem.c.
These functions must be called with interrupt disabled.

The allocator divides the memory into three regions that can be specified with some #defines
into the flag parameter of some functions:

e Memory addresses below 1 Mb (flag field set to MEMORY_UNDER_1M)
e Memory addresses from 1 Mb to 16 Mb (flag field set to MEMORY_FROM_1M_TO_16M)
e Memory addresses below 16 Mb (flag field set to MEMORY_UNDER_16M)

e Memory addresses over 16 Mb (flag field set to 0)

Memory management functions are described below (see also Figure 3.1):
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kern_alloc This function allocates a memory block of s bytes returning a void *. All the
addresses given are supposed to be good for the block. The function returns NULL if there
is not a free memory block with the required size.

kern_alloc_aligned This functions allocates an aligned memory block. The first align_bits
of the block must be equal to the lowest align_bits of align_ofs. In other words,
align_bits specifies an alignment as a power of 2, whereas align_ofs is a natural offset.
The function returns NULL if there is not a block with the required characteristics.

kern_alloc_gen This function allocates an aligned memory block in a way similar to kern_alloc_aligned,
with the additional condition that the block must be found within the addresses bounds_min
and bounds_max.

kern_free This function will free a block allocated with one of the previous functions. Note
that this function requires the dimension of the block to allocate.

kern_alloc_page This function allocates an aligned page of memory (4 Kb).
kern_free_page This function frees a page allocated with the kern_alloc_page function.

D0S_alloc, DOS_free These functions allocate memory under the first Mb.

3.6.4 Context switch

The creation and the deletion of a context in the Generic Kernel is made using the OS Lib
functions, properly renamed into kern_context_create and kern_context_delete.

To change context, the Generic Kernel provides two functions, kern_context_save and
kern_context_load. First function can be used to start a kernel primitive (disabling inter-
rupts, whereas the second can be used to enable the interrupts, change the context using the
OS Lib functions, dispatch pending signals and test for asynchronous cancellation. Note that
currently the kernel primitives run on the same stack of the caller thread, and the primitives are
simply called disabling the interrupts.

These functions must never be called into the standard interface of the scheduling modules.
When a OS Lib event need to reschedule the system because there is a preemption, the function
event_need_reschedule must be called instead.

The functions described in this paragraph are into the include/kernel/func.h file.

3.6.5 Queues, arrays and pointers

To simplify the use of the internal Kernel references, the following approach is used:

e Whenever possible, the descriptor arrays are statically allocated.

e Each descriptor is identified by an integer which represents the index in the descriptor
array (e.g. PID, LEVEL, RLEVEL).

To handle task queues, the Generic Kernel provides some utility functions which can speed up
the Module writing; however a module can use its own functions to enqueue tasks.

The implemented functions do not use any fields of the task descriptor; they are implemented
with a double linked list. The prototypes of the functions for queue management are shown in
Figure 3.2. They are into the file kernel/iqueue.c, and include/kernel/iqueue.h, described
below.
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#define IQUEUE_NO_PRIORITY 1
#define IQUEUE_NO_TIMESPEC 2
struct IQUEUE_shared {
PID prev[MAX_PROCI;
PID next[MAX_PROC];
struct timespec *timespec_priority;
DWORD *priority;

};
typedef struct {

PID first;

PID last;

struct IQUEUE_shared *s;
} IQUEUE;
void iq_init (IQUEUE #*q, IQUEUE *share, int flags);
void iq_priority_insert (PID p, IQUEUE *q);
void iq_timespec_insert (PID p, IQUEUE *q);
void iq_insertfirst (PID p, IQUEUE *q);
void iq_insertlast (PID p, IQUEUE *q);

void

iq_extract (PID p, IQUEUE *q);

PID iq_getfirst ( IQUEUE *q);

PID iq_getlast ( IQUEUE *q);

PID iq_query_first(IQUEUE xq) ;

PID iq_query_last(IQUEUE *q);

struct timespec *iq_query_timespec(PID p, IQUEUE *q);
DWORD *iq_query_priority (PID p, IQUEUE xq);

PID ig_query_next (PID p, IQUEUE *q);

PID iq_query_prev (PID p, IQUEUE *q);

int iq_isempty (IQUEUE xq) ;

Figure 3.2: Prototypes of the task queue handling functions.
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Basically, an IQUEUE has an "I"nternal prev/next structure, that may be shared between
one or more queue. Of course, the user MUST guarantee that the same task will not be inserted
in two IQUEUES that share the same prev/next buffer.

Internal queue initialization:

share = &x the internal data structure of the IQUEUE x is used to enqueue the tasks.

share = NULL an internal data structure to handle prev/next pairs is dynamically allocated
(The amount of memory that is allocated can be reduced using the flags).

flags can be used to reduce the memory usage of an IQUEUE when share=NULL:

IQUEUE_NO_PRIORITY the iqueue do not provide internally a priority field
IQUEUE_NO_TIMESPEC the iqueue do not provide internally a timespec field

note that, if these flags are used, the corresponding insert functions will not work!. The
default value for the flags is, of course, 0.

The queue insertion is made by the following functions:

iq_insert insertion based on the priority field.
iq_timespec_insert same as above but use the timespec_priority field
iq_insertfirst insert in the first position of the queue

iq_insertlast insert in the last position of the queue

The queue extraction functions: basically extracts a task p from the queue q. There are three
versions of the function:

iq_extract extracts given a task p (that must be inserted in the queue);
iq_getfirst extracts the first task in the queue, NIL if the queue is empty;

iq_getlast extracts the last task in the queue, NIL if the queue is empty;

Seven queue query functions are also provided. The first two functions (query first/last) return
the first and the last task in the queue, NIL if the queue is empty. The second two functions
(query priority /timespec) can be used to get/set the priority or the timespec field used when
queuing. The third two functions (query next/prev) can be used to scan the queue elements.
The last function can be used to test if a queue is empty.

3.6.6 Initialization functions

The Generic Kernel supports the specification of the functions to be called at system initialization
and termination (see Section 7.2). These functions can be registered through the following system
primitive:

‘ int sys_atrunlevel(void (*f)(void *),void *p, BYTE when);

The parameters for that function are:

f the function to be registered;
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p the parameter to be passed to function £ when the function will be called;

when is the situation in witch that function will be called. The correct values are the following;:

RUNLEVEL_INIT The function will be called after Module registration, when the system is
just entered in multitasking mode but no thread executed yet;

RUNLEVEL_SHUTDOWN The function will be called after a call to sys_abort or sys_end; The
system is still in multitasking mode;

RUNLEVEL_BEFORE_EXIT The function will be called when the Kernel exits from multitask-
ing mode;

RUNLEVEL_AFTER_EXIT The function is called before the system hangs (or returns to the
host OS, if the proprietary extender is used).

It is also possible to specify with an OR operator a flag NO_AT_ABORT that disables the call
to the functions if the system is exiting with a sys_abort function.

You can post at most MAX_RUNLEVEL_FUNC functions.

3.6.7 Interrupt disabling, printf and system termination

The Generic Kernel redefines the following OS Lib functions (see the include/kernel/func.h
file):

cli renamed in kern_cli

sti renamed in kern_sti

11_fsave renamed in kern_fsave

11_frestore renamed in kern_frestore.

To display some messages to the console, the Generic Kernel provides two functions called
printk and kern_printf. These functions are similar to the standard C printf function,
except that they write directly to the console. The printk function allows to specify a kind of
“importance” for the message that the function displays. For more information look at the file
include/kernel/func.h and include/kernel/log.h.

Finally, a clean system termination can be obtained through the sys_end and sys_abort
primitives. For more information look at the file include/kernel/func.h and read Section 7.2.
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Chapter 4

The Scheduling Modules

This chapter describes the interface of a generic Scheduling Module, the semantic of the functions
that compose the interface, and a set of conventions used to write the Modules. For more
information on the Scheduling Module Architecture see Section ??.

4.1 Task Lifecycle

To understand the interface of a Scheduling Module, we present a simple view of the events that
refer the life of a task, from its creation to its end. The Module Interface reflects these events.

Figure 4.1 illustrates a simple case, in which a task is created, activated, and then preempted
by another task that dies after a while. The following events are generated:

create This event is generated at task creation. The Scheduling Module initializes the data
structures for the task activation.

activate This event is generated when a task is explicitly activated by a call to a user primitive.
That event authorizes the Scheduling Module to insert the task in the set of the schedulable
tasks.

activate (5)

A '
Task j i

create (2)

dispatch (7) end (8)

activate (3)
Task i T T |—| ,_.
create (1)
dispatch (4) epilogue (6) dispatch (9)

Figure 4.1: A simple scenario: tasks i and j are created and activated. Task i is executed, and,
after a while, it is preempted by task j. The numbers in parenthesis denote the event sequence.
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activate (reactivation) (reactivation)

dispatch endcycle dispatch endcycle dispatch end

Figure 4.2: Activation handling: a periodic task is activated once, and it executes for three
activations .

dispatch This event is generated when a task, after it has been scheduled?, is actually executed.
The Scheduling Module updates the data structures to register the execution of the task.

epilogue This event is generated all the times a task is preempted by another task?. The
Scheduling Module usually reinserts the task in the set of the schedulable tasks.

end this event is generated when a task ends its execution. The Scheduling Module is authorized
to free the task descriptor and any data allocated for the task.

Note that the POSIX standard does not differentiate between task creation and task activation;
in fact, the pthread_create primitive creates and activates directly a task.

Figure 4.2 shows a sample sequence of events produced by a periodic task. A task is activated,
it executes for three instances and then it falls asleep waiting for another explicit activation. The
new events introduced in this scenario are:

endcycle The endcycle event is the termination of the current task instance. It is generated by
a primitive inserted into the task code. If the task is a periodic task, it will be reactivated
by the Scheduling Module at the beginning of the next period. If the task is an aperiodic
task, this event implies that the task will wait for an explicit activation (through an activate
event).

(reactivation) This event is not created directly by the user with a primitive, but it is handled
internally by the Scheduling Module that handles the task. This event reactivates the task,
and it is usually delivered at the end of a period.

Although the event endcycle terminates an aperiodic or a periodic job, and it can differ in the
way they handle pending activations. A pending activation is an activate event which is delivered
when the task has not ended the previous instance. The handling of pending activations is left
to the Scheduling Modules.

Figure 4.3 shows the block ed unblock events. These events are generated to handle the
behavior of a synchronization primitives, which generally blocks a task (block event) and then
activate again the task after a while (unblock event). The events behave as follows:

block It disables the task scheduling because the task is arrived at a synchronization point.

unblock This event is used to notify to the task that the synchronization is occurred, so the
task scheduling must be enabled.

The Generic Kernel guarantees that an unblock event will never be called before a corresponding
block event. That is, these two events are coupled.

1The scheduling event is not showed in the figure.
2This event is also raised if the task finishes its time capacity allocated on its server (for soft tasks).
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unblock

Task i

dispatch block dispatch

Figure 4.3: Task synchronization. A task calls a synchronization primitive, which blocks the task
using an extract event. When the task will be able to continue, an insert event will be called.

4.2 Assumptions on Task Queues

The modules distributed with the Kernel use the following assumptions when managing task
queues:

e The variables of type IQUEUE are allocated into the extensions of the level descriptor and
not outside;

e The running task is extracted from the ready queue (if there is one in the Module) at
dispatch time?;

e A Module can handle queue and other data structures than those provided by the Generic
Kernel. In this case all the data structures shall be inserted in the level descriptor extension
and the functions that use them shall be visible only in that Module (for example look at
the file kernel/modules/srp.c).

4.3 Scheduling Module Interface

This section describes the interface of the functions that have to be implemented to develop a
Scheduling Module. The functions described in this Section are those represented by the dashed
rectangles named Public Functions and Private Functions introduced early in this chapter. They
are not user primitives, but they are called to implement the scheduling behavior of a primitive.
The function names reported in this section are the name of the function pointers contained into
the level_des structure (defined into include/kernel/descr.h). When a designer implements
a new Scheduling Module, he writes the correspondent functions and then he sets the correct
values into the correct level_des structure (as an example, a template application is provided
on the web site). The user primitives are listed into the S.Ha.R.K. User Manual (it can be
found, together with the template application, at http://shark.sssup.it /download.html).
For more information see also at Sections ?? and 3.2.2.

All the interface functions have as first parameter a variable of LEVEL type, used to obtain a
pointer to the level descriptor of the current Scheduling Module; some functions may also have
additional parameters.

We recommend that the functions listed in Table 4.1 should use the global variable schedule_time
to get the system time, and should not use the kern_gettime function provided with the OS
Lib.

WARNING: All the Scheduling Modules functions are called with interrupts disabled. They
should never consume more than a few microseconds!!!

3A policy that leaves the running task at the head of the ready queue is also suitable.
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| Type | Function |

Public Functions | public_scheduler
public_dispatch
public_epilogue
public_message
public_block
Private Functions | private_dispatch
private_epilogue

Table 4.1: These functions should use the variable schedule_time to read the current time.

4.3.1 Public Functions

These functions are directly called by the Generic Kernel to implement the behavior of a schedul-
ing algorithm.

PID (*public_scheduler) (LEVEL 1);

This function is the scheduler of the current Scheduling Module.

It must return the scheduled task among those handled by the Module*.

The scheduled task must be selected only using the private data structures of the Module,
prescinding from the other Modules registered in the system. The fact that a task is returned
by this function to be scheduled does not imply that that task will be executed (dispatched)
immediately®!

So, the level scheduler shall not:

e Modify the pointer to the running task (in other words, the variables exec and exec_shadow);
e Handle timers for deadline, capacity exhaustion, and things like that;

e Set the data structures preparing the execution of the task (for example, if the Module
uses a ready queue, the task must not be extracted from the queue®).

If the level does not implement a scheduler (because, for example, it is an Aperiodic server that
inserts all its tasks in another Module”), or if the Module currently does not have any ready
task, the returned value must be NIL.

int (*public_guarantee) (LEVEL 1, bandwidth_t *freebandwidth) ;

This function implements the on-line acceptance test. This function should only consider the
tasks directly inserted in the module, and it does not consider the tasks inserted in the module
through private functions (their guarantee is made by the Module that owns them).

The function is called with an additional parameter that is the free bandwidth left by the
Modules with level number less than 1. The acceptance tests that can be implemented are those
based on the Utilization Factor.

4That is, the tasks owned by the Module plus the tasks that other Modules inserted in it using the private
functions.

5Look at section ??

8This will be done at dispatch time!

"look at kernel/modules/cbs.c
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The function returns 1 if the current task set can be guaranteed using the free bandwidth
available, 0 otherwise. The freebandwidth parameter must be decreased by the function by the
amount of bandwidth used by the task being guaranteed.

If the pointer to this function is registered in the level_des descriptor of the Module with
a NULL value, the acceptance test procedure will stop and the whole task set is considered
guaranteed (see Section 7.3).

This function is called by the Generic Kernel each time a task is created in the system. The
call is issued after the task is created using the task call public_create and after the Resource
Models of the new task have been registered. The public_guarantee functions are called starting
from level 0 until a NULL pointer is reached or the task set cannot be guaranteed.

int (*public_create) (LEVEL 1, PID p, TASK_MODEL *m) ;

This function is called by the Generic Kernel into the task_create primitive to create a task into
a Module. The function has two additional parameters: the first is the task descriptor allocated
by the Generic Kernel for the new Task, and the second is the Task Model passed at creation
time.

The function returns 0 if the Module can handle the TASK MODEL passed as parameter
(that is, if the Module can handle the pclass of the TASK MODEL, and if the level field is 0 or
1), -1 otherwise.

The functions must set the Module internal data structures with the QoS parameters passed
with the Task Model. The function does not enable the task to be scheduled in the system (i.e.,
if a ready queue is implemented, the new task should not be inserted in it).

The task_create primitive sets the task state to the default SLEEP value, and sets the flags
of the control field of the task descriptor to the values given into the control field of the
TASK_MODEL structure. These settings can be modified by the public create function.

The acceptance test on a new task is called after this function.

void (*public_detach) (LEVEL 1, PID p);

This function is called into the Generic Kernel task_create primitive when an error is occurred
during the creation of a new task.

The function receives as an additional parameter the task identifier passed to the public_create
function. This function is called only after public_create, and it must reset the data structures
allocated internally by the current Module during public _create.

void (*public_end) (LEVEL 1, PID p);

This function implements task termination. When this function is called the task has been killed
by someone (e.g., task kill() or pthread cancel()), or it is ended. All the references to task p
have to be removed from the internal data structures of the Module.

The public_end function is called after the POSIX’s cleanup functions, after the POSIX’s
thread-specific data destructors, and before the destructors of the Resource Modules.

When the function is called the task is in the EXE state. The typical actions done by this
function are the following:

e The task is extracted from some internal queue.

e All the pending events for the task (e.g., deadline and capacity timers) are removed.
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Figure 4.4: Use of the public_eligible function. Consider a CBS Module that inserts its
task j into an EDF-NP (EDF non-preemptive) Module. EDF-NP will schedule task i first.
When task i ends, task j (CBS) is scheduled. However, this task has an obsolete deadline.
The public_eligible function called on the CBS Module when the EDF-NP Module tries to
schedule task j allows the CBS Module to postpone the deadline.

e The task is inserted into the freedesc queue. When the task is inserted in this queue the
task descriptor of the task may be reused by the Generic Kernel.

If the Module implements some form of guarantee on the task set, the insertion of the
descriptor p into the freedesc queue may be postponed until the bandwidth used by the
task will be totally released. This may occur after task’s termination (for example, in the
EDF Module a guarantee is implemented, and the bandwidth is decreased at the end of
the current period. Hence, the task descriptor will be inserted into the freedesc queue at
the end of the period.

int (*public_eligible) (LEVEL 1, PID p);

This function is called by the Generic Kernel into the global scheduling function (see Section 7.5)
and is used to ensure the Kernel of the correctness of the value returned by the public_scheduler.

The function receives as an additional parameter that is the task returned by the public_scheduler
call. It must return 0 if the task can be scheduled, -1 otherwise. If a -1 is returned, the system
will call the level scheduler function again to choose another (may be the same) task.

This function is used when implementing aperiodic servers and the Module needs to know
when its tasks will be scheduled by a level scheduler of the Master Module, to update some old
out-of date parameters.

This function is useful in pathological or unplanned situations. For example (see Figure 4.4),
we have implemented a CBS module in a way that it uses another Scheduling Module. The CBS
Module inserts its tasks in that module using the guest calls; after that, it waits for its tasks to
be scheduled. In general, it may happen that, because of some overload condition, the CBS task
will be scheduled after its deadline. Through the public_eligible function the CBS Module
can postpone the task deadline, so causing the scheduler to be called again to manage the new
situation.
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void (*public_dispatch)(LEVEL 1, PID p, int nostop);

This function is called by the Generic Kernel to notify a Module (registered at level 1) that his
task p is going to be the running task.

When this function is called it is not possible to change the task selected for execution. It is
not possible to avoid the execution of a task that is on the tail of a shadow chain (see Section??).
The public_eligible function should be used instead whenever a task cannot be scheduled but
it is chosen by a level scheduler.

The function receives two additional parameters: the task 1 that will be executed and a
nostop parameter. The value of the latter parameter is the result of the logic expression exec
== exec_shadow, where the value of exec_shadow is computed by the scheduler () function
(see Section 7.5) after following the shadow chain. If the value nostop is 0, no capacity event
should be generated by the Module.

In practice, the public_dispatch can be thought as a prologue in which the Scheduling
Modules set the internal data structures to allow a task to be executed. The state of the task is
set to EXE before the function call. The function shall not modify the task state, as well as the
exec and exec_shadow variables.

A few typical actions for this function are described below:

e the task is removed from the ready queue, if there is one;

o if the Module does not use the CONTROL_CAP flag (see 3.5, and kernel /modules/ps.c) but it
needs capacity control it is necessary to create a capacity event with the kern_event_post
function. Remember that a capacity event should not be created if the nostop is not equal
08;

e If the Scheduling Module is “coupled” with a Resource Handling Module, this function must
update the ceiling (for example as done with the SRP protocol).

void (*public_epilogue) (LEVEL 1, PID p);
This function is called by the Generic Kernel when:

e the running task p is preempted by another task in the system;

e a function that may generate a preemption is called (these functions usually call the generic
scheduler that, as a first operation, simply call this function);

e the capacity of the running task p is exhausted (the capacity exhaustion is handled as a
preemption request!).

In general, this function receives as an additional parameter the running task index. The effect
of the call may also disable the schedulability of the task. When this function is called the task
p has a state equal to EXE.

The typical actions done by this function are:

e if the schedulability of the task is still active, the task is reinserted into the ready queue,
if there exists one into the Module;

e the state of the task is modified and it is set to an internal Module state (for example, a
READY state);

8Tn this case the task is going to be the running task because it locks a resource needed by a high priority task,
so usually the task must execute until the release of the blocking resource.
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e the capacity of the task is checked: if it is exhausted some operations will be done, for
example an exception is raised, a deadline is postponed, and so on;

e If the Module created a capacity event without using the CONTROL_CAP field and without
using the cap_timer variable, that capacity event must be removed.

void (*public_activate) (LEVEL 1, PID p, struct timespec *t);

This function is called by the Generic Kernel when an explicit activation for the task is called
using the task_activate primitive or the group_activate primitive.

The PID parameter is the task that has to be activated. Also, the activation time is given
as an parameter (this will be the time-base of the task). The effect of the function is to activate
the schedulability of the task.

The typical actions done by this function are listed below:

e First, a check is done to verify if the task is in a state compatible with the activation (for
example, a sporadic task cannot be activated too frequently);

e The state of the task, usually equal to SLEEP, is modified (for example it becomes
READY);

e If the Module has a ready queue, the task is inserted in it;

e If the Module counts the task’s pending activations, and the task does not have finished
his current activation yet, the activation should be saved for the task;

e If the Module handles periodic tasks or tasks with temporal deadlines, some events should
be created to check these conditions.

void (*public_block)(LEVEL 1, PID p);

The function implements the blocking of the task p (p is the running task) in a generic synchro-
nization primitive that does not use the shadow mechanism.

The function must disable the schedulability for the task until it is “freed” by a call to the
public_unblock function.

The typical actions done by this function are:

e The task should be extracted from the ready queue if the task_dispatch didn’t do this;

e The events posted with the dispatch should be removed (for example, the capacity events
should be removed, but not the deadline ones);

e The function shall not modify the state of the task; the state of the task is modified by the
primitive that calls the function;

void (*public_unblock) (LEVEL 1, PID p);

The function accepts a parameter p that is the task that has terminated the synchronization
started with a call to the public_block function. After this call, the awaken task can be
scheduled in the system.

Usually the function inserts the task into some internal queues, and the state of the task is
modified (for example it is set to READY). Usually the function does not post any event.

The function is called into the code of the Generic Kernel primitives that implement syn-
chronization without using the shadow mechanism. The Generic Kernel guarantees that this
function is not called before the corresponding call to public_block.
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int (*public_message) (LEVEL 1, PID p, void *m);

This function is called when the task message() primitive is called by a task to send a message
to the scheduler. Typical messages are, for example, the end of an instance, or some kind of
signaling the task must do to a scheduling module, like a checkpint mechanism.

The parameter p is the running task (that is, exec_shadow). A parameter m is passed, and
it can be used to pass arbitrary parameters to the scheduler. The value NULL is typically used
by the Kernel to signal the task _endcycle primitive. An integer is also returned to return a kind
of status value to the calling task.

The task endcycle primitive

A typical message that a task sends to a scheduling module is the end of an instance, sig-
naled using a task endcycle() primitive. The implementation of that primitive is simply a
“task _message(NULL,1)”. The task message should implement a behavior similar to the one
descried in the following paragraphs.

If the task does not have pending activations (or if the Module does not manage them) the
effect of the function is to disable the schedulability of the task until an explicit activation is
done by the user? or an automatic reactivation done by the Module (if the task is periodic).

If the task has some pending activations the function will reactivate the task in a way similar
to public_epilogue.

The typical actions done by this function are listed below:

e If the task must be suspended, the task state is modified to a “parking” state (IDLE or
SLEEP);

e The task may be removed from the ready queue (if it was not removed by the public_dispatch);

e Some resource reclaiming algorithm may be implemented, because a task instance is fin-
ished;

e Timer events related to the budget exhaustion and deadlines are handled (for example
events can be deleted, or postponed).

4.3.2 Private Functions

This section describes the private functions provided by a scheduling module. Private functions
are called only by other scheduling modules, and never by the generic kernel, and they represent
the interface extorted by a scheduling module towards other modules. Typical example of use of
the private functions are:

e an EDF module have to implement task activation and unblocking simply inserting a task
into the ready queue. For that purpose, the functions public _activate and public_unblock
internally calls the private function private insert. Moreover, the two functions can have
some peculiarities. For example, the implementer would like that public_activate adds
a deadline check posting an OSLib event at the deadline time, whereas this is not the
case of public_unblock, because the deadline used before have to be used again. Deadline
posting can be done into public _activate. private insert will simply insert the task into
its "private" queue.

9using a task_activate call.
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e an aperiodic server wants to insert a task into the EDF queue. Again, the public_activate
and the public_unblock of the aperiodic server will call the private insert of the EDF
queue, that will insert the task into its queue.

void (*private_insert ) (LEVEL 1, PID p, TASK_MODEL *m) ;

This function is used to insert a task into the Module. The inserted task must have been already
created through a call to the task_create primitive. When inserted, the behavior of the function
is as the task has been activated into the module (e.g., the task goes into the ready queue). All
the useful informations passed to the task Model must be registered internally to the Module.

void (*private_extract ) (LEVEL 1, PID p);

This function terminates a chunk of a task previously inserted in the Module using private _insert.
The typical effect of this function is to extract the task from the internal queues and to delete
the events generated for the task (deadline, capacity, and so on). The function shall not insert

the task descriptor in the freedesc queue'®.

void (*private_dispatch) (LEVEL 1, PID p, int nostop);

This function is usually called by public_dispatch to inform the Master Module that a task
inserted in it as a guest is being dispatched. The semantic of the function is similar to that of
public_dispatch.

void (*private_epilogue) (LEVEL 1, PID p);

This function is called by a Module to inform the Master Module that a task inserted in it using
private insert() is being preempted or its budget has been exhausted.

int (*private_eligible)(LEVEL 1, PID p);

This function is usually called by public_ eligible to inform the Master Module that a task inserted
in it as a guest has been chosen for scheduling. The semantic of the function is similar to that
of public_eligible.

4.4 Registration Function

The code contained in a Module is composed by the function calls (Level, Task and Guest Calls),
and by a Registration Function that must be called when the system starts to properly initialize
the kernel data structures. This registration function can be thought as a C++ constructor for
the Module.

A Module initialization typically consists of four parts:

e The first part allocates a level descriptor that will be used to initialize the Module; To alloc
a level descriptor, the functions
LEVEL level_alloc_descriptor(void) and
RLEVEL resource_alloc_descriptor(void)
must be used. These functions take no arguments and return a free descriptor to be used;

0public_end() is responsible for that. ..
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e The second part initializes the function pointer of the level descriptor of a scheduling
module;

e The third part initializes the private data structures of the Module, and possibly posts a
function that has to be called just after the system has gone in multitasking mode;

e The fourth part executes the function posted in the third part.

The first three parts are written in the Registration Function, which is called by the __kernel_init__
function before the Kernel goes in multitasking mode.

In the __kernel_init__ function no Generic Kernel primitives can be called. If there is a
need to do that, a registered function has to be called instead. For example, the dummy task
is created by the Dummy Module (kernel/modules/dummy.c) through a registration function.
The main task is created in the same way by the Round Robin Module (kernel/modules/rr.c).

4.4.1 Default values

In general, the scheduling modules needs only to register the functions they want to redefine. For
that reason, the public and private functions have a default value, set by level_alloc_descriptor().
Here is a list of these default values:

private insert Kernel Exception.

private extract Kernel Exception.

private eligible Returns 0 (that is, the task can be accepted for scheduling).
private dispatch Kernel Exception.

private epilogue Kernel Exception.

public_scheduler Returns -1 (that is, no task are ready to be scheduled).
public_guarantee Returns 1 (that is, the system can be scheduled).
public_create Returns -1 (that is, the model can not be handled by the module).
public_detach Does nothing.

public__end Kernel Exception.

public_ eligible Returns 0 (that is, the task can be accepted for scheduling).
public_ dispatch Kernel Exception.

public__epilogue Kernel Exception.

public_activate Kernel Exception.

public_ unblock Kernel Exception.

public_ block Kernel Exception.

public__message Kernel Exception.
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4.5 Writing Conventions

This Section explains some conventions followed in writing the Modules. They are useful to
understand how to write new Modules using the same style adopted in the Modules distributed
with the Kernel. They can be summarized as follows.

e Each Module is composed of two files, one file .h and one file .c. The .h files are stored in
the include/modules directory; the .c files are stored in the kernel/modules directory.

e Each Registration Function registers only ONE level descriptor. In this way the level at
which a Module is registered can be found inspecting the initialization file. The level
descriptor number is usually returned by the register function.

e The Task Models used by the Modules are listed in the include/kernel/model.h file.

e The names of the internal functions are defined as static and are in the forma MODULENAME_FUNCTIONNAME,
where MODULENAME is the name of the .c file where the Module code is written.

e A Module can export some functions to implement a specific behavior; these functions
have a first parameter of type LEVEL, in order to retrieve the Module data structures. An
application that relies on a specific Module configuration can use the functions under the
assumption that the Application knows the level at which the Module is registered.

e The prototypes of the functions exported by a Module (registration function plus other
functions if present) have to be included in the .h file.

e The Modules should not use global data, because different instances of a Module can be
registered at the same time in the system.

In general writing a new Scheduling Module requires the creation of new files. To simplify the
distribution and the integration of new modules in the Generic Kernel no modifications have to
be made to the standard distribution of the Kernel. Beside that, a few rules of common sense
have to be followed:

e A new Scheduling Module should consist of only one .h file and only one .c file. Modules
composed of many files should contain an explanation in their documentation.

e Together with the Scheduling Module a system designer should provide:
— an initialization file (similar to those present in the kernel/init directory) that shows
how the new Module must be initialized;
— at least one test program showing the functionality of the Module;
e New data definitions (for example new Task Models, new pclass, version and exception

values) used by the new Modules should be inserted into the .h file of the Module. New
constants should be different from the others contained into the default distribution.

A template example of a Scheduling Module can be found on the S.Ha.R.K. web site. Examples
of third-party scheduling modules can be dound into the demos directory (e.g., demos/static,
demos/edfact, demos/cash).
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Chapter 5

Resource Modules

In this chapter the interface of a Resource Module is described. The semanthic of the various
functions, and the approach used to handle the Shared Resource Access Protocols are described.
For architectural informations look at Sections?? and ?7?.

5.1 Resource Modules Interface

The approach used to define the interface of a Resource Module is similar to that used for the
Scheduling Modules (look at Section 4, 4.3 and 4.5).

The interface of a Scheduling Module is less complex than that of the Scheduling Modules:
only the create and end events are handled in the task life. This choice is made because the
Resource Modules usually does not influence the scheduling of the system?!.

All the functions of a Resource Module are called with Interrupt disabled.

int (*res_register) (RLEVEL 1, PID p, RES_MODEL *r);

This function is called by the Generic Kernel by the task_create primitive to register a Resorce
Model into a Resource Module.

The function will accept as parameter the index p of the descriptor allocated by the Generic
Kernel for the task and one of the Resource Models passed through the primitive.

The Generic Kernel guarantees that the Resource Model passed in this function can be
handled by the Module. The function returns 0 if the Module can handle the request, -1 if the
task can not be created because the Module can not guarantee the quality of service required.

The function will set up the local Module data with the parameters of Quality of Service
passed with the Resource Model.

void (*res_detach) (RLEVEL 1, PID p);

The call of this function signals to the Module that the task p is terminated, so all internal data
structures must be updated.

This function is called independently from the fact that the task has or not registered some
Resource Model in the Module in two cases:

INote that a Resource Handling Algorithm that modifies the scheduling of the system is more like a Scheduling
Module than a Resource Module. Some hybrid approaches can be implemented requiring that the implementation
is made using two Modules that can modify the private data of each other.

49



e The primitive task_create fails for some trouble inependent from the Module; in this case
the function is called before the public_detach function of the Scheduling Module that
owns the task;

e The task terminates in the correct way; in this case the function is called before the function
public_end of the Scheduling Module that owns the task.

In other words, this function implemets the behaviour of the Scheduling Module’s public_detach
and public_end functions. This is correct because the Resource Module only react to the creation
and termination events. It doesn’t matter if the task is terminated correctly or if it has not been
created. ..

5.2 Implementation of the Shared Resource Access Proto-
cols

The interface exported by the Resource Modules is used also by the Modules that implements
the Shared Resource access Protocols.

The problem solved developing these Modules is the project of some OS primitives that can
be independent from the used protocol, and, moreover, independent from a specific Module
registered at run-time.

5.2.1 Used Approach

The approach used is to extend the Resource Module interface; in this way also the protocols
that requires some per-task parameters can be implemented?.

Using an Object Oriented approach the hierarchy of the Modules can be described (look at
Figure5.1).

These Modules are viewed by the Generic Kernel as Resource Modules. When a mutex is
initialized some checks® are done to find the Module that extends the interface in the correct
way*and therefore implement the required protocol.

5.2.2 The mutexes

The mutexes are stored in the mutex_t structure showed in Figure 5.2. That declaration is
contained in the file include/kernel/descr.h. The structure contains the following fields:

mutexlevel It is the level which the Module is registered in.
use It tells if the mutex is currently used into a synchronization done through condition variables.

opt This field is a pointer to a structure that the Module can dinamically alloc to handle
protocol-dependent parameters®.

2For example, these parameters can be the ceiling of a task on a Priority Ceiling or SRP protocol. ..

3Similar to those used in the primitive public_create for the Task Models.

4To know that a Module has extended the Resource Modules Interface the rtype field is provided (look at
Section 3.2.3).

5These parameters cannot be allocated internally to the Module because the mutexes are not statically allocated
as task or semaphore descriptors.
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resource_des

+rtype: int

+res_register(p:PID,r:RES_MODEL)

+res_detach(p:PID)

mutex_resource_des

+init(m:mutex_t *,a:const mutexattr_t *): ing
+destroy(m:mutex_t *): int
+lock(m:mutex_t *): int
+trylock(m:mutex_t *): int
+unlock(m:mutex_t *): int

T_

PROTOCOL_mutex_resource_des

+private data

+private operations()

Figure 5.1: UML Diagram that shows the class hierarchy that implements the Shared Resource
AccesProtocols.

typedef struct {
RLEVEL mutexlevel;
int use;
void *opt;

} mutex_t;

Figure 5.2: The mutex_t structure.
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5.2.3 Interface extension

In this section the extension to the Resource Modules is described. The proposed functions
handles all the events that belongs to amutex.

Only the function init is called with interrupts disabled. The other functions have to disable
the interrupts, because there is not a generic behaviour for all these functions (for example, the
lock of a mutex may be non-blocking on some protocols).

int init(RLEVEL 1, mutex_t *m, mutexattr_t *a);

This function is called to init a mutex with a protocol. The function accepts as parameters the
mutex to be initialized and the mutex attribute that store the parameters to be used in the
initialization.

The function returns a value of 0 if the mutex initialization was successful, or an error code
otherwise. The error codes returned by the functions must be compatibles with the functions
pthread_mutex_init of the POSIX standard.

int destroy(RLEVEL 1, mutex_t *m);
int lock(RLEVEL 1, mutex_t *m);
int trylock(RLEVEL 1, mutex_t *m);

int unlock(RLEVEL 1, mutex_t *m);

These functions implements the core functionality of the mutexes and they have a semantic
similar to the corresponding POSIX functions. In particular they receive as parameter a pointer
to a mutex, and they returns 0 if the operation was successful or an error code if not.

These functions have to manage internally the context change in the system, because it is
not possible to give a fixed rule for these functions (for example, the lock operation, that usually
can block the task, is never a blocking primitive under the SRP assumptions).
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Chapter 6

Examples

The application of the proposed approach is presented in this chapter, on three meaningful
examples, by showing the code of the scheduling and of the resource modules. The examples are
really implemented in the Kernel, so these remarks can also be used as documentation.

6.1 EDF (Earliest Deadline First) Scheduling Module

This section describes an implementation of EDF with the following characteristics:

e Support for periodic and sporadic tasks;

Support for release offsets and relative deadlines less than the period;

On-line guarantee using the utilization factor paradigm;
e Temporal isolation implemented using the CONTROL_CAP flag;
e A number of different deadline/ WCET /activation violation options.

Typically this module is registered at Level 0; in effect the guarantee algorithm works only if
the Module can use all the bandwidth of the system. In order to schedule background periodic
tasks, a soft task model should be used with a Scheduling Module like the CBS Scheduling
Module. The Module described in this section is contained in the files kernel/modules/edf.c
and include/modules/edf .h.

6.1.1 State transition diagram

The state transition diagram for an EDF task is shown in Figure 6.1.

The states whose name start with EDF_ are internal Module statuses. The event names are
reported near the arcs; in particular the names of the timer events are written within parentheses.
The different states have the following meanings:

FREE Before creation, and after destruction, the task is in this state.
SLEEP The task waits in this state for an explicit activation.
EDF_READY This is the classic ready state where the task has to wait until it has the highest

priority (i.e., the earliest deadline).
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Figure 6.1: State transition diagram for an EDF task. (For simplicity, some transitions have
been excluded.)

EXE This is the state when the task is executing.

EDF_WAIT This is the state of a sporadic task after finishing an instance, waiting for the endperiod
event to arrive.

EDF_IDLE This is the state of a periodic task after finishing an instance, waiting for the endperiod
event to arrive. An activated task with a release offset is also put in this state, waiting for
the first period to arrive.

EDF_ZOMBIE This is the state where a task is put when it terminates correctly. The allocated
bandwidth is freed when the endperiod event is fired.
6.1.2 Level descriptor

The EDF Module extends the level_des structure that contains the interface exported by a
generic Scheduling Module. The extended data structure, EDF_level_des, contains the following
fields:

flags This variable stores the flags passed to the module at registration time. The following
flags are defined:

EDF_ENABLE_DL_CHECK If set, the module will keep track of task deadlines by internal dead-

line timers. The behavior in case of a deadline overrun depends on the EDF_ENABLE_DL_EXCEPTION

flag, see below.

EDF_ENABLE_WCET_CHECK If set, the module will keep track of task execution times by
enabling the CONTROL CAP flag for the tasks in the generic kernel.

EDF_ENABLE_DL_EXCEPTION If set, the module will raise an exception if a deadline overrun
occurs. If not set, the d1_miss counter for the task is increased every time a deadline
overrun occurs.

54



EDF_ENABLE_WCET_EXCEPTION If set, the module will raise an exception if an execution-
time overrun occurs. If not set, the wcet_miss counter for the task is increased every
time an execution-time overrun occurs.

EDF_ENABLE_ACT_EXCEPTION If set, the module will raise an exception if a task is activated
more often than its declared minimum interarrival time. If not set, the nskip counter
for the task is increased instead.

ready This is an IQUEUE variable used to handle the ready queue.

U This variable is used to store the sum of the reserved bandwidth for the tasks owned by the
Module.

tvec A vector of EDF task descriptors, EDF_task_des, that defines a number of additional
variables for each task, see below.

6.1.3 Task descriptor

The EDF module introduces a number of additional task variables. They are collected in a
EDF_task_des structure for each task:

flags Flags that store some additional type/status information about the task. The following
flags are defined:

EDF_FLAG_SPORADIC The task is sporadic. This influences some state transitions, see Fig-
ure 6.1.

EDF_FLAG_SPOR_LATE The task is sporadic and has experienced a period overrun. (This is
only possible if the EDF_ ENABLE DL EXCEPTION level flag is not set.) When
finished, the task should go directly to the SLEEP state.

period The period or minimum interarrival time of the task.

rdeadline The relative deadline of the task. Currently, only D < T is allowed.
offset The release offset, relative to the activation time of the task.

release This variable stores the release time of the current instance.

adeadline This variable stores the absolute deadline associated with the most recent task acti-
vation.

dltimer A handle to the task deadline timer.

eop_timer A handle to the task end-of-period timer.

dl_miss Counter for the number of missed deadlines.
wcet_miss Counter for the number of execution-time overruns.
act_miss Counter for the number of skipped activations.

nact The current number of queued activations (periodic tasks only).
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6.1.4 Module internal event handlers

The module uses internal kernel events (one-shot timers) to handle the release of tasks, deadline
overruns, etc. When an event is posted by the module, an event handler is specified, and the
PID of the relevant task is passed as parameter. For instance, the endperiod event is handled
by the following function:

static void EDF_timer_endperiod(void *par)

The first thing to do when handling an event is to recover the information about the Module
that posted the event. This can be done with the following statements:

PID p = (PID) par;
EDF_level_des *lev =

(EDF_level_des *)level_table[proc_table[p].task_levell;

The generic kernel task fields can be referenced as proc_table[p] .name; the internal data
of the Module can be referenced as lev->field. The EDF task descriptor can be referenced as

EDF_task_des *td = &lev->tvec[p];

and the EDF task fields can then be referenced as td->field.
By studying the state transition diagram, we see that different actions should be taken de-
pending on the state of the task:

e If the task state is EDF_ZOMBIE, the task is inserted into the freedesc queue and the
allocated bandwidth is freed;

e If the state is EDF_WAIT, the task state is set to SLEEP, so the sporadic task can be
reactivated;

o If the state is EDF_IDLE and the task is periodic, it is reactivated by a call to the EDF_intern_release
function. This involves posting a deadline event (if EDF_ENABLE_DL_CHECK is set); inserting
the task in the ready queue; increasing the absolute deadline; and telling the kernel that it
may need to reschedule by calling event_need_reschedule.

o If the state is EDF_IDLE and the task is sporadic, it is marked as late.

The module also contains the following event handlers:
static void EDF _timer deadline(void *par)
static void EDF _timer offset(void *par)
static void EDF _timer guest deadline(void *par)

6.1.5 Public Functions

The Module redefines the Level Calls interface. In the following paragraphs the implementation
of these functions is described.

All the functions of the interface receive a parameter of type LEVEL that can be used in a way
similar to the parameter passed to the event functions to find all the data structures needed.
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PID EDF_public_scheduler (LEVEL 1);

This is the Module scheduler that, as all good schedulers, simply returns the first task in the
ready queue without extracting it.

int EDF_public_guarantee(LEVEL 1, bandwidth_t *freebandwidth);

The on-line guarantee function simply verifies if there is enough free bandwidth for scheduling
its tasks. If so, the free bandwidth is decremented by the amount used by the Module, and it
returns that the task set can be guaranteed.

If the guarantee is called after a task creation in the Module, it can be the case that the
new task, with all the other tasks already guaranteed by the Module, uses a bandwidth greater
than 1 (note that the U field can store only numbers in the [0...1] interval). In this case, in the
function EDF_public_create a flag is set forcing the guarantee algorithm to fail.

int EDF_public_create(LEVEL 1, PID p, TASK_MODEL *m);

The function checks if the Model passed as second parameter can be handled. In this case, the
Module handles all the HARD TASK MODELSs that have a correct pclass value and a wcet
and a period != 0. This function sets the period, flag, and wcet internal fields of the newly
created task. The function sets also the CONTROL_CAP flag to inform the Generic Kernel that the
execution time have to be controlled. Finally, the function allocates the system bandwidth in
such a way that it can be checked by the guarantee algorithm. If the bandwidth allocated for
the already guaranteed tasks plus the new one is greater than 1, a flag is set to signal that the
guarantee algorithm must fail.

void EDF_public_detach(LEVEL 1, PID p);

This function simply reclaims the bandwidth used by the task allocated by EDF_public_create,
disabling the flag set by EDF_public_create when the guarantee is impossible (U>1).

int EDF_public_eligible(LEVEL 1, PID p);

This function simply returns 0 because the EDF tasks are always eligibles. In fact, the EDF
Module does not use the guest functions of another Module to handle its tasks.

void EDF_public_dispatch(LEVEL 1, PID p, int nostop);

To dispatch an EDF task, the task itself must be removed from the ready queue. The capacity
handling (like the capacity event post) is automatically done by the Generic Kernel.

void EDF_public_epilogue(LEVEL 1, PID p);

The function must suspend the running task because it has been preempted or because if has
finished his capacity. Therefore, the first thing to be done is the check of the available capacity.
If it is exhausted an exception is raised and the task is put into the EDF_WCET_VIOLATED! state.

When the task has not consumed all of its capacity it is inserted back into the ready queue.

IThe task shall not be extracted by any queue because the task was extracted by the EDF_public_dispatch
function.
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void EDF_public_activate(LEVEL 1, PID p, struct timespec *t);

This function simply activates the task, inserting it into the ready queue. A task can be activated
only if it is in the SLEEP or in the EDF_WCET_VIOLATED state. If the task is in the EDF_WAIT state
it means that the task is a sporadic task activated too early, so an exception is raised.

The function executes the following steps:

e A suitable deadline is computed for the task;
e The task is inserted into the ready queue;

e A deadline event is posted for the task.

void EDF_public_unblock(LEVEL 1, PID p);

The function simply inserts the task into into the ready queue. The task was blocked on a
synchronization by a call to the function EDF_public_block.

void EDF_public_block(LEVEL 1, PID p);

The function implements a synchronization block. The function simply does nothing, because:
e The task was already extracted from the ready queue;
e The capacity event is handled by the Generic Kernel;
e The task state is set by the calling primitive;

e The deadline does not need modifications.

int EDF_public_message(LEVEL 1, PID p, void *m);

This function implement only the task endcycle behavior, doing two things:

e The wcet of the task is refilled, since the task has finished its instance;

e The task state is set to EDF_IDLE or EDF_WAIT, waiting the deadline arrival.

void EDF_public_end(LEVEL 1, PID p);

The function should erase all the information about the task in the data structure of the Module.
It simply sets the task state to EDF_Z0OMBIE. The deallocation of the bandwidth used by the task
and the freeing of the task descriptor is performed while handling the deadline event.

6.1.6 Private Functions

The EDF Module can accept a JOB_TASK MODEL as the Model for the Guest Tasks. This
Model does not provide information about the time that the task will execute. This means that
the EDF Module does not check the execution time of the task. It must be checked by the

Module that inserts the tasks as guest tasks. In the following paragraphs the guest calls are
described.
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int EDF_private_insert(LEVEL 1, PID p, TASK_MODEL *m);

This function is called by a generic Aperiodic Server Module to insert a task into the EDF
Module.

The function simply fills the private data structures of the EDF Module with the task param-
eters passed through the Task Model. No guarantee is done on the guest tasks (the guarantee of
a guest task is a responsibility of the Module that calls this function).

void EDF_private_dispatch(LEVEL 1, PID p, int nostop);

This function is typically called by the task_dispatch Task Call of the Module that inserts
the task as guest task. The effect of the call is to extract a task from the ready queue, so it is
identical to the task_dispatch Task Call.

void EDF_private_epilogue(LEVEL 1, PID p);

This function is called when a task is preempted (no capacity are handled by the Module). The
function simply inserts the task into the ready queue.

void EDF_guest_activate(LEVEL 1, PID p);

This function is called when the Module that inserts the task in the system through the EDF _private insert
wants to activate it. The effect of this function is to insert the task into the ready queue and to

post a deadline event if the deadline miss should be detected for the task (a flag that specifies if

the Module should generate a deadline is given in the JOB_ TASK MODEL.

void EDF_private_extract(LEVEL 1, PID p);

This function is called by a Module when it wants to terminate a task inserted as guest. This
function is not called only at task termination, but also when the Module has to change some
parameters for the task (for example, when a deadline should be postponed).

The function has to erase all references to the task in the private data structures of the EDF
Module. Note that this function can be called also when the task is not in the EXE state, so all
task states should be checked for a correct behavior.

6.1.7 Additional Functions exported by the Module

Finally, the EDF Module exports two functions that can be used by the user.

The first function is the registration function, used to register the Module into the system
and to init the internal data structures.

The second function, EDF_usedbandwidth, can be used to get the bandwidth actually used
by the Module. That function needs as a parameter the level at which an EDF Module is
registered, so all the private data structures can be read. Note that giving the level of a Module
in an application should not be considered a violation of the independence of an Application to
the Registered Modules. If an application wants to know a specific data in a Module, it has to
know in what level the Module is Registered...

6.2 PS (Polling Server) Scheduling Module

In this Section will be described an implementation of a PS Module that have the following
characteristics:
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Figure 6.2: State Diagram of a Task scheduled with the PS Module.

Soft Aperiodic Task support;

On-line guarantee using the utilization factor paradigm;

Temporal isolation implemented without the CONTROL_CAP flag.

Feature that allows to use the idle time left by the Modules registered at lower level num-
bers;

Support for pending task activations;

Compatibility with static (RM) and dynamic (EDF) algorithms.

This Module implements an aperiodic server that inserts its tasks into another Scheduling Mod-
ule, without having any information on how the Master Module is implemented. The module de-
scribed in this section is contained in the files kernel/modules/ps.cand include/modules/ps.h.

6.2.1 Transition state diagram

In Figure 6.2 the state diagram of a task is showed.

The Module introduce only one state, PS_WAIT. This is the state in which a task waits to be
inserted in the “ready queue”. The server queue is handled in a FIFO way. The other states in
which a Module will go are internal states of the Master Module.

6.2.2 Private Data structures

The PS Module redefines the level_des structures adding some private data structures, listed
below:

nact This array is used to track the pending activations of a task handled by the Module. Each
task element has a value of-1 (if the task skips the pending activations) or a value >=0
(that is, the value of pending activations for the task);
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lastdline This field is used to store the deadline used by the Polling Server;
period This field stores the reactivation period of the server;
Cs This field stores the Maximum capacity of the server;

availCs This field stores the computation time available for the server at a given time. The
capacity is updated when the task handled by the Module is scheduled by the Master
Module, or when a task handled by the Module is dispatched following the shadow chain
and the server is not scheduling in background;

wait This field is the wait queue, where the tasks wait their turn to be served by the Polling
Server;

activated This field is the PID of the task currently inserted into the Scheduling Module. The
server inserts in the Master Module maximum one Module at a time;

flags The flag field is used to store some informations passed when the Module was registered,
like for example the implemented guarantee algorithm (RM or EDF). This field is used also
to know if the server is executing a task in background;

U This field is used to store an information of the used bandwidth by the task handled by the
Module.

scheduling_level This field stores the level of the Host Module.

6.2.3 Internal Module Functions

The PS Module needs to define some internal functions. These functions are called to handle
the internal events posted by the Module. Many of these functions are declared static, so they
are not visible externally to the Module.

void PS_activation(PS_level_des *lev);

This function is an inline function and it handles the activation of a task into a Master Module.
In particular:

e It inits a Job Task Model that will be passed to the Master Module with the period and
the deadline of the Polling Server;

e It creates and activates through the guest calls the task indexed by the private field
lev->activated.

void PS_deadline_timer (void *a);
This function implements the periodic reactivation of the Polling Server. In particular:
e a new deadline is computed and a new deadline event is posted;

e the Server capacity is reloaded to the maximum value if the available capacity was positive,
to a value less than the maximum (a “recharge” (sum) is done) if negative;

e If the recharge turn the available capacity positive, a waiting task is activated, or the
capacity available is depleted.
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6.2.4 Public Functions

All the functions of the interface receives a LEVEL parameter that can be used in a way similar
to the parameter passed to the event functions to get all the private data of the Module.

PID PS_level_scheduler (LEVEL 1);

This scheduler is used by the Module if the Module is registered specifying that it can not use
the idle time left by other Modules. It always return NIL (meaning that the module has nothing
to schedule).

PID PS_level_schedulerbackground (LEVEL 1) ;

This scheduler is used by the Module if the Module is registered specifying that it can use the
idle time left by other Modules. It sets a flag in the flags field to remember that the Module
is scheduling a task in background, after that it returns the first task in the wait queue. The
scheduler is disactived in case the task scheduled by the server is blocked on a synchronization
(look at the function PS_public_block).

int PS_level_guaranteeRM(LEVEL 1, bandwidth_t *freebandwidth);

int PS_level_guaranteeEDF(LEVEL 1, bandwidth_t *freebandwidth);

These two functions implements the internal guarantee of the Module, simply decrementing
when possible the available bandwidth. the difference between the two functions is that the first
function allow to schedule until a used bandwidth of 0.69, and the second one allow a scheduling
limit of 1. The structure of this function is similar to that of EDF_public_guarantee, except
that the guarantee is done on the server and not on each task handled by the server..

6.2.5 Task Calls
int PS_public_create(LEVEL 1, PID p, TASK_MODEL *m) ;

This functions checks if the Task Model passed can be handled by the Module. The Module
simply handles all the Soft Task Models that specify a periodicity equal to APERIODIC, ignoring
each additional parameters. This function sets the nact field on the new task according to the
requirements of the task model. The function does not set the flag CONTROL_CAP.

void PS_public_detach(LEVEL 1, PID p);

This function does nothing, because in the PS_public_create function no dynamic data struc-
tures were allocated, and because the tasks served by do not require individual guarantee (the
guarantee is done for the whole Server).

int PS_public_eligible(LEVEL 1, PID p);

The function always returns 0 because the PS tasks are always eligible.
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void PS_public_dispatch(LEVEL 1, PID p, int nostop);

A task can be dispatched if it is in the wait queue or if it is inserted into the Master Module.
In the first case the task is extracted from the wait queue, in the latter case the private
function private_dispatch is called to signal to the Master Module to dispatch the task.
Then, a capacity event is generated (only if the parameter nostop is 0 (the parameter is 0
if there is no substitution due to the shadow chain mechanism). The capacity event is created
using the cap_timer field. In this way the event will be removed by the Generic Kernel.

void PS_public_epilogue(LEVEL 1, PID p);

This function implements the suspension of the running task due to a preemption or a capacity
exhaustion.

First, the function updates the server capacity using the cap_lasttime and schedule_time
variables. If the server capacity is exhausted, the task that is inserted into the Master Module
(if the task is not scheduled in background) terminates with a private_extract, and then it is
inserted in the wait queue.

If the server capacity is not exhausted, there are two cases: if the Module is scheduling
a task in background, the task will be inserted on the head of the wait queue, otherwise the
private_epilogue function will be called to signal the Master Module a task preemption.

void PS_public_activate(LEVEL 1, PID p);

This function activates a task. If the task passed as parameter is the task currently inserted in
the Master Module, or if the task is already inserted into the wait queue, the activation is stored
and the nact field is incremented (only if the task has specified in the task model passed at its
creation to save the activations).

Otherwise the normal activation actions are done:

e the field request_time of the task descriptor is updated;

e The task is activated using the internal PS_activation function if there aren’t tasks in
the Module and the server capacity is positive, otherwise the task is queued into the wait
queue.

void PS_public_block(LEVEL 1, PID p);

The function should implement the synchronization blocking. The function should block the
whole server, calling eventually the private_extract guest call on the Master Module and
setting the PS_BACKGROUND_BLOCK flag to block every background schedule.

void PS_public_unblock(LEVEL 1, PID p);

The function should reactivate a blocked task. The task reactivation consists of its insertion into
the wait queue and of the reset of the flags set in the public_block function.

int PS_public_endcycle(LEVEL 1, PID p, void *m);
The function implement the task endcycle behavior and does the following steps:
e The server capacity is updated, or the background scheduling feature is disabled if it was

active;
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e The task was extracted from the Master Module through a call to the private function
private_extract, otherwise it is extracted from the wait queue;

e If the task has some pending activations, it is inserted at the end of the wait queue,
otherwise the task state is set to SLEEP.

e If possible a new task is extracted from the top of the wait queue, through a call to the
function PS_activation;

void PS_public_end(LEVEL 1, PID p);

The function directly insert the task into the freedesc queue.

6.2.6 Private functions

The private functions are not defined (the defaults are used).

6.2.7 Functions exported by the Module

Finally, the PS Module exports two functions that can be used by the user.

The first function is the registration function, used to register the Module in the system and
to init the internal data structures. This function registers also a initialization function that
posts the first server deadline event. This event cannot be created in the registration function
because the registration function is called when the OS Lib is not initialized yet.

The second function, PS_usedbandwidth, can be used to obtain the allocated bandwidth of
the Module, and it is similar to the function EDF_usedbandwidth.

6.3 PI (Priority Inheritance) Resource Module

In this Section an implementation of the shared resource access protocol Priority Inheritance
(PI) [8] is described; it has the following characteristics:

e support for the Generic Kernel mutex interface;
e use of the shadow mechanism provided by the Generic Kernel;
e independence from the data structures used internally by the Scheduling Modules;

e possibility of a static initialization of the used mutexes.

The Module is contained into the files kernel/modules/pi.c and include/modules/pi.h.

6.3.1 Used approach

The key idea of the implementation are:

e when a task enters into a critical section locking a mutex, the Module registers which is
the task that owns the mutex, because it is used if other tasks try to lock the mutex, and
because only that task can unlock it;

e the Module registers the number of mutexes that owns the tasks, to check that the task
does not die with some mutexes locked.
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Figure 6.3: Use of the blocked array. The example describes a structure mutex_t initialized
with the Priority Inheritance protocol. The field firstblocked is the first element of the blocked
task queue on a specific mutex.

e when a task tries to block a busy mutex, its shadow pointer will be set to the blocking
task;

e when a mutex is unlocked, all the task blocked by it are freed, so all the blocked tasks can
try to acquire the mutex (the mutex will be locked by the first task blocked scheduled,
usually the higher priority task that was blocked);

6.3.2 Private data structures

The PI Module defines the structure mutex_resource_des that handle the interface exported
by the Resource Modules. The private data structures added by the Module to the interface are
the following;:

nlocked this array stores the number of mutexes that each task currently locks;

blocked this array is used to track the blocked tasks on a mutex. Each PI mutex has a pointer
to the first blocked task; the other tasks are queued in this structure (look at Figure6.3).
The data structure can be allocated locally to the Module because a task can be blocked
on only one mutex.

Each mutex handled by the Priority Inheritance protocol uses a dynamically allocated internal
data structure called PI_mutex_t, that has the following fields:

owner When the mutex is free this field is NIL, else it is the PID of the task that locks the mutex;
nblocked This is the number of tasks actually blocked on a mutex;

firstblocked When the field nblocked is different from 0 this field is the first task blocked on
a mutex (the following tasks can be found following the blocked list ).
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Finally, to init a PI mutex, a correct parameter must be passed to mutex_init. That parameter
must be of type PI_mutexattr_t and it does not add any other parameter to the default attribute.

6.3.3 Internal and Interface Functions
int PI_res_register(RLEVEL 1, PID p, RES_MODEL *r);

This function always return -1 because it will never be called by the Generic Kernel (because
the Module does not accept any Resource Model).

void PI_res_detach(RLEVEL 1, PID p);

This function simply controls that the task that is still ending does not lock any mutexes. If
not, an exception is raised. Such a situation is very dangerous because, when a task is died, the
shadow data structures are not consistent, and this will probably cause a system crash.

int PI_init(RLEVEL 1, mutex_t *m, const mutexattr_t *a);

This function inits a mutex to be used with the PI Protocol. A structure of type PI_mutex_t is
allocated and all the fields are initialized..

int PI_destroy(RLEVEL 1, mutex_t *m);

This function should destroy a mutex. The mutex has to be correctly initialized and it must be
free (not locked by a task).

int PI_lock(RLEVEL 1, mutex_t *m);

This function should implement a mutex lock. First, a check is done to see if the mutex was
initializated statically. In that case, the initialization of the data structures is completed.

At this point, a check is done to see if the task already owns the mutex. If not, a cycle is
done. In the body the shadow field is set, and the system is rescheduled. The cycle is needed
because when the mutex will be unlocked, all the blocked tasks will be woken up to fight for the
locking of the mutex.

Finally, When the mutex will be found free, it is locked.

int PI_trylock(RLEVEL 1, mutex_t *m);

This function is similar to the previous one, except that the task is never blocked if the mutex
is busy.

int PI_unlock (RLEVEL 1, mutex_t *m);

This function should free the mutex. First, a check is done to see if the task that unlocks really
owns the mutex. Then, the mutex is unlocked and all the blocked tasks are woken up (the shadow
field is reset to point to the blocked tasks themselves). Then, the system is rescheduled to see
if a preemption should be done (the Module does not know if a preemption will occurs or not,
because it does not know which are the modules registered!).
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void PI_register_module(void);

This function will register the Module in the system. This function is very similar to the Schedul-
ing Modules Registration function.
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Chapter 7

The Generic Kernel Internals

In this chapter some information are given on the implementation of the Generic Kernel. The
objective of this chapter is to give the user enought information about the internal of the kernel
to allow an analysis of the source code. The code described in this chapter is contained into the
kernel directory.

7.1 System Tasks and User Tasks

The Generic Kernel classifies the tasks in the system using two flags of the control field of the
task descriptor. The Programming Model of the kernel is a monoprocess multithread model, so
each task shares a common memory without any kind of address protection.

The two flags of interest are the SYSTEM_TASK and the NO_KILL flags:

e If the SYSTEM_TASK flag is set a task is a task used internally by the Kernel, otherwise the
task is considered an user task;

e If the NO_KILL flag is set a task cannot be killed by a task_kill or pthread_cancel
primitive.
These two flags divide the task universe in four sets (look at Figure 7.1 and at Table 7.1):
User Tasks These are the tasks usually created by the user;

Immortal User Tasks These tasks are tasks that the user wants to protect against uncon-
trolled cancellations. Usually the life of these tasks is not important for the termination of
the system; in other words, the system can shut down also if these tasks are not ended;

System Drivers These tasks are handled directly by the Kernel or by some Libraries that
implement some important things (for example, the file system controls the hard disks
with tasks of this type);

| || SYSTEM_TASK=0 | SYSTEM_TASK=1 |

NO_KILL=0 User tasks System Drivers
NO_KILL=1 || Immortal User Tasks | System Tasks

Table 7.1: The four sets in whitch the tasks are divided.
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Figure 7.1: The four sets in whitch the tasks are divided; The values of the two flags SYSTEM_TASK
(ST) and NO_KILL (NK) are showed.

System Tasks These are non-critical tasks that have to be always present in the system; the
life of the system depends on the life of these tasks. Such a task is for example the dummy
task.

System termination can be generated automatically by the Generic Kernel or it can be forced if
the user calls the functions sys_end() or sys_abort().

The Generic Kernel start the system termination when all User Tasks ends or when all the
System Drivers ends.

To do the shutdown in a correct way, the libraries that are implemented using the System
Drivers should end in a correct way. Look at Section7.2 for more informations.

7.2 Initialization and Termination

In this section the structure of the function __kernel_init__ is described in more detail. This
function is the function called by the OS Lib at system startup. The interface between the
Generic Kernel and the OS Lib is not described here but in section ?77.

7.2.1 Interrupt Disabling

The first thing that is done in the function is the disabling of the interrupts. When the system
starts, the OS Lib allocs a context, whose number is stored by the Generic Kernel into the global
variable global_context. In this startup context the function __kernel_init__ is called; also
the functions that it calls run in that context.
The context used by the tasks will be allocated next, with a call to the OS Lib function
11_context_create (this function is called by the Generic Kernel into the primitive task_create).
The interrupts will be enabled automatically at the first context change.

7.2.2 Initialization of the Memory Management

After disabling the interrupts, the dynamic memory manager can be initialized. It must be the
first thing that is initialized because dynamic memory is used extensively in all the Kernel (and
the first place where it is used is the Module Registration).

69



7.2.3 Initialization of the static data structures

The next step in the in the Kernel startup is the initialization of the staticdata structures. In
particular, it will be initialized:

e The task descriptor and the task-specific data;

e The free descriptor queue;

e The arrays that contains the pointers to the Module descriptors;
e The tata structures used to implement POSIX signals;

e The data structures used to call the init functions posted through the function sys_atrunlevel.

7.2.4 Resgistration of the Modules in the system

At this point, the system has the interrupts disabled and all static data structures initialized.
Now, the Generic kernel needs to know what is the real Module configuration in the system. To
handle that, the following function is called:

TIME __kernel_register_levels__(void *arg)

That function is a user defined function that must call the registration functions of the
Scheduling Modules and of the Resource Modules.

It has a parameter that contains a pointer to a multiboot structure,that can be used to
know some information about the system and about the command line arguments.! . These
informations can be useful to modify the Module registration dinamically at run time.

The value returned by the function is the system tick that the system will use for the periodic
timer initialization. If the value returned is 0 the generic kernel will use the one-shot timer instead
(look at Section ?7).

To simplify the developing of the applications, the kernel distribution contains some init
examples in the directory kernel/init.

In the initialization function only these functions can be used:

e The functions that alloc and free the dynamic memory (described in Section 3.6.3);

e The function sys_atrunlevel that can be used to register the initialization and termina-
tion functions;

e The functions of the C library exported by the OS Lib;

e The functions that prints some messages on the console, like for example printk and
kern_printf.

The other functions of the Generic Kernel and of the OS Lib can not be used.

For the developers that knows the earlier versions of the Hartik Kernel, the body of the
startup function __kernel_register_levels__ can be thought as the first part of the main()
function (until the sys_init()).

IThe function __compute_args__ described in the file include/kernel/func.h can be used.
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7.2.5 OS Lib initialization

At this point all the data structures are initialized, so the system can go in multitasking mode
calling the OS Lib’s 11_init and event_init functions.

7.2.6 Initialization functions call

At this point the system has only one valid context (the global_context); there aren’t any tasks
yet (because nobody could create them before).

To end the initialization part the Generic Kernel calls the initialization functions registered
by the Modules registered in the system. Because the OS Lib is initialized, all the function
exported by it can be called. Moreover, the primitives task_create and task_activate can be
called.

The initialization functions can be used by the Scheduling Modules to create a startup task
set. Tipically the startup task set is composed by two tasks: the dummy task (usually created
by the dummy Scheduling Module 2) and the task that has the function __init__ as body (that
task is usually created by the Round Robin (RR) Scheduling Module). This choice is the tipical
situation used in most cases, but is not mandatory. The only thing really important is that there
must be a task to schedule after this step.

The function __init__ is usually contained into the initialization files, just after the __kernel_register
_levels__ function. That function is the body of the first task that is executed in the system.
The actions done by that function are tipically two:

e the initialization of some devices and libraries that use some system primitives (for example,
the semaphores) and for this reason they must be initialized into a context of a “real” task
(and not in the global_context where the initialization functions are called). Examples
of these libraries are for example the communication ports, and the keyboard and mouse
drivers (all these libraries uses the semaphores);

e the call to the main() function (in this way the Applications can be writed using the
straight C standard)?.

For the developers that knows the earlier versions of the Hartik Kernel, the body of the __init__
function can be thought as the part of the main () function (from the sys_init to the sys_end()).

Per quanti fossero familiari con le versioni precedenti del Kernel, il corpo della funzione
__init__ corrisponde pit 0 meno alla parte della funzione main() compresa tra la sys_init
(esclusa) e la sys_end finale (esclusa).

7.2.7 First context change

Now, the data structures are initialized, and the first tasks are created. At this point the Generic
Kernel simply schedule the first task and dispatch it.

When the first task is scheduled the global context is also saved. Because the global context
is not a context of a task, the system will never schedule again the global context until all the
user task are finished.

The system will change the context to the global context also when the sys_end or the
sys_abort functions are called to shut down the system. Note that the function 11_abort does
not change the context to the global context, but it simply change to a safe stack and shut down
the OS Lib, without shutting down the Generic Kernel correctly.

2This module simply ends the Scheduling Module levels, in a way that there will be always a task to schedule.
3The function __call_main__ described in the file include/kernel/func.h can be used.
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7.2.8 The shutdown functions

When the last user task ends, or when the sys_end, or sys_abort function are called, the current
context changes to the global context.

At this point the system has to do some operations to shut down the system in a correct
way?.

The operations that have to be called depends on the registered Modules, so the Generic
Kernel allows to set, using the function sys_atrunlevel, a set of functions to be called at this
time.

Usually these functions activates some recovery tasks that will shut down correctly the system.
These function should be small, because just after the calls the system will be scheduled again
to allow the libraries to shut down using the newly activated threads.

If the shutdown functions are too long and uses a lot of computation time, thete can be some
undesirable effects that can put the system in an instable state®.

7.2.9 Termination request for all user tasks

To speed-up the system termination, the system tries to kill all the user tasks. Because the
cancellation is usually deferred (as told by the POSIX standard), this should not cause the
instantaneous dead of all tasks when the system returns in multitasking mode.

7.2.10 Second context change

To shut down correctly the system the scheduler must be called again. For the secon time the
system exits from the global context. The system usually evolve as follows:

e The user tasks should die (slowly...);

e The shutdown function should give some information to the system tasks so they can finish
their work and end.

The system will return to the global context when all system tasks will end or the sys_abort
will be called. The sys_end function does not have any effect in this phase.

7.2.11 Exit functions called before OS Lib termination

When all the tasks end or the sys_abort is called the execution returns to the global context.
At this point the functions registered through the sys_atrunlevel function with the parameter
RUNLEVEL_BEFORE_EXIT are called.

The mission of these functions is to terminate the cleaning of the system (for example, it may
be useful to set the display in text mode if the application uses the graphic modes).

7.2.12 Termination of the OS Lib

At this point the system can end its work. For this reason the function 11_end is called; this
function frees all the data structures allocated with the 11_init. After this call only the function
specified in the Section 7.2.4 can be called.

4For example, if the File System is used maybe there will be some data that have to be written on the disks

5A typical situation is that when the system is rescheduled a task that used a resource miss a deadline; then
the Scheduling Module disable its schedulability, and the operation on the device cannot end, and with it all the
system!
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7.2.13 Exit functions called after OS Lib termination

Finally, the Kernel calls the last functions registered with the sys_atrunlevel, that tipically
prints some nice messages or simply reboot the computer.

7.3 Task creation and on-line guarantee

The Generic Kernel primitive that creates and guarantees a new task is called task_createn.
The prototype of that function is the following (the code of the primitive is contained in the file
kernel/create.c):

PID task_createn(char *name, TASK (*body) (), TASK_MODEL *m, ...);

The parameter passed with that function are the following:
name Symbolic name for the task, used for statistical pourposes;
body Pointer to the first instruction of the task;
m Pointer to a Task Model for the new task to be created
. List of Resource Model pointers terminated with a NULL pointer.

The primitive returns the descriptor number associated to the newly created task, or NIL if the
task cannot be created in the system. In the latter case the variable errno is set to a value that
explain the typology of the error®.

There is also a redefinition of the primitive called task_create that accept only one Resource
Module instead of “...”. This redefinition may be useful because usually only a few tasks need
more than one Resource Model.

The step followed to create and guarantee correctly a new task are described in the following
paragraphs.

The first thing to do is to find a unused task descriptor. Tipically the free descriptors are
queued in the freedesc queue. During the selection the tasks that are into the freedesc queue
but that waits a synchronization with a task_join primitive are discarded (look at Section 7.9).

At this point the descriptor chosen is removed from the freedesc queue and initialized with
some default values.

Then, a Scheduling Module that can handle the Task Model passed as parameter have to
be found. The research is done starting from level 0 and calling the public_create function.
When a correct Module is found the task is created into that module.

The next step in task creation is the handling of the Resource Models passed. This initial-
ization is done calling the res_register function on the Resource Modules registered in the
system.

At this point all system components are informed of the Quality of Service required by the
new task, and the on-line guarantee can start. The guarantee algorithm cannot be called before
registering the Resource Models because in general “hybrid” Modules can be developed (for
example, a Module can register itself as Scheduling Module and Resource Module, using the two
descriptors...).

Finally, if the task can be guaranteed, the stack memory for the task is allocated (only if
needed), the task context is created using the OS Lib function 11_context_create), the creation
event is registered for the tracer and the task is counted into the user or system task counter.

8The error codes are listed in the file include/bits/errno.h.
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If one of these steps fail, the system will be put in the state preceding the call of the primitive
(the functions public_detach and res_detach are also called).

Looking at the on-line system guarantee, the generic kernel supports a distributed guarantee
on all the Scheduling Modules based on the utilization factor paradigm. The system will call the
public_guarantee function starting from level 0, and passing each time the free bandwidth left
by the upper levels. This algorithm is implemented in the guarantee() function stored in the
file kernel/kern.c. That function returns -1 if the task set cannot be guaranteed, 0 otherwise.

This approach allows the implementation in a simple way the on-line guarantee of many
algorithms. However, this approach is not suitable to implement more complex algorithms, like
for example the Deferrable Server guarantee, the TB* [3] guarantee and others. in these cases
two strategies can be used:

e All the system tasks are guarantee off-line, so the guarantee procedure can be disabled at
run-time.

e All the algorithms that need a guarantee are developed in a single Sheduling Module, placed
at level 0. In this way it can control all the system bandwidth, and a guarantee can be
done because the Module knows all the data needed. However, in this way all advantages
of the Modularity is lost.

7.4 Task activation

The Generic Kernel, unlike the POSIX standard, decouple the task creation and guarantee and
the task activation. This is done because in literature many proofs are given for tasks that are
activated at the start of the major cycle. Also, the guarantee function can be heavy and long,
unlike the activation that is typically shorter.

The primitives provided by the generic kernel to activate a task are two:

task_activate Activation of a single task’;
group_activate Activation of a group of tasks in an atomic way®.

The Generic kernel provides a mechanism that allow to freeze task activations. That mechanism
is inserted in the generic kernel to allow the modular implementation of some shared resource
protocols like SRP or similar.

This mechanism use the task descripror control field flag FREEZE_ACTIVATION, that stores
the freeze state of the activations, and use the task descripror field frozen_activations, that
stores the number of freed activations for the Generic Kernel.

These primitives are also defined:

task_block_activation blocks explicit task activations and activates its counting. The func-
tion usually returns 0, or -1 if the task index is not correct.

task_unblock_activation enables explicit task activations. it returns -1 if the task had the
FREEZE_ACTIVATION field disabled, or the number of freezed activations. If there were
freezed activations, the primitive does not the activations.

The prototypes presenyted in this Section are showed in Figura 7.2 and they are stored in the
files file kernel/activate.c and kernel/blkact.c.

"This primitive can be called also into an OS Lib event and into the global context (in other words, in the
function posted with the primitive sys_atrunlevel).
8The system is rescheduled only one time, so it can speed-up the activation of a lot of tasks.
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int task_activate(PID p);

int group_activate(WORD g);

int task_block_activation(PID p);
int task_unblock_activation(PID p);

Figure 7.2: Prototypes of the actiovation functions.

7.5 The Scheduler

The steps that the Generic Kernel does when the system is rescheduled are three:

e If when the system is rescheduled a task is running, the end of the slice must be called for
that task?;

e Then, a new task to run must be found (scheduling);
e Finally, the chosen task must be run (dispatching).

These steps are implemented into the system primitives and in the scheduler () function stored
in the file kernel/kern.c. In the following section the three points are showed in detail.

7.5.1 Current slice end for the running task

To specify which are the actions to do at the end of a slice of the running task, the reason af the
slice end must be known. Depending on the behaviour of the end of the slice, different actions
should be made.

For this reason the Generic Kernel provides different functions that terminates a slice. The
cases in that a slice must be ended are the following (into parenthesis the related Task Calls are
listed):

1. A new task becomes active in the system, so the Generic Kernel wants to check if a
preemption (public_epilogue) must be done. This situation can happen in a lot of
situations, like for example:

e a new task is activated with a task_activate or group_activate primitive;
e a resource or a mutex is freed, so a task blocked on it is unblocked;
e 3 periodic task is reactivated at the beginning of its period;

e a System Driver is activated because an intrettupt is arrived;
2. The running task finishes its available capacity (public_epilogue);
3. The running task blocks itself on a synchronization primitive (public_block);

4. The running task ends its instance and it suspend itself with a task_endcycle primitive
(public_message);

5. The running task ends or it is killed by a task_kill or pthread_cancel primitive (public_end);

9A task slice is the time interval in that starts when the running task is dispatched and end when the system
is scheduled again.
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In general the funcions sequence that have to be called is the following;:
1. The current time is read into the global variable schedule_time!?;

2. The length of the current terminated slice is computed using the variables schedule_time
and cap_lasttime;

3. The computation time of the current slice is accounted to the task (look at Section 7.6);
4. The capacity event (if one is pending) is erased;

5. The Scheduling Module function that handles the termination of the slice for the task is
called..

To simplify the writing of the primitives the following approach is implemented: because the
preemption rescheduling is the most common situation, the sequence given before that terminates
with a call to public_epilogue is included as prologue in the scheduler() function. That
prologue is not executed if the variables exec and exec_shadow have a NIL (-1) value when the
function is called.

7.5.2 Scheduling

When the previous slice is terminated a new task to schedule must be chosen. The generic
scheduling algorithm starts from the Scheduling Module at level 0, calling the function public_scheduler,
and going through the levels when a Module does not have any task to schedule. The Generic
Kernel assumes that there is always a task to schedule!!.

When a task to schedule is found, the function public_eligibleis called to verify if the task
chosen by the scheduler is correct. If the task is not correct, the generic scheduling algorithm
restarts from the level that gave the wrong task before (look at Section ?7).

7.5.3 Dispatching

To find the task that should be executed really another step has to be done: the shadow chain of
the scheduled task must be followed (look at Section ??). When the tail of that chain is found,
the function public_dispatch is called on that task.

Finally, if the task has the CONTROL_CAP bit of the task descriptor control field set, a capacity
event is posted.

7.6 Execution Time statistics

The Generic Kernel supports the accounting of the task execution times. This is useful because
the behaviour of many algorithm proposed in the literature depends widely on the accuracy with
that the task capacities are managed.

To enable the Generic Kernel to account the execution time of a task, the user should use
the provided macros for the Task Models (look at Section 2.2.1). These macros modifies the
JET_ENABLE flag into the control field of the task descriptor.

10That variable is used as temporal reference for the scheduling time. Note that the Generic kernel does not
separe the CPU time passed executing user code and system code; all the CPU time is assigned to the user task.

1To have always a task to schedule a Scheduling Module called dummy is provided that always guarantees the
existence of a task to schedule.
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int jet_getstat(PID p, TIME *sum, TIME *max,
int *n, TIME *curr);

int jet_delstat(PID p);

int jet_gettable(PID p, TIME *table, int n);

void jet_update_slice(TIME t);

void jet_update_endcycle();

Figure 7.3: Primitives for execution time handling and correlated functions used internally by
the Generic Kernel.

The Generic Kernel can store some data about a task. In particular, the mean and the
maximum execution time of a task and the time consumed by the current instance and of the
last JET_TABLE_DIM instances.

The prototypes of the Generic Kernel functions are described in Figure7.3. In the following
paragraphs these functions are described:

jet_getstat This primitive returns some statistical informations; in particular, the informations
are stored into the following parameters:

sum is the task total execution time since it was created or since the last call to the
jet_delstat function;

max is the maximum time used by a task instance since it was created or since the last call
to the jet_delstat function;

n is the number of terminated instances which sum and max refers to;

curr is the total execution time of the current instance.

if a parameter is passed as NULL the information is not returned. The function returns 0
if the PID passed is correct, -1 if the PID passed does not correspond to a valid PID or
the task does not have the JET_ENABLE bit set.

jet_delstat The primitive voids the actual task execution time data mantained by the Generic
Kernel. The function returns 0 if the PID passed is correct, -1 if the PID passed does not
correspond to a valid PID or the task does not have the JET_ENABLE bit set.

jet_gettable The primitive returns the last n execution times of the task passed as param-
eter. If the parameter n is less than 0, it returns only the last values stored since the
last call to jet_gettable. If the value is greater than 0, the function returns the last
min(n, JET_TABLE_DIM) values registered. The return value is -1 if the task passed as
parameter does not exist or the task does not have the JET_ENABLE bit set, otherwise the
number of values stored into the array is returned. The table passed as parameter should
store at least JET_TABLE_DIM elements.

The function used into the Generic Kernel implementation are the following:

jet_update_slice updates the current slice of the running task (pointed by the exec_shadow
field) by t microseconds;

jet_update_endcycle updates the execution time of the last instance. When this function is
called the last instance is just terminated.
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7.7 Cancellation

The POSIX standard provides some mechanisms to enable and disable the cancellation, and to
set the cancellation as deferred or asynchronous.

For more informations about the cancellation functions look to the POSIX standard. In Table
?? there are some primitives that are very similar to these of the standard.

The biggest problems in implementing task cancellation into the Generic Kernel are the
following;:

e The kernel does not have a private stack, and works simply disabling the interrupts into
the contexts of the tasks in the system;

e The cancellation functions for a tasks should be called into the stack of the task, so it is
not possible to kill another task immediately without changing context;

e The Generic Kernel should abstract from the cancellation points present in the system,
because in general it is not possible to handle all the internal structures introduced by a
particular cancellation point.

The solution to these problems is proposed in the following Sections.

7.7.1 The task makefree function

When a task die the flow control of a task is switched to the task_makefree function. This
function have to call all the cancellation points function, and the key destructors.

The function can be called into the cancellation points (the task_testcancel function is
called, look at the file kernel/cancel.c), and at task termination (look at the task_create_stub
in the file kernel/create.c), and each time a task is scheduled (to test asynchronous cancella-
tion).

The function does the following steps:

o It checks if someone is waiting for the task termination (with a task_join primitive);

e It verifies if the task that is terminating is actually using a resource handled with the
shadow mechanism (if so an exception is raised);

e It calls some cleanup functions;
e It calls the thread specific data destructors;
e It frees the context'?and the allocated memory for the stack;

e It calls the public_end on the Scheduling Module that owns the task, and the res_detach
function on the Resource Modules registered in the system;

e It verifies if the end of the task should cause the whole system termination (look at Section
7.1).

12Note that the freed context is the running context. this is not a problem because the task_makefree is
executed with the interrupts disabled, and nobody can use the free memory areas freed.
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7.7.2 Cancellation point registration

The last problem to solve is the independence of the Generic Kernel from the Cancellation Points.
The objective of the cancellation point registration is to write the code for a cancellation point
without modify the primitives that effectively kill a task. The implementations can be depicted
with these points:

e The blocking of a task on a cancellation point is implemented through the public_block
function;

e The task state of a blocked task on a cancellation point is modified to a value visible by
the Generic Kernel (usually these names starts with the prefix WAIT );

e The functions that implements the cancellation points register themselves at their first
execution calling the register_cancellation_point primitive (this function is defined in
the file kernel/kill.c). The primitive accepts a function pointer that returns 1 if the
task passed as parameter is blocked on the cancellation point handled by the function.

e First, the function that should kill a task sets the KILL_REQUEST flag of the control field of
the task descriptor; then, it calls the registered cancellation point functions to check if a
task is blocked on a cancellation point. If so, the registered function reactivates the blocked
task calling the public_unblock function.

e The architecture of a cancellation point should guarantee that when a task is woken up
a check is made to see if a task is killed. If so, the function internally calls the primitive
task_testcancel to kill the task.

7.7.3 Cleanups and Thread Specific Data

The POSIX standard provides two primitives, pthread_cleanup_pushand pthread_cleanup_pop,
that allows to specify functions to be executed in the case a task has been killed during a section
of code delimited by these two functions.

The implementation of these two functions has been done through a macro similar to that
contained into the rationale of the POSIX standard.

Their implementation is contained into the files include/pthread.hand include/kernel/func.h.

The Generic kernel provides also the support for the Thread Specific Data of the POSIX
Standard. The implementation of these primitives is not complex and can be found in the file
kernel/keys.c.

7.8 Signals

The Generic kernel provides a POSIX signal implementation derived from the Flux OSKit [5].
Two aspects need to be described:

e the implementation of the signal interruptable functions:

To implement these function a registration call is provided in a way similar to the cancella-

tion points. Each time a signal is generated, a check is done to see if some task is blocked on

a signal interruptable function. The registration function is called register_interruptable_point
and it is contained into the file kernel/signal.c;

79



e the correct delivery of the signals:

afunction called kern_deliver_pending_signals (defined in the file kernel/signal.c)is
provided; this function is called into the macro that changes context (the macro kern_context_load,
defined into the file include/kernel/func.h). That function is usually called after a con-

text change, so when a task is rescheduled the pending signals for that task are delivered.

Note that in the current version if a task is preempted by a task activated in an interrupt,

when the task is rescheduled there will not be any signal dispatching. This IS a bug, and

it will be fixed in the next releases of the OS Lib.

Moreover, the OS Kit signal implementation is slightly modified to handle the POSIX message
queues and the POSIX realtime timers.

7.9 Task Join

The POSIX standard specifies that a thread return value can be read, if the task is joinable,
through a call to the primitive pthread_join or task_join.

In this section the implementation of the primitive task_join is described, with all the
modification that the implementation has done on the Generic Kernel.

First, the information about the task type (joinable or detached) is stored into the flag
TASK_JOINABLE of the control field of the task descriptor.

Usually the POSIX threads starts in a joinable state and then they can be detached. The
Generic kernel follow this line when implementing the pthread_create, but with a difference:
the default attribute for the task models is detached'®.

The task_join primitive implements the POSIX primitive pthread_join. It is a cancellation
point and it register itself in the Generic kernel the first time it executes.

The main problem in the implementation of this primitive is that a task descriptor correctly
terminated can be reused until a join is executed on it. The problem is that in this way the
Scheduling Modules should know the internal implementation of the primitive, and this fact may
complicate the writing of a Scheduling Module if special task guarantees are implemented.

The implementation tries to avoid these problems in the following way:

e The Scheduling Modules prescind from the task tipology (joinable or detached) and simply
inserts a task that terminates in the free queue when the descriptor is no longer needed;

e The task_makefree checks if the task is joinable, and if it is the flag WAIT_FOR_JOIN in
the control field of the task descriptor is set. In any case the context and the stack for the
dead process are released;

e A call to task_create that tries to alloc a task descriptor that waits for a join and whose de-
scriptor is inserted in the freedesc queue simply discards it, setting the bit DESCRIPTOR_DISCARDED,
in the control field of the task descriptor.

e A call to task_join on a task that is already terminated, inserted in the freedesc queue
and discarded by the primitive task_create, inserts the descriptor in the freedesc queue.

This way allow the Scheduling Modules to abstract and remain independent from the implemen-
tation of the join primitive.

13Note that this does not impact on the standard POSIX implementation, since the task create is a non-
standard function.
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7.10 Pause and Nanosleep

The Generic Kernel supports a set of primitives to implement a task suspension. The differences
between them are the following:

sleep This primitive suspend the execution task for a number of seconds. The task can be
woken up by a signal delivery;

pause This function suspends the task until a signal is delivered to it;

nanosleep This function suspends the running task for a minimum time passed as parameter.
The task can be woken up by the dispatch of a signal, in that case the residual time is
returned.

7.11 Mutex and condition variables

The Generic kernel provides a set of functions that are similar in the interface with the corre-
spondents POSIX functions that handles mutexes and condition variables.

The extensions to the interface of the Resource Modules described in the previous chapter
are used by these primitives to handle different shared resource access protocols in a general way.

Le estensioni apportate all’interfaccia dei Moduli di Gestione delle Risorse descritte nella
sezione precedente vengono utilizzate da tali primitive per gestire i vari protocolli di accesso a
risorse condivise in modo trasparente.

In particular, the proposed interfaces are the following (for a better description look at the
POSIX standard):

int mutex_init(mutex_t *mutex, const mutexattr_t *attr);

This primitive can be used to init a task descriptor. The attr parameter should be correctly
initialized before the call. It can not be NULL.

int mutex_destroy(mutex_t *mutex) ;

This function dealloc a mutex.

int mutex_lock(mutex_t *mutex);

This function implements a blocking wait.

int mutex_trylock(mutex_t *mutex) ;

This function implements a non blocking wait.

int mutex_unlock (mutex_t *mutex);

This functions unlocks a mutex.

int cond_init(cond_t *cond);

This function initializes a condition variable.
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int cond_destroy(cond_t *cond);

This function destroys a condition variable.

int cond_signal(cond_t *cond);

This function signals on a condition variable. Only one task is unblocked.

int cond_broadcast(cond_t *cond);
This function signals on a condition variables, unblocking all the task blocked on the condition
variable.
int cond_wait(cond_t *cond, mutex_t *mutex);
int cond_timedwait(cond_t *cond, mutex_t *mutex,
const struct timespec *abstime);

The task that exec this primitive blocks and the mutex passed as parameter is unlocked to be
required when the task restarts. There are two versions of the primitive, and one has a timeout
to limit blocking times. These functions are cancellation points. If a cancellation request is
generated for a task blocked on a condition variable, the task will end after reaquiring the
mutex. This implies that each call have to be protected by cleanup functions that should free
the mutex in a correct way.

7.12 Other primitives

In this section a set of other primitives are shortly described. They are implemented in the
source files contained into the kernel directory.

void task_endcycle(void);

This primitive terminates the current instance of a task (look at Section 4.1).

void task_abort(void);

This primitive ends the task.

void group_kill(WORD g);

This primitive send a kill request to all the tasks that have the group g.

TIME sys_time(struct timespec *t);

This primitive can be used into the applications to read the system time. Its behaviour is equal
to the 11_gettime but it is executed with interrupt disabled.
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