S.Ha.R.K. User Manual

Scuola Superiore di Studi e Perfezionamento S. Anna
ReTiS Lab

Volume 11
PROGRAMMING LIBRARIES

Written by
Paolo Gai (pj@sssup.it)

and based on the Hartik’s Manual written by
Giorgio Buttazzo (giorgio@sssup.it)
Luigi Palopoli (luigi@gandalf.sssup.it)
Luca Abeni (luca@gandalf.sssup.it)
Giuseppe Lipari (lipari@gandalf.sssup.it)
Gerardo Lamastra (lamastra@sssup.it)
Antonino Casile (casile@sssup.it)
Massimiliano Giorgi (massy@gandalf.sssup.it)

RETIS Lab.
Scuola Superiore S. Anna
Via Carducci, 40 - 56100 Pisa

16th December 2004

Contents

8

9

Introduction
1.1 Driver Initialization e e e e e e e
1.2 Driver Shutdown e e

The Linux Compatibility Layer

The Input Library

3.1 The keyboard library e

3.2 Themouse library e
3.2.1 The mouse graphics functions oo oL oL

3.3 The joystick library L

3.4 Thespeaker library L e

The Frame Buffer Library
4.1 The Frame Buffer graphics functions

The Frame Grabber Library

The CPU frequency scaling library
6.1 CPU Information utility
6.2 CPU scaling functions L

The Network Library
The CMOS real-time clock

The Sound Library

10 The Console Library

11 The File Management

12 The Snapshot Library

w N

26

27
27
28

30

39

40

45

47

49

Chapter 1

Introduction

Device drivers are a critical part of Real-Time Systems. Trying to fit an IRQ and a timer handler,
coming from a device, inside a task context, it is a priority for OS like S.Ha.R.K. If we design
these drivers considering possible preemptions, exectution times and other Real-Time contraints, a
schedulability test can guarantie our system. Buf if we must reuse a source code from third-party
drivers makers, without having no knowledge about the driver timing behaviour, with possible non-
preemptable critical section, it is very difficult to impose contraints for a schedulability analisys.

The S.Ha.R.K. drivers are mainly ported from Linux 2.6. We projected and tested a Linux 2.6
Emulation Layer. This Layer gives an indipendent environement, where it is possible to compile the
original drivers without conflicts with S.Ha.R.K. and OSlib. An interface glue-code allows to access
the drivers APL.

S.Ha.R.K. Kernel
! !
PRD
EMULATION LAYER ACCESS
v 1
HARDWARE

The Emulation Layer needs a specific kernel module to run. This module has two important
objectives:

e To create an high priority execution context for the drivers IR(Q) and timer handlers.

e To maintain the drivers behaviour inside specific Real-Time constraints, avoiding that a possible
malfuncition or resource abuse cause a system failure.

Both of these points are guaranteed through the INTDRIVE module.

As described inside the module documentation, INTDRIVE is an high priority module specifi-
cally designed to handle the drivers requests. Usign the hierarchial capabilities of S.Ha.R.K., the
INTDRIVE module is indepented from the main system scheduler, so EDF, RM and all the other
modules can be used to schedule the application tasks.

To load the Emulation Layer, INTDRIVE must be present inside the system.

TIME __kernel_register_levels__(void *arg)

{

INTDRIVE_register_level (INTDRIVE_Q,INTDRIVE_T,INTDRIVE_FLAG);
EDF_register_level (EDF_ENABLE_ALL) ;

}

After the INTDRIVE registration, the initialization procedure can begin.

1.1 Driver Initialization

The initialization of a drivers should be done inside the initfile, before entering inside the real-time
application. During initialization the devices can lock the system for an unpredictable amount of time
so any used device should be ready before the real-time tasks are scheduled.

S.Ha.R.K. standard initfile suggests a possible implementation:

TASK __init__(void *arg) {
struct multiboot_info *mb = (struct multiboot_info *)arg;

set_shutdown_task();

device_drivers_init();

sys_atrunlevel (call_shutdown_task, NULL, RUNLEVEL_SHUTDOWN) ;
__call_main__(mb);

return NULL;

int device_drivers_init() {
KEYB_PARMS kparms = BASE_KEYB;

LINUXC26_register_module();
PCI26_init();
INPUT26_init();

KEYB26_init (&kparms) ;
return 0;

}

The device drivers init() calls all the initialization functions. LINUXC26 is the Linux Emulation
Layer and it must be loaded as first. The initialization order follows the driver dependence tree of
figure 1.1.If this order is not respected, the initialization procedure fails.

LINUXC26 (Linux 2.6 Emulation Layer)
— PCI26
— FB26 (PCl is not required with VESA 2.0 video mode)

L 12c26
— BTTV26

— NETWORK
— CPUFREQ26

— PCI6025E

I— INPUT26

— KEYB26

— MOUSE26
— GAMEPORT26
— SPEAKER26

DIRECT ACCESS

SERIAL
PARALLEL
PCL812
PCL833

Figure 1.1: Drivers dependeces tree

1.2 Driver Shutdown

Another critical point is the shutdown sequence. When a sys_end() or exit()is called the system
should close the device drivers as soon as possible. Unfortunately the driver shutdown must be
executed when the kernel is still in multitasking mode.

int device_drivers_close() {
KEYB26_close();
INPUT26_close();
return 0;

}

The RUNLEVELS of S.Ha.R.K. gives the possibility to implement a safe and trasparent procedure
to shutdown the system without compromise the drivers stability. As the initiliazation, the shutdown
sequence must follow the dependence order.

The flow chart of figure 1.2 shows the steps to reach a safe exit. Anyway if the system is overloaded
during the exit procedure, the shutdown task cannot be scheduled. A possible solution is to give high
priority to the shutdown task, or to design an application that doesn’t reach the CPU saturation. If
the shutdown task doesn’t execute a timeout (default 3 seconds) force the system exit.

MULTITASKING MODE SINGLE MODE

SYS_END OR EXIT CALLED

RUNLEVEL_SHUTDOWN

task_activate(shutdown_task_pid)

RUNLEVEL_SHUTDOWN

background execution '
of shutdown task |
- DRIVERS SHUTDOWN - |

RUNLEVEL_BEFORE_EXIT

completing the system shutdown

|

|

| BACK TO REAL_MODE
|

i RUNLEVEL_AFTER_EXIT

Figure 1.2: Shutdown sequence

Chapter 2

The Linux Compatibility Layer

Is the glue code used for the interaction between the kernel and the linux code. Is mandatory to use
drivers ported from the linux 2.6 kernel tree.

LINUXC26 INIT

void LINUXC26_init(void);
Description: It initializes the compatibility layer interface and the library’s internal data structures.
Example

int device_drivers_init()

{
int res;
KEYB_PARMS kparms = BASE_KEYB;
LINUXC26_register_module();
PCI26_init();
INPUT26_init();
keyb_def_ctrlC(kparms, NULL);
KEYB26_init (&kparms) ;
FB26_init();
res = FB26_open(FRAME_BUFFER_DEVICE) ;
if (res) {
cprintf ("Error: Cannot open graphical mode\n");
KEYB26_close();
INPUT26_close();
sys_end () ;
}
FB26_use_grx (FRAME_BUFFER_DEVICE) ;
FB26_setmode (FRAME_BUFFER_DEVICE, "640x480-16") ;
return 0;
}

Chapter 3

The Input Library

This library allow the user to interact with applications. Is composed by a lower lever which must be
initialized at the beginning. On top of this layer we can find different peripherals:

e Keyboard;

e Mouse;

Joystick;

Speaker;
e Event debuger.

Each one can work independently from the others. In order to use the low lever functions, the files
drivers/shark_input26.h must be included. It contains the prototypes of the declared functions.
First of all, the keyboard needs be initialized by the calling KEYB26_init primitive into the __init__
function in the initialization file or in any other point of the application code.

INPUT26 INIT

int INPUT26_init(void);
Description: It initializes the low lever input interface and the library’s internal data structures.

Return value: 0 if the operation is performed successfully; a value less than 0, otherwise.

The following code shows an example of input drivers initialization for the system:

Example:

int res;

KEYB_PARMS kparms = BASE_KEYB;
MOUSE_PARMS mparms = BASE_MOUSE;
LINUXC26_register_module();

INPUT26_init();

keyb_def_map (kparms, KEYMAP_IT);
keyb_def_ctrlC(kparms, NULL);
KEYB26_init (&kparms) ;

mouse_def_threshold (mparms, 5);
mouse_def_xmin(mparms, 0);
mouse_def_ymin(mparms, 0);
mouse_def_xmax (mparms, 639);
mouse_def_ymax (mparms, 479);
MOUSE26_init (&mparms) ;

SPEAK26_init();

JOY26_init () ;

The event debugger is used to have an output of the raw data coming from an input device for
which a driver is not present. It can be stanter, stopper and is possible to control the actual status.

EVBUG26 INIT

int KEYB26_init(void);
Description: It initializes the event debugger interface and the library’s internal data structures.

Return value: 0 if the operation is performed successfully; a value less than 0, otherwise.

EVBUG26 CLOSE

int EVBUG26_close(void);
Description: It close the event debugger interface.

Return value: 0 if the operation is performed successfully; -1 if the interface in not installed.

EVBUG26 INSTALLED

int EVBUG26_installed(void);
Description: Return if the event debugger is actually installed.

Return value: 0 if the module is installed; 1 otherwise.

3.1 The keyboard library

In order to use the keyboard handling functions, the drivers/shark_keyb26.h header file, containing
the interface functions’ prototypes, has to be included in the application program.

First of all, the keyboard needs be initialized by the calling KEYB26_init primitive into the
__init__ function in the initialization file or in any other point of the application code and the
input low level driver must be already installed. A programmer can either initialize the keyboard
using the default settings or define his own parameters which are encapsulated into a structure having

KEY_PARMS type. The strucuture can be initialized with the default set of values by setting it equal to
BASE_KEYB; the keyb_def_... macros can be used before calling KEYB26_init to modify each set-
ting. Afterwards, it is possible to read the ASCII code of any stroken key by calling the keyb_getch ()
function. This function requires a parameter which determines whether the task should block until
a key is hit or not. In the latter case, if no key has been hit, the function returns 0 (behaving like
kbhit ().

If we are interested in the key’s scan code, we can call the keyb_getcode () function, which returns
a struct containing either the scan code or the ascii code and a byte containing information on the
ALT, SHIFT or CTRL key being pressed.

The following code shows an example of usage for the function:

Example:

KEY_EVT k;

if (keyb_getcode(&k, NON_BLOCK) {
if (isRightCtrl(k) || isLeftCtrl(k)) &&
(k.ascii == ’x?)) {
/* Ctrl + ‘x’ has been pressed */

Finally, it is possible to define a function to be automatically called every time a specific key (or a
specific combination of keys) is pressed. This is done by calling the keyb_hook() function, which
receives as arguments a data structure containing the required combination of keys and the function
to be called.

KEYB26 INIT

int KEYB26_init (KEYB_PARMS *parms) ;

Description: It initializes the keyboard interface and the library’s internal data structures. It can
be called using NULL as parms to initialize the keyboard interface to default values.
Note that to be proper initialized, you need also to initialize the HARTPORT modules.

Return value: 0 if the operation is performed successfully; a value less than 0, otherwise.

KEYB26 CLOSE

int KEYB26_close(void);
Description: It close the keyboard interface.

Return value: 0 if the operation is performed successfully; -1 if the keyboard in not installed.

KEYB26 INSTALLED

int KEYB26_installed(void);
Description: Return if the keyboard driver is actually installed.

Return value: 0 if the keyboard is installed; 1 otherwise.

KEYB DEFAULT PARM

void keyb_default_parm(KEYB_PARMS parms) ;

Description: It changes the values of parms to the same vales as the BASE KEYB default initializer.
KEYB DEF MAP

void keyb_def_map(KEYB_PARMS parms, unsigned char map);

Description: It changes the default map used for the keyboard: map can be KEYMAP_US for an english
keyboard or KEYMAP_IT for an italian keyboard. The default is english keyboard layout.

KEYB_ DEF_CTRLC

void keyb_def_ctrlC(KEYB_PARMS parms, void (xctrlcfunc) (KEY_EVT xk));

Description: It enables the execution of a function when the “ctrlC” combination is pressed. By
default, if this macro is not used, the ctrlC combination results in calling sys_end(). Note
that a small message is printed also on the console. The message is only visible if the system is in
text mode. If you are running a graphic application, remember to redefine the Ctrl-C Handler!

KEYB_ DEF_TASK

void keyb_def_task (KEYB_PARMS parms, TASK_MODEL * m);

Description: It specifies the parameters of the keyboard server. The TASK_MODEL * should be a valid
pointer to a Task Model, or KEYB_DEFAULT if you want to specify the default behaviour.
This macro should be used every time the default server Task Model does not adapt well to the
configuration of the scheduling modules registered in the system.
The default server Task Model is equivalent to this initialization:
soft_task_default_model(base_m);
soft_task_def_wcet (base_m,2000) ;
soft_task_def_met (base_m,800) ;
soft_task_def_period(base_m,25000) ;
soft_task_def_system(base_m);
soft_task_def_nokill(base_m);
soft_task_def_aperiodic(base_m) ;

KEYB GETCH, KEYB GETCHAR

int keyb_getch(BYTE wait);
int keyb_getchar(void); (macro)

Description: If the keyboard queue is not empty, keyb_getch() returns the ASCII code of the
pressed key. If the queue is empty, the function’s behaviour depends on the value of the wait
parameter: if it is BLOCK, then the calling task is blocked until a key is pressed; if it is NON_BLOCK,
the function returns 0. keyb_getchar () is a macro for keyb_getch(BLOCK).

Return value: the ASCII code of the pressed key, if the buffer is not empty; 0 otherwise.
KEYB GETCODE

int keyb_getcode (KEY_EVT xk, BYTE wait);

10

Description: It fetches the KEY_EVT from the keyboard’s queue and copies it into the structure
pointed by k. If the queue is empty, the function behaves as key_getch().

Return value: 1 if a key was pressed, 0 otherwise.

KEYB_HOOK

void keyb_hook (KEY_EVT key, void (*hook) (KEY_EVT *keypressed), unsigned char lock);

Description: Whenever the key combination specified in key is pressed, the function hook() is
invoked, getting key as input parameter. If lock is set to FALSE after executing the function
hook () the key will be lost, otherwise it will be inserted in the queue.

Example:

#include <drivers/shark_keyb26.h>

void hook_func(KEY_EVT *keypressed)

{

switch (keypressed->ascii) {

case ’w’: /% if ’CTRL-w’ is pressed... x/
break;

case ’x’:
if (isLeftAlt(keypressed) ||isRightAlt(keypressed))
{ /% if °ALT-x’ is pressed... */
} else {

/* if ’x’ is pressed... */

}
}
}

int main(int argc,char *argv[])

{
KEY_EVT key;
/* keyboard initialization */
/* to hook ’CTRL-w’ key */
key.ascii = ’w’;
key.scan = KEY_W;
key.status = KEY_PRESSED;
key.flag = CNTR_BIT;
keyb_hook (key,hook_func,FALSE) ;
/* to hook key ’x’ */
key.ascii = ’x’;
key.scan = KEY_X;
key.status = KEY_PRESSED;
key.flag = 0;
keyb_hook (key,hook_func,FALSE) ;
/* to hook ’ALT-x’ key */
key.flag=ALTL_BIT|ALTR_BIT;

11

keyb_hook (key,hook_func,FALSE) ;

}.n
KEYB DISABLE

void keyb_disable(void);

Description: Trow away the data arriving from the hardware instead of processing them inside the
driver.

KEYB ENABLE

void keyb_enable(void);

Description: Allow the driver to receive data from the hardware.

KEYB_SET MAP

int keyb_set_map(unsigned char map);

Description: It changes the default map used for the keyboard: map can be KEYMAP_US for an english
keyboard or KEYMAP_IT for an italian keyboard.

Return value: the keyboard map identifier effectively applied.
KEYB_GET_MAP

int keyb_get_map(void);

Description: Return the identifier of the keyboard map actually in use.

KEY EVT

Description: it is a data structure containing the following fields:

ascii: ascii code of the key;
scan: scan code of the key;
status: the key can be pressed, repeated or released. When used to set an hook more than one
status can be selected.
The status field can be accessed by one of the following macros, whose usage is self-
explaining:
o isPressed(&k)
e isRepeated(&k)
e isReleased(&k)
flag: codes of the ALT, SHIFT and CTRL keys.
The flag field can be accessed by one of the following macros, whose usage is self-explaining:
e isScanCode(&k), decides whether the hit key has an ASCII code or not;
o isLeftShift(&k)
e isRightShift(&k)
o isLeftAlt(&k)
e isRightAlt(&k)
o isLeftCtrl(&k)
e isRightCtrl(&k)

12

3.2 The mouse library

To use the mouse into an application program, the user must call the MOUSE26_init function. Then,
all mouse functions are available until a call to the MOUSE26 _close function. The initialization of the
mouse library is performed by MOUSE26_init, which requires a parameter of MOUSE_PARMS type to
initialize the mouse. The following example shows a possible mouse initialization:

int main(int argc,char *argv[])
{
int result;
MOUSE_PARMS params = BASE_MOUSE;

result=MOUSE26_init (¶ms) ;
if (result!=0) {
// the mouse can’t be initialized
}
// other mouse functions
MOUSE26_close() ;
}

The MOUSE26_close function is not required but can be used to release all the hardware resources
that the library acquires. The NULL constant can be passed to the MOUSE26_init () function for a
default initialization. The params variable can be used to change the default setting of the initialization
procedure using some macros, whose names start with mouse_def_ . All the mouse functions can be
found in the include file drivers/shark_mouse26.h.

MOUSE26 INIT

int MOUSE26_init (KEYB_PARMS *parms) ;

Description: It initializes the mouse interface and the library’s internal data structures. It can be
called using NULL as parms to initialize the mouse interface to default values.
Note that to be proper initialized, you need also to initialize the HARTPORT modules.

Return value: 0 if the operation is performed successfully; a value less than 0, otherwise.

MOUSE26 CLOSE

int MOUSE26_close(void);
Description: It close the mouse interface.

Return value: 0 if the operation is performed successfully; -1 if the mouse in not installed.

MOUSE26 INSTALLED

int MOUSE26_installed(void);
Description: Return if the mouse driver is actually installed.

Return value: 0 if the mouse is installed; 1 otherwise.

MOUSE _DEFAULT PARM

13

void mouse_default_parm(KEYB_PARMS parms) ;

Description: It changes the values of parms to the same vales as the BASE _MOUSE default ini-
tializer.

MOUSE DEF THRESHOLD

void mouse_def_threshold (MOUSE_PARMS parms, int thr);

Description: It changes the default threshold (i.e., the mouse sensitivity) value used in the mouse
driver. Is a scaling factor between the hardware position increment and the logical increment in
the mouse position. The higher the value, the lower the sensitivity. The default is 10.

MOUSE DEF X0, MOUSE DEF YO0, MOUSE DEF Z0

void mouse_def_x0(MOUSE_PARMS parms, int xvalue);
void mouse_def_yO0(MOUSE_PARMS parms, int yvalue);
void mouse_def_z0(MOUSE_PARMS parms, int zvalue);

Description: These functions change the initial value of the mouse position. The default vilue for
each parameter is 0 if permitted by mouse position bounds.

MOUSE_ DEF_ XMIN, MOUSE DEF XMAX

void mouse_def_xmin (MOUSE_PARMS parms, int minvalue);
void mouse_def_xmax (MOUSE_PARMS parms, int maxvalue);

Description: It changes the minimum and maximum allowed value for the x coordinate.

MOUSE_ DEF_ YMIN, MOUSE DEF YMAX

void mouse_def_ymin(MOUSE_PARMS parms, int minvalue);
void mouse_def_ymax (MOUSE_PARMS parms, int maxvalue);

Description: It changes the minimum and maximum allowed value for the y coordinate.

MOUSE DEF TASK

void mouse_def_task (MOUSE_PARMS parms, TASK_MODEL * m);

Description: This macro defines the parameters for the mouse handling task. The TASK_MODEL *
should be a valid pointer to a Task Model, or MOUSE_DEFAULT if you want to specify the default
behaviour.

This macro should be used every time the default Task Model does not adapt well to the
configuration of the scheduling modules registered in the system.

The default Task Model is equivalent to this initialization:
soft_task_default_model(base_m);

soft_task_def_wcet (base_m,2000) ;

soft_task_def_met (base_m,500);

soft_task_def_period(base_m,8000) ;

soft_task_def_system(base_m);

soft_task_def_nokill(base_m);

soft_task_def_aperiodic(base_m);

14

MOUSE_ ENABLE

void mouse_enable(void);

Description: Allow the driver to receive data from the hardware.

MOUSE DISABLE

void mouse_disable(void);

Description: This function disable the mouse; the driver stop to respond to the data arriving from
the hardware.

MOUSE SETPOSITION

void mouse_setposition(int x, int y, int z);

Description: Set values for axes and wheel. Values for x and y axis are compared against bounds
for the allowed zone.

MOUSE _GETPOSITION

void mouse_getposition(int *x, int *y, int *z, unsigned long *buttons);

Description: Get values for axes, wheel and buttons. In the buttons variable each bit rappresent
the status of a button.

MOUSE _SETLIMITS

void mouse_setlimits(int xmin, int ymin, int xmax, int ymax);
Description: It changes the minimum and maximum allowed value for x and y coordinate.

MOUSE GETLIMITS

void mouse_getlimits(int *xmin, int *ymin, int *xmax, int *ymax) ;

Description: Allow to obtain the minimum and maximum permited value for x and y coordinate.

MOUSE SETTHRESHOLD

void mouse_setthreshold(int th);

Description: It changes the threshold value used in the mouse driver. Is a scaling factor between
the hardware position increment and the logical increment in the mouse position. The default
is 10.

MOUSE GETTHRESHOLD

void mouse_getthreshold(int th);

Description: Return the threshold value used in the mouse driver. Is a scaling factor between the
hardware position increment and the logical increment in the mouse position. The default is 10.

MOUSE_HOOK

15

void mouse_hook (MOUSE_HANDLER hook) ;

Description: Whenever the driver receive data from the hardware the function hook() is invoked
with a MOUSE_EVT as parameter. To detach a previously defined hook with NULL as parameter.

MOUSE_EVT

Description: it is a data structure containing the following fields:

X,y,Zz: actual mouse position;
dx,dy,dz: increments from the last event;
buttons: each bit in the parameter rappresent the status of one button of the mouse.

The following code shows an example of usage for the function mouse_hook and the structure
MOUSE_EVT:

Example:

#include <drivers/shark_mouse26.h>

void hook_func(MOUSE_EVT *mevt)

{
if (mevt->button&0x1){
/* The 1st button is pressed... x*/
}
if ((mevt->dx > 10) || (mevt->dx > 10)) {
/* Increment on x or y axis major than 10... */
}
if (mevt->dz > 0) {
/* Wheel position changed... */
}

}

int main(int argc,char *argv[])

{
/* mouse hook initialization */
mouse_hook (hook_func) ;

.
ISLEFTBUTTON, ISCENTRALBUTTON, ISRIGHTBUTTON

isLeftButton(int button)
isCentralButton(int button)
isRightButton(int button)

Description: These macros are used to test whether a specific mouse button is pressed.

16

3.2.1 The mouse graphics functions

The system provide a set of function to quickly draw the mouse cursor both in text and graphic mode.
For each mode we can find 2 functions. The first used to set the cursor shape and the second to
enable/disable the cursor visualization.

ATTENTION: In text mode the mouse position is taken considering characters, while in graphics
values are pixels as mining.

MOUSE TXTCURSOR,MOUSE GRXCURSOR

void mouse_txtcursor(int cmd);
void mouse_grxcursor(int cmd, int bpp);

Description: This function enables/disables the textual/grafical autocursor features of the library;
cmd can be: DISABLE (disable cursor), ENABLE (enable a cursor). The graphic version need and
other parameter bpp which is depth of the screen in bytes. These commands can be composite
with two flags:

e AUTOOFF: if a user mouse handler is called, then during this call the mouse is off (if you use
a mouse_off () you can hang the mouse task).

e WITHOUTSEM: the autocursor mouse functions are not protected by a semaphore (so tasks
cannot be blocked, but garbage can be displayed).

MOUSE TXTSHAPE

void mouse_txtshape (DWORD shape) ;

Description: This function defines the shape of the text cursor; “shape” is a DWORD that is used
to display the cursor: the text character and attributes are taken from the text memory, these
values are and-ed with the low word of shape and the result is xor-ed with the high word of
shape, the result is written into the text memory. For examples, the default mouse cursor
shape is 0x7700ffff; the character and attribute that are taken from the the memory are and-ed
with Oxffff, so they do not change, and then are xor-ed with 0x7700: the character is xor-ed
with 0x00 and the attribute byte is xor-ed with 0x77; the character remains the same but the
attribute byte is inverted; so the mouse cursor is displayed inverting the colors of the character
(the attribute byte contains the character foreground and background color and is coded in
the usually EGA/VGA mode; you can read a book about VGA display adapters to find more
informations).

MOUSE _GRXSHAPE

void mouse_grxshape(BYTE *img, BYTE *mask, int bpp);

Description: This function defines the shape of the graphical cursor; img is a pointer to an image
of 16x16 that can be used with the grx_putimage() function, or can be NULL (in this case a
default cursor is used); before putting the image into the screen’s memory, the image is and-ed
with mask. The parameter bpp is depth of the screen in bytes.

Example: /*
* the resolution is 640x480 with 2 BYTE for pixel
*/

17

/* WHITE,RED,GREEN and MAGENTA are defined into <comns.h>*/

#define W rgb16(255,255,255)

0)

0,

#define R rgb16(255,

0)
0,255)

#define G rgb16(0,255,
#define M rbgl6(255,

/* mouse shape */

{

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
O’w’w’w’w’o’O’O’O’O’O’w’w’w’wio’

o,w,™,0,0,0,0,0,0,0,0,0,0,M,W,0,

WORD my_mouse_cursor [16%16]

O’w’O’MlO’O’O’O,O’O,O,OIM’O’w,O’

O’w,O’O,M,O’0,0,0,0,0,M,0,0,w,o,

0,0,0,0,0,M,0,0,0,0,M,0,0,0,0,0,
0,0,0,9,9,0,G,G,G,G6,0,0,0,0,0,0,

0,0,0,0,0,0,6G,0,0,G,0,0,0,0,0,0,

0,0,0,0,0,0,6G,0,0,G,0,0,0,0,0,0,

0,0,0,0,0,0,6G,0,0,G,0,0,0,0,0,0,

0,0,0,0,9,0,G,G,G,G6,0,0,0,0,0,0,

O’OJO’O’O’O’M’M’M’M’O’O’O’O’O’O’

O’OJO’O’O’O’M’M’M’M’O’O’O’O’O’O’

0,0,0,0,0,M,M,M,M,M,M,0,0,0,0,0,
0,0,0,0,M,M,M,M,M,M,M,NM,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

/* mask for pixels (2 bytes in this case) */

/* Oxffff means that the background image is used */

/* 0x0000 means tha the background image is cleared */

/*

prior to draw the mouse cursor */

#define F Oxffff
#define B 0x0000

/* mouse mask */

{

B,B,B,B,B,B,F,F,F,F,B,B,B,B,B,B,

B,0,0,0,0,B,F,F,F,F,B,0,0,0,0,B,

WORD my_mouse_mask[16x*16]

B,0,0,B,B,F,F,F,F,F,B,B,B,0,0,B,
B,0,B,0,B,F,F,F,F,F,r,B,0,B,0,B,
B,0,8B,8B,0,B,F,F,F,F,B,0,B,B,0,B,
B,B,B,F,B,0,8,8,8,B,0,B,F,B,B,B,

F,F,F,F,F,B,0,0,0,0,B,F,F,F,F,F,

F!F’F!F,F’B!O’B’B’O’B’F,F’F’F’F’

F,F,F,F,F,B,0,8,8B,0,B,F,F,F,F,F,

F’F’F’F’F’B’O’B’B’O’B’F’F’F’F’F’

F’F’F’F’F’B’O’O’O’O’B’F’F’F’F’F’

F,F,F,F,r,B,0,0,0,0,B,F,F,F,F,F,

F,F,F,F,r,B,0,0,0,0,B,F,F,F,F,F,

18

}s
int main(int argc, char *argv[])
{
MOUSE_PARMS mouse = BASE_MOUSE;
/*
* mouse initialization
x/
MOUSE26_init (&mouse) ;
/* a resolution of 640x480 is used */
mouse_setlimit (XMINLIMIT (640,480),
YMINLIMIT(640,480),
XMAXLIMIT(640,480),
YMAXLIMIT(640,480));
/* initial position */
mouse_setposition(320,280);
/* mouse threshold */
mouse_setthreshold(2);
/* my new mouse shape */
mouse_grxshape (my_mouse_cursor ,my_mouse_mask, 2);
/* automatic graphics mouse cursor enabled */
mouse_grxcursor (ENABLE, 2);
/* mouse displayed into the screen */
mouse_on() ;
}

MOUSE_OFF, MOUSE_ON

void mouse_off (void);
void mouse_on(void);

Description: This functions disables and enables the display of the mouse cursor on the screen (the
mouse events are handled).

Warning: These functions must be called before/after calling any graphic function that modifies the
screen.

3.3 The joystick library

In order to use the gameport handling functions, the drivers/shark_joy26.h header file, containing
the interface functions’ prototypes, has to be included in the application program.

First of all, the joystick needs be initialized by the calling J0Y26_init primitive into the __init__
function in the initialization file or in any other point of the application code.

19

ATTENTION: The driver only work with gameport that emulate the “old SoundBlaster” gameport
interface. Other kind of gameports will not be identified.

JOY26 INIT

int JOY26_init(void);
Description: It initializes the joystick interface and the library’s internal data structures.

Return value: 0 if the operation is performed successfully; a value less than 0, otherwise.

JOY26 CLOSE

int MOUSE26_close(void);
Description: It close the joystick interface.

Return value: 0 if the operation is performed successfully; -1 if the joystick in not installed.

JOY26 INSTALLED

int JOY26_installed(void);
Description: Return if the joystick driver is actually installed.

Return value: 0 if the joystick is installed; 1 otherwise.

JOY ENABLE

void joy_enable(void);

Description: Allow the driver to receive data from the hardware.

JOY DISABLE

void joy_disable(void);

Description: Trow away the data arriving from the hardware instead of processing them inside the
driver.

JOY SETSTATUS

void joy_setstatus(int axe0, int axel, int axe2, int axe3, int buttons);

Description: Set values for axes and buttons. Usually axe0 and axel are x and y axis for the first
joystick while axe2 and axe3 are x and y axis for the second one. In the buttons parameter
each bit rappresent the status of one button.

JOY_ GETSTATUS

void joy_getstatus(int *axeQ, int *axel, int *axe2, int *axe3, int *buttons);

Description: Get values for axes and buttons. Usually axe0 and axel are x and y axis for the first
joystick while axe2 and axe3 are x and y axis for the second one. In the buttons parameter
each bit rappresent the status of one button.

20

3.4 The speaker library

The system provide a driver to use the internal PC speaker. It can play a note at a given frequency
for a predefined period or in a endless loop. In order to use the speaker handling functions, the
drivers/shark_spk26.hheader file, containing the interface functions’ prototypes, has to be included
in the application program.

First of all, the mouse needs be initialized by the calling SPEAK26_init primitive into the __init__
function in the initialization file or in any other point of the application code and the input low level
driver must be already installed..

SPEAK26 INIT

int SPEAK26_init(void);
Description: It initializes the speaker interface and the library’s internal data structures.

Return value: 0 if the operation is performed successfully; a value less than 0, otherwise.

SPEAK26 CLOSE

int SPEAK26_close(void);
Description: It close the speaker interface.

Return value: 0 if the operation is performed successfully; -1 if the speaker in not installed.

SPEAK26 INSTALLED

int SPEAK26_installed(void);
Description: Return if the speaker driver is actually installed.

Return value: 0 if the speaker is installed; 1 otherwise.

SPEAKER_SOUND

void speaker_sound(unsigned int hz, unsigned int ticks);

Description: Generate a note at a frequency given using the parameter hz. The parameter ticks
is the duration of the note; if set to 0 the note is repeated in an endless loop.

SPEAKER MUTE

int speaker_mute(void);

Description: Reset the internal speaker making it silent.

21

Chapter 4

The Frame Buffer Library

The S.Ha.R.K. system provides support for all modern SVGA cards through the Linux Frame Buffer
driver. Using the grx graphic library upon it is possible to draw points, lines, rectangles, boxes,
circles, and text on 16 bit per plane (bpp) SVGA graphic modes.

In order to use graphics, a program must include the drivers/shark_fb26.h header file. Then,
it must initialize the Frame Buffer using FB26_init (). At this point the drawing library must be
connected to the frame buffer with the function FB26_use_grx (). Now a graphic mode can be opened
using FB26_setmode (), and then the drawing functions can be used. The num number, needed as a
parameter indicate which frame buffer is used. At the end, the program can switch back to text mode
through FB26_close ().

FB26 INIT

int FB26_init(void);

Description: It initializes the rame buffer and internal data structures to access the hardware. The
function returns -1 on error, 0 otherwise. In order to use the graphic primitives, a program must
call this function.

FB26 OPEN

int FB26_open(int num);

Description: Open the frame buffer number num. The function returns -1 on error, 0 otherwise. The
frame buffer must be already initialized with FB26_init.

FB26 SETMODE

int grx_setmode(int num, unsigned chat *mode);

Description: It opens the graphic mode identified by the mode parameter. The mode number can be
obtained using grx_getmode (). The parameter mode is a string in the format “widthxheight-bpp”
(ex. “640x480-16"). If the mode is supported and can be opened, the function returns 1, oth-
erwise it returns -1.

FB26 CLOSE

int FB26_close(int num);

Description: It closes the frame buffer num returning to text mode.

22

4.1 The Frame Buffer graphics functions

The GRX library allows to use graphics with 16 bpp; the number of bits per pixel, the graphic depth,
determines the number of colors that can be simultaneously displayed on a single screen. In 16 bpp
modes, each pixel is represented by two bytes. Since 16 is not divisible by 3, a component (the green
one) is described by 6 bits, whereas the other two are described by 5 bits. The RGB16() macros help
to code RGB values in a pixel value for all these graph functions.

RGB16

WORD rgb16(WORD r, WORD g, WORD b);

Description: It returns the color value defined by the 3 parameters (red, green and blue) in the
format required by drawing function.

GRX CLEAR

void grx_clear (DWORD color);

Description: It clears the graphic screen by filling it with the color specified in the parameter color.

GRX_ PLOT

void grx_plot(WORD x, WORD y, DWORD col);

Description: It draws a pixel of color c at coordinates (x,y) on the screen. For efficiency reasons no
checks are performed on x and y. Only the bpp less significative bits of col are used (where bpp
is the number of bits per plane in the current graphic mode).

GRX GETPIXEL

DWORD grx_getpixel (WORD x, WORD y);

Description: It returns the color of pixel at coordinates (x,y) on the screen. For efficiency reasons
no checks are performed on x and y. Only the bpp less significative bits of the returned value
are used (where bpp is the number of bits per plane in the current graphic mode).

GRX PUTIMAGE

void grx_putimage(WORD x1, WORD y1, WORD x2, WORD y2, BYTE *img);

Description: It writes a rectangular bitmap from system memory to video memory. (x1, y1) is
the top left corner, while (x2,y2) is the right bottom corner. It fills the specified box with the
data in the buffer pointed by *img. The memory buffer must contain the pixels in the same
representation used in the video memory, starting at the top left corner, from left to right, and
then, line by line, from up to down, without any gaps and interline spaces.

See also: grx_getimage().

Example

23

BYTE videobuff [200] [200];

void * videotask(void *arg) {
int done = 0;

while (!done) {
done = decodeframe(videobuff, 200, 200);
grx_put(X, Y, X+200, Y+200, videobuff);
task_endcycle();

GRX GETIMAGE

void grx_getimage(WORD x1, WORD y1, WORD x2, WORD y2, BYTE *img);

Description: It reads a rectangular bitmap from video memory to system memory. (x1, y1) is the
top left corner, while (x2,y2) is the right bottom corner. It fills the specified buffer pointed by
*img with the data contained in the selected video box. The memory buffer must be large enough
to contain the box (in general, the correct buffer dimension is (y2 —y1+1)* (22 — 214 1) x bpp).

See also: grx_putimage().

GRX_ RECT

int grx_rect(WORD x1, WORD y1, WORD x2, WORD y2, DWORD col);

Description: It draws an empty rectangle with top left corner at (x1,y1) and bottom right corner
at (x2,y2). The rectangle is drawn with color col.

GRX_ BOX

int grx_box(WORD x1, WORD y1, WORD x2, WORD y2, DWORD col);

Description: It draws a filled rectangle with top left corner at (x1,y1) and bottom right corner at
(x2,y2). The box is drawn with color col.

GRX LINE

void grx_line(WORD x1, WORD y1, WORD x2, WORD y2, DWORD col);

Description: It draws a line from (x1, y1) to (x2,y2) using color col.

GRX_ TEXT

void grx_text(char *text, WORD x, WORD y, DWORD fg, DWORD bg);

Description: It writes a 0 terminated text string in graphic mode at position (x,y). The string is
pointed by text, fg is the foreground color, and bg is the background color.

GRX_CIRCLE

void grx_circle(WORD x, WORD y, WORD r, DWORD col);

24

Description: It draws a circle of radius r and color col, centered at (x, y).

GRX DISC

void grx_disc(WORD x, WORD y, WORD r, DWORD col);

Description: It draws a filled circle of radius r and color col, centered at (x, y).

25

Chapter 5

The Frame Grabber Library

TODO

26

Chapter 6

The CPU frequency scaling library

This driver allow the application to change the CPU speed in order to reduce power consumption.
After the driver initialization is possible to know the list of supported frequencies, the minimin and
maximun allowed frequncy. Is possible to get and set the current frequecy and obtaind the deoretical
value of the transition duration.

6.1 CPU Information utility

These functions allow the application to know informations about the CPU like manufacturer, model,
capabilities, etc.

CPU26 INIT

int CPU26_init(void);

Description: Initialize the driver and all internal structures. The function returns 0 if the procedure
was succesfully, -1 otherwise.

CPU26 CLOSE

int CPU26_close(void);
Description: It close the CPU driver.

Return value: 0 if the operation is performed successfully; -1 if the keyboard in not installed.

CPU26 INSTALLED

int CPU26_installed(void);
Description: Return if the event debugger is actually installed.

Return value: 0 if the module is installed; 1 otherwise.

CPU26 SHOWINFO

void CPU26_installed(void);

Description: Print the CPU informations retrived by the driver.

27

6.2 CPU scaling functions

These functions allow to get/set parameter about the CPU frequency and its behavior. The low level
must be initialized with the CPU26_init () function before using scaling funtionalities.

CPU26_DVS_INIT

int CPU26_DVS_init(void);

Description: Initialize the driver and all internal structures. The function returns the CPU identifyer
if that present DVS capabilities, -1 otherwise.

CPU26 DVS CLOSE

int CPU26_DVS_close(void);
Description: It close the CPU driver.

Return value: 0 if the operation is performed successfully; -1 if the driver in not installed.

CPU26 DVS INSTALLED

int CPU26_DVS_installed(void);
Description: Return if the DVS driver is actually installed.

Return value: The function returns the CPU identifyer if that present DVS capabilities, -1 other-
wise.

CPU26 GET LATENCY

int CPU26_get_latency(void);

Description: Return the value of the latency time needed to change between two frequencies.

CPU26 GET MIN FREQUENCY,
CPU26 GET MAX FREQUENCY

int CPU26_get_min_frequency(void);
int CPU26_get_max_frequency(void);

Description: Are used to obtain minumum and maximum allowed frequencies.

CPU26 GET CUR_FREQUENCY

int CPU26_get_cur_frequency(void);
Description: Return the value of the actual frequency of the processor.

CPU26 SET FREQUENCY

int CPU26_set_frequency(int target, unsigned int relation);

Description: Return

28

CPU26 GET FREQUENCIES

int CPU26_set_frequency(int *freqs);

Description: Return

CPU26 SHOW _ FREQUENCIES

int CPU26_show_frequency(char *buff);

Description: Return

29

Chapter 7

The Network Library

To allow communication among different computers, S.Ha.R.K. provides a Network Library imple-
menting the UDP/IP stack on an Ethernet network. The library is organized in three layers:

e low-level driver: this layer is hardware dependent, since it interacts with the network card;

e ethernet layer: this layer allows the upper layer to send and receive ethernet frames. It is not
intended to be used by a user program, but only by the code implementing the network protocol;

e high-level layer: this layer implements the network (IP) and the transport (UDP) protocols. It
provides the interface used by a user program to access the network through the UDP protocol.

The low-level driver is implemented in order to respect the system real-time requirements (avoiding
unpredictable delays in sending/receiving frames). This result is achieved by solving two different
problems: the interrupt handling (in the receive phase) and the mutual exclusion needed for accessing
the network card (in the transmission phase).

The first problem is solved by using a SOFT task to handle the network card interrupts: on a frame
arrival, a task handling the reception is activated. Such a task is guaranteed along with all the other
tasks in the system, thus it cannot jeopardize their schedulability. Since a minimum interarrival time
for the frames cannot be predicted, the receiving task cannot be a sporadic (HARD) task; therefore
the task uses a SOFT_TASK MODEL, and we have used a Constant Bandwidth Server (CBS) to
serve it.

The second problem can be solved using two different methods. The first method adopts a shared
memory programming paradigm: a task willing to transmit is allowed to access the network card;
mutually exclusive accesses are guaranteed by semaphores. This solution is very simple and the
introduced overhead is very low. The second soultion is based on the utilization of a server task
devoted to send frames on the network on behalf of other tasks. Each task posts its frames in a mailbox,
whence the sender task picks them up. At the moment, only the first solution is implemented, but in
order to provide a good degree of flexibility, both approaches will be supported as soon as possible.

The most diffused higher level protocols have been implemented upon the ethernet level. In
order to use them within a S.Ha.R.K. application, the drivers/udpip.h file, containing the functions
prototypes and the data structures, has to be included in the application program.

As a first step, the network drivers have to be initialized. This is done by the net_init () primitive
that requires the machine’s IP address. After initialization, the program has to bind itself to a port by
a socket (in UNIX’s fashion) by the udp_bind () primitive. Afterwards, it is possible eihter to receive
packets by using udp_recvirom(), or to send them by using udp_sendto().

NET INIT

30

void net_init (NET_MODEL *m)

Description: It is an interface function used for calling the different layers initializing functions. The
m parameter specifies the protocols that are going to be activated along with the parameters to
be passed to their initializing fucntions. The predefined net_base value, if used as net_init
parameter, causes the ethernet level to be solely intialized by using a mutex semaphore for
enforcing mutual exclusion. Moreover, the net_setudpip(m, addr) macro is defined to select
the UDP/IP protocols stack with local IP address addr, expressed in string format. The task
used to handle network card interrupts has a SOFT_TASK_ MODEL obtained initializing such
a model with these arguments:
soft_task_default_model(m);
soft_task_def_wcet(m, 1000);
soft_task_def_period(m,20000);
soft_task_def_met(m, 1000);
soft_task_def_aperiodic(m);
soft_task_def_system(m);
soft_task_def_nokill(m);

Example

int main(int argc, char **argvvoid)

{
NET_MODEL m = net_base;
char talk_myipaddr[50];

strcpy(talk_myipaddr, "193.205.82.47");

net_setudpip(m, talk_myipaddr);
net_init(&m) ;

IP STR2ADDR

int ip_srt2addr(char *str, IP_ADDR *ip)

Description: It converts the IP address, contained in the str string parameter, into IP_ADDR format.
The result is returned in the variable pointed by ip. The function returns TRUE if the operation
has been succesful, FALSE otherwise.

UDP_BIND

int udp_bind (UDP_ADDR *a, IP_ADDR *bindlist);

Description: It binds the receiving program on the specified UDP port. A socket is created and its
identifier is returned. Moreover the host addresses specified through the bindlist parameter
are loaded into the ARP table. The port is identified by the a parameter which is composed
of the fields named s_addr, having IP_ADDR type, and s_port, having WORD type. The s_port
parameter is the most meaningful since it specifies the port the function binds to. Further
details can be found in any UNIX manual. The possibility of specifying the hosts that will be
accessed (through the bindlist parameter), permits to add ARP table entries in the network
initialization phase. In this way, the timing impredictability introduced by ARP can be reduced.
This possibility can be discarded by chosing a NULL value for the bindlist parameter. Otherwise
such a parameter has to be a pointer to a NULL terminated IP_ADDR array. As we said earlier,
the returned socket identifier can be fed into the udp_sendto() primitive.

31

Example

void * txsessiontask(void *arg) {
UDP_ADDR 1local;
IP_ADDR bl1[5];

int sock;

/* The periodic txsessiontask, upon its creation,*/
/* creates a socket befor entering *x/
/* the infinite cycle typical of all x/
/* periodic tasks */
local.s_port = 1030; /* local port */

/* It loads the eth address of the hosts */
/* the task will communicate with x/
/* into the ARP table x/
ip_str2addr("193.205.82.47", bl);

/* terminates bind list by NULL x/

* ((DWORD *)&bl[1]) = NULL;
sock = udp_bind(&local, bl);

32

UDP_ SENDTO

int udp_sendto(int s, char *buf, int nbytes, UDP_ADDR *to);

Description: It sends an UDP packet, with size nbytes, whose body is pointed by buf to an address
specified by to. The last parameter has UDP_ADDR type and identifier either the destination
IP address or the port (see udp_bind for further information on UDP_ADDR). In order to send a
packet a local socket has to be created, by calling the udp_bind () primitive; its identifier shall
be passed by the s parameter.

Example

void * txsessiontask(void *arg) {
int sock;
UDP_ADDR local, to;

/* socket creation */

for (5;) {
/* prepares the destination address */
to.s_port = 1030;
ip_str2Addr("127.0.0.1",&(to.s_addr));

udp_sendto(sock, msg, msglen, &to);

task_endcycle();

UDP_ RECVFROM

int udp_recvfrom(int s, char xbuf, UDP_ADDR *from) ;

Description: It receives a UDP packet from the socket identified by s; the packet body is copied into
the buffer pointed by buf; the sender address (composed of the pair port-IPaddress) is copied
into the variable pointed by from. The primitive returns the number of bytes composing the
packet.

Example

33

TASK rxsessiontask() {
int sock;
UDP_ADDR local, from;

/*
/*

The non real-time rxsessiontask
creates a receiving socket and

*/
*/

/* enters an infinite loop waiting */

/* for the incoming packets x/

/* During initialization the */

/* socket is created */

for (5;) {
udp_recvfrom(sock, inmsg, &from);
/* from contains the sender address */
task_endcycle();

¥

UDP_ NOTIFY

int udp_notify(int s, int(*f) (int len, BYTE *buf, void *p))

Desription: the notifying function f is associated with the s socket. When a packet addressed to
the port the socket is bound to arrives, such a function is invoked. Upon its invocation, the
function receives as arguments a pointer to the received packet (buf), the packet size (len), and

The notifying function is executed

a pointer specified along with the udp_notify() call (p).

within the context of the receiving task; therefore, it should not consume too much time.

Example:

34

int hrtp_recvfun(int len, BYTE *b, void *p)

{
struct HRTP_SESSION *s;
struct HRTP_HDR *h;
/* Notifying function used for receiving */
/* packets from a session level protocol */
/* p is a pointer to the descriptor of */
/* the session involved in the transmission */
s = p;
/* the received packet is copied into a private */
/* buffer belonging to the session x/
h = (struct HRTP_HDR *)&(s->b[s->recvd * instance_dim]);
memcpy (h, b, len);
return 0;
}
void hrtp_recv(struct HRTP_SESSION *s, void (*f)(void))
{
udp_notify(s->sock, hrtp_recvfun, (void *)s);
s->notifyparm = f;
s->active = HRTP_RCVIN;
}

A programmer that wants to implement a new transport/network level stack different from UDP /IP
needs to directly access the Ethernet services. This can be done using the Ethernet layer, accessible
through the “eth.h” header file.

In order to receive Ethernet frames, a callback function has to be associated to a frame type (the
frame type is a field of a frame): each time that a frame of the specified type will arrive, the callback
function will be called. A callback can be bound to a frame type using the eth_setHeader library
call.

In order to transmit Ethernet frames, a transmission buffer must be allocated and filled: the header
can be filled using eth_setHeader (), while the body must be explicitly filled after obtaining a pointer
to it through eth_getFDB(). At this point the frame can be sent using eth_sendPKT().

Transmission buffers can be allocated using the netbuff module: this module (usable including
the “netbuff.h” header file) permits to manage pools of pre-allocated buffers, in order to minimize the
unpredictability due to dynamic allocation.

NETBUFF _INIT

void netbuff_init (NETBUFF *netb, BYTE nbuffs, WORD buffdim);

Description: It initializes a pool composed of nbuffs buffers, each of them have buffdim size. The
pool is identified by the netb descriptor.

35

NETBUFF_ GET

void *netbuff_get (NETBUFF *netb, BYTE flag);

Description: It returns a pointer to the first free buffer in the pool identified by netb. The flag
parameter, which can assume values BLOCK or NON_BLOCK, indicates whether the operation is a
blocking or non-blocking allocation. If a non-blocking netbuff_get () is performed when the
pool does not contain any free buffer, a NULL pointer is returned.

NETBUFF_ RELEASE

void netbuff_release (NETBUFF *netb, void *buff);

Description: It marks the buffer pointed by buff as free in the netb pool.
ETH INIT

void eth_init(int mode, TASK_MODEL *m) ;

Description: It initializes the Ethernet layer, in order to transmit or receive ethernet frames. If the
Ethernet layer has already been initialized, it does nothing.

Each network level protocol that needs to access the network card must pass through the Eth-
ernet layer, which must be initialized before receiving or sending anything. The Ethernet layer
will search for a supported network card, enable it and initalize some internal structures.

At the moment, the mode parameter is not used, in the future it will be used to select an
operating mode (mutual exclusion on send operation through a dedicated server task or through
mutexes).

This library function is called by net_init () in the standard UDP/IP configuration.

The task model used for the task that handles the network card interrupts can be passed with
the m parameter. If it is NULL, a SOFT TASK MODEL obtained initializing such a model
with these arguments will be used:

soft_task_default_model(m) ;

soft_task_def_wcet(m, 1000);

soft_task_def_period(m,20000) ;

soft_task_def_met(m, 1000);

soft_task_def_aperiodic(m);

soft_task_def_system(m);

soft_task_def_nokill(m);

HTONS & NTOHS

WORD htons(WORD host);
WORD ntohs(WORD net);

Description: These two utility functions convert a WORD from the host format to the net format
(htons) and vice-versa (ntohs).

ETH GETADDRESS

void eth_getAddress (ETH_ADDR *eth) ;

Description: It returns the net card Ethernet address in the ETH_ADDR structure pointed by eth.

36

ETH STR2ADDR

void eth_str2addr (char *add, struct ETH_ADDR *ds);

Description: It converts an Ethernet address from the string format (“xx:xx:xx:xx:xx:xx”) to the
byte (ETH_ADDR) format. The add string contains the address in text format, while ds is a
pointer to the ETH_ADDR structure where the output is placed.

ETH SETPROTOCOL

int eth_setProtocol (WORD type, void (*recv)(void *frame))

Description: It is used to specify the callback function recv to be called when a frame of type type
is received. It returns TRUE in the case of success, FALSE otherwise. When the Ethernet layer
will call the recv callback, it will pass to the function a pointer to the received frame.

The callback function runs in the context of the driver task, served by a CBS.

Each high-level protocol must use this library call to register itself in order to process incoming
packets.

Example

void ip_server_recv(void *pkt)

{
IP_HEADER *iphd;
/* This callback is invoked when an IP packet is received */
iphd = (IP_HEADER *)eth_getFDB(pkt);
}
void ip_init(char *localAddr)
{
int i;
/* Initializes IP */
/* Registers the protocol to the ethernet layer */
eth_setProtocol (ETH_IP_TYPE,ip_server_recv);
}

ETH SETHEADER

void *eth_setHeader(void *b, ETH_ADDR dest, WORD type);

Description: It fills the header of the frame pointed by b with the destination address dest and the
frame type type. It also returns a pointer to the body of the ethernet frame.

ETH GETFDB

void *eth_getFDB(void *p)

37

Description: Get First Data Byte. It returns a pointer to the body of the frame pointed by the p
parameter.

ETH SENDPKT

int eth_sendPkt(void *p, int len);

Description: It transmits the Ethernet frame pointed by p, having lenght 1en. The destination and
the frame type must be previously specified using eth_setHeader.

Example

void arp_sendRequest(int i)
{
ARP_PKT *pkt;
ETH_ADDR broadcast,nulladdr;

eth_str2Addr ("FF:FF:FF:FF:FF:FF" ,&broadcast);
eth_str2Addr("00:00:00:00:00:00" ,&nulladdr) ;
eth_setHeader (arpBuff,broadcast,ETH_ARP_TYPE) ;
pkt = (ARP_PKT *)eth_getFDB(arpBuff) ;
pkt->htype = htons (ARP_ETH_TYPE) ;

pkt->ptype = htons (ARP_IP_TYPE);

pkt->hlen = sizeof (ETH_ADDR);

pkt->plen = sizeof (IP_ADDR);

pkt->operation = htons (ARP_REQUEST) ;
setEthAddr (pkt->sha,myEthAddr) ;

setEthAddr (pkt->tha,nulladdr) ;

setIpAddr (pkt->sip,myIpAddr);

setIpAddr (pkt->tip,arpTable[i].ip);
eth_sendPkt (arpBuff,sizeof (ARP_PKT));

}
ETH CLOSE

int eth_close(void);

Description: It closes the Ethernet protocol. If it is not explicitly called by the user, it is automat-
ically executed through sys_atexit.

38

Chapter 8

The CMOS real-time clock

In all PCs there is a real-time clock (with a resolution of 1 second) that can be read or written. This
clock usually has a drift of about some seconds in 24 hours. The following functions (that can be
found into rtc.h) can be used to set/get values; all values are passed using a struct rtc_time that
contains variables for seconds, minutes, hours, days, months and years.

GET RTC TIME

int get_rtc_time(struct rtc_time *time);

Description: The actual time is read from the CMOS real-time clock and written into the structure
pointed by time. The function returns zero on success, other values on error.

SET RTC TIME

int set_rtc_time(struct rtc_time *time);

Description: The values contained in the structure pointed by time are converted in seconds and
written into the CMOS real-time clock; the function returns zero on success, other values on
€rror.

RTC TIME

Description: it is a data structure containing the following fields:
tm_sec : seconds, from 0 to 59;
tm_min: minutes, from 0 to 59;
tm_ hour: hours, from 0 to 23;
tm_mday : day, from 1 to 31;
tm_mon : month, from 1 to 12;
tm_year : year, is an integer number (no Y2K problem);
tm_wday : day of the week, from 1 to 7;
tm_yday : day of the year, from 1 to 365;
tm_isdst : 0 if legal hour, 1 if solar hour (not used yet);

39

Chapter 9

The Sound Library

If a SoundBlaster16 sound card is available, S.Ha.R.K. allows to sample and play sounds by using
the functions provided by the sound library'. The library currently supports either program or DMA
controlled sampling an playing, according to 4 possible operating modes:

e PIO mode;

e DMA-Raw mode;

e DMA-Double-buffering mode;
e DMA-Self-buffering mode.

Working under PIO mode, sounds can be sampled and played only with 8 bit PCM. The frequence
depends on the hardware speeds but cannot in any case overcome 10 Khz. This mode is reserved for
the pure classical hard real-time approach which refuses the usage of DMA controlled I/0.

The DMA-Raw mode uses DMA controller to sample and play directly on a memory buffer. Owing
to technical problems related to the structure of the PC DMA controller, the buffer’s size can be no
bigger than 64K. This mode is the one that minimizes the DMA operations’ impact on CPU.

The DMA Double-Buffering mode uses an internal buffer in order to overcome the 64k limitation.
The internal buffer is split into two parts: while the DMA tranfers data to one half, an ad-hoc task
moves data between the second half and a user-provided external memory region. In this way, it is
possible for a user to work on samples much bigger than 64K, paying the fee of a higher CPU load?.

The DMA-Self-Buffering mode allows the user to directly handle the internal buffer. The user
specifies a function to be activated every time the DMA controller has finished transferring data on
one half of the internal buyffer. In this mode, the user can obtain the data while they are being
sampled; the time lag between sampling and data delivery is thus reduced. Such a feature makes this
working mode interesting for real-time applications.

Independently of the chosen working mode, an operation can be either synchronous or asyn-
chronous. A synchronous operation provides the task invoking the operation with a synchronizing
point located at its ending.

In order to use the sound library functions, the files drivers/sound.h and drivers/dma.h must
be included. The former contains the prototypes of the declared functions, the latter is necessary
because the sound library uses DMA.

The first step to be performed is initializing the audio drivers by the sound_init function. Then,
if one wishes to work in DMA-Raw mode, it is necessary to allocate a memory buffer and align it by

1Currently only the sound blaster 16 is supported; the code of the library is directly inherited from the Hartik 3.3.0
Kernel...
2This is possible only if the protected mode is used.

40

calling dma_getpage() (in the remaining modes no particular alignment is required for the buffer).
If the DMA-Self-buffering mode is chosen, the programmer has to properly set the functions to be
called every time the DMA finishes working on one half of the internal buffer; this can be done by
calling the sound_setfun () primitive. As soon as these operations have been performed, sampling or
playing can be made through sound_sample() and sound_play (), respectively.

SOUND _INIT

void sound_init (WORD rawbufsize, WORD tick);

Description: It initializes the audio driver by allocating the internal buffer for the DMA-Double-
buffering and DMA-Self-Buffering modes. The rawbufsize parameter contains the dimension
of this buffer. Higher values reduce the CPU load and are thus advised when using the DMA-
Double-buffering mode. Lower values, on the contrary, can be used to shorten the latency
between sampling and data delivering (particularly when using DMA-Self-buffering). The tick
parameter contains the value of the system tick; its correctness is fundamental for the PIO mode.

SOUND INFO

void sound_info(void);
Description: It outputs on the screen some information concerning the soundcard and the drivers.

SOUND SETFUN

void sound_setfun(int (*infun) (BYTE *rawbuff),
int (*outfun) (BYTE *rawbuff));

Description: It specifies the functions to be called when the DMA finishes working on one of the two
internal buffer’s halves when using DMA-Self-Buffering mode. The function pointed by infun
is used when performing sampling operations, whereas outfun is used for playing operations.
Both functions receive a pointer to the half-buffer not currently acted upon by the DMA (the
half-buffer sizes are equal to one half of the sound_init() parameter) and have to return 0 if
the operation has not yet been finished, 1 if it is going to finish in the next DMA cycle, and 2 if it
finishes immediately. Attention should be paid to the fact that these functions are periodically
called with a frequency equal to the operation’s frequency divided by the half-buffer’s size; thus,
they should be very short in order not to overload the system.

Example:

41

int osc_fun(BYTE %b)

{

}

int i;

int sum = 0;

BYTE *p;

/* Averages the values read from the buffer */
/* and writes the result on a CAB shared */
/* with a task */

for (i = 0; i < (BUFFDIM » 1); i++)
sum += b[i];

sum /= (BUFFDIM » 1);

p = cab_reserve(cc);

*p = (BYTE) sum;

cab_putmes(cc, p);

return 0;

void * io_task(void *arg)

{

int x, y;

BYTE *p;

BYTE page = 0;

char str[50];

short int talk, silencecount;

/* This task reads the value put on the CAB by */

/* the self-buffering function x/
/* sets the self-buffering function x/
sound_setfun(osc_infun, -1);

/* starts the sampling operation x/

sound_sample (NULL, 20000, O, DMA_OP | PCM8 | MYFUN);

cc = cab_create("osc_cab", sizeof (BYTE), 3);

for (55) {
/* reads and proccesses */
/* the CAB’s value x/

task_endcycle();
}

return 0; }

SOUND SAMPLE

void sound_sample (BYTE xbuf, DWORD sps, DWORD len, BYTE t);

Description: It samples len bytes in the buf buffer at the frequency of sps samples per second with
the mode expressed by t. The latter can be assigned one of the following constants:

e PI0_OP operates using PIO mode: as said earlier, in this mode values for sps higher than
10000 make no sense. Moreover, for the sampling and playing to happen with the correct
timing, it is necessary that the audio driver be initialized with the tick parameter set to
the system tick expressed in microseconds (see sound_init () for more details).

42

e DMA_OP operates using one of the DMA modes (the default is DMA-Double-Buffering). The
internal buffer size is specified in sound_init.

e PCM8 operates using 8 bit PCM format (it is the default). It is the only possible format in
PIO mode.

e PCM16 operates using 16 bit PCM format. This choice is meaningless in PIO mode.

e SYNCH synchronous operation: it is necessary to call sound_wait () after sound_sample().
e ASYNCH asynchronous operation.

e MYFUN operates with DMA-Self-buffering mode; it makes sense only if DMA_OP has been set.
e NOBUFF operates in DMA-Raw-Mode; it makes sense only if DMA_OP has been set.

Example:

BYTE buff [0OxFFFFF]; /* buffer for sampling */

void main()

{
sys_init (&s);
keyb_init (NULL) ;
clear();

sound_init (0x4000, TICK);
sound_info();

cprintf ("Recording...");
sound_sample (buff, 44000, Ox8FFFF, DMA_QP | PCM8 | SYNCH);

SOUND PLAY

void sound_play(BYTE *buff, DWORD sps, DWORD len, BYTE t);

Description: It plays len bytes taken from the b buffer at the frequency of sps samples per second
with the mode expressed by t. As far as the values of t are concerned, the reader can refer to
sound_sample.

DMA GETPAGE

BYTE *dma_getpage (DWORD *dim) ;

Description: It allocates a buffer having size dim fitting for use in DMA operations. Such a usage is
possible only if the buffer does not contain bytes whose address differs in the Most Significant
Bits. The best way to achieve this feature is to allocate buffers sized less than 64K starting
from addresses having the LSB equal to 0. This job is performed by dma_getpage. It should be
noted that such a feature is necessary only using DMA-Raw-Mode, since the buffer allocation
is automatically performed by sound_init when using DM A-Double-Buffering and DMA-Self-
Bufering modes.

Example

43

void main(void)
{
BYTE *p;
int i;

/* Monitors the time stolen by the DMA */
/* to the CPU during a 10 Khz sampling */
sys_init(&s);

keyb_init (NULL) ;

clear();

p = dma_getpage (OXFFFF);

sound_init (0x200, TICK);

sound_info();

for (i = 0; i < 80; i++)

cprintf ("_");
cprintf ("ref_time:%f ", myrif);
cprintf("Unloaded system: %f", load(&myrif));

cprintf ("DMA Recording...");
sound_sample(p, 10000, OxFFFF, DMA_OP | PCM8 | NOBUFF);

SOUND WAIT

void sound_wait(void);

Description: It is the synchronization primitive for synchronous operations. The task calling sound_wait ()
blocks itself until the synchronous operation is finished. The call to this function is mandatory
for synchronous operations. On the other hand, using the function in conjunction with an
asynchronous operation is an error.

Example

sound_sample (buff, 44000, Ox8FFFF, DMA_OP | PCM8 | SYNCH);

/* waits until the sampling termination */
sound_wait () ;

44

Chapter 10

The Console Library

The output on the screen in text mode is supported by a group of functions that act on the whole
screen and modify, each time, the cursor’s position. Since such functions are not reentrant, they must
be used in mutual exclusion.

In order to use the library for displaying on the screen, the “cons.h” file must be included. This file
contains the values for the usable colors whose symbolic names are listed below: BLACK, BLUE, GREEN,
CYAN, RED, MAGENTA, BROWN, GRAY, LIGHTGRAY, LIGHTBLUE, LIGHTGREEN, LIGHTCYAN, LIGHTRED,
LIGHTMAGENTA, YELLOW, WHITE.

Two global read-only variables cons_columns and cons_rows contain the number of screen columns
and the number of screen rows, respectively. They can be used to write applications that are indipen-
dent from the screen dimensions.

CPUTC, CPUTS, CPRINTF

void cputc(char c);
void cputs(char *s);
int cprintf(char *fmt,...);

Description: cputc, cupts and cprintf are used to print on the screen a character, a string, or a
formatted string, respectively. In the latter case, the standard C I/O formatting conventions
are used.

Warning: since these functions modify the cursor position, they are not reentrant, and must be used
in a mutually exclusive fashion.

PUTC XY, PUTS XY, PRINTF XY, GETC XY

void putc_xy(int x,int y,char attr,char c)

void puts_xy(int x,int y,char attr,char *s)

int printf_xy(int x,int y,char attr,char *fmt,...)
char getc_xy(int x,int y,char *attr,char *c)

Description: These functions are similar to the previously defined ones; the only difference is that
since they’re reentrant can be used concurrently by multiple tasks (the others cannot be used
for this purpose because they modify the cursor’s state). getc_xy is used to read the charcater
and its attribute at a specific position on the screen.

45

CLEAR, CLEAR, SCROLL, SCROLL

void _clear(char c,char attr,int x1,int y1,int x2,int y2)
void clear(void)

void _scroll(char attr,int x1,int y1,int x2,int y2)

void scroll(void)

Description: the clear and scroll functions are used for clearing the screen and for scrolling it
upwards. They are based on the _clear () and _scroll() functions used for clearing or scrolling
a window (defined by x1, y1, x2, y2) by filling the area with attr color and, in the case of
_clear, with character c as well.

SET ACTIVE PAGE, SET VISUAL PAGE,
GET ACTIVE PAGE, GET VISUAL PAGE

void set_active_page(int page)
void set_visual_page(int page)
int get_active_page(void)
int get_visual_page(void)

Description: The video cards working in text mode use the CGA hardware scheme. In this scheme,
every screen occupies 4000 bytes (80 columns x 25 rows; each position is associated with two
bytes, one for codifying the character and another for codifying the color). The video card
memory is in general bigger, therefore multiple screen pages can be used simultaneously. The
currently visualized screen is called the visual page, whereas the screen the output is directed
to is called the active page. The cited functions are essentially used for handling, at a given
instant, the visual page or the active page. SUGGESTION: if the active page or the visual page
are modified, they should be restored to the original (0) value on exit; the same is true for the
cursor.

PLACE, CURSOR, CURSOR _INFO

void place(int x, int y)
void cursor(int start_scanline, int end_scanline)
void cursor_info(int *x, int *y)

Description: These functions are used for handling the cursor. More specifically, place sets the
cursor position (x belongs to the range 0...79, y to 0...24).

CURSOR_BLOB, CURSOR_STD, CURSOR_OFF

void cursor_blob(void)
void cursor_std(void)
void cursor_off(void)

Description: These macros call the cursor () function to set the cursor shape to be a big rectangle,
the standard underscore, or invisible.

46

Chapter 11

The File Management

S.Ha.R.K. provides a built-in File System that currently supports Hard Disk Drivers and FAT16
partitions.

If you are using the DOS eXtender X to run the application, you can use some callback to the
DOS 0x21 interrupt, to write/read some bytes from the filesystem!. These functions directly interact
with the underlying DOS, and can not be used when the system is in protected mode. In partic-
ular, you can only use these functions into the _ kernel register levels () function and in the
RUNLEVEL AFTER EXIT exit functions.

In the case of errors, a NULL or zero value is returned; DOS_ferror () can be used to get the DOS
error code; the header file <11/1386/x-dos.h> must be included to use these functions. A running
(we hope) well documented example can be foun in the demos/dosfs directory.

DOS_FOPEN

DOS_FILE #D0S_fopen(char *name, char *mode) ;

Description: It opens a file and returns a pointer to a file structure. The name parameter contains
the name of the file to be opened. The mode parameter contains a string whose value can be
one of the following constants: “r” to read, “w” to write, and “rw” to read and write. In the case
of error, NULL is returned; otherwise the returned value can be used as last parameter in the
functions listed below.

DOS_ FCLOSE

void DOS_fclose(DOS_FILE xf);

Description: It closes the specified file and releases all allocated DOS resources.

DOS_FREAD

DWORD DOS_fread(void *buf, DWORD size, DWORD num, DOS_FILE *f);

Description: It reads num objects of size bytes from file £ and place them in a buffer pointed by
buf. This function returns the actual number of bytes read from the file (it can be less than
num x size bytes). Zero is returned if an error occurs or end-of-file is found.

IThese callbacks are useful when you don’t have any partition that can be read by the filesystem... for example
when running S.Ha.R.K. applications from a FAT32 filesystem!

47

DOS_FWRITE

DWORD DOS_fwrite(void *buf,DWORD size,DWORD num,DOS_FILE *f);

Description: It writes num objects of size bytes into file £. Data are picked from the buffer pointed
by buf. This function returns the actual number of bytes written (it can be less than num x size
bytes). Zero is returned if an error occurs.

DOS_ERROR

unsigned DOS_error(void) ;

Description: Returns the error code of the latest DOS_xxx function.

48

Chapter 12

The Snapshot Library

The library allow applications to save up to 16 screen snapshot to file. Before the grabbing is necessary
to allocate the memory for a snapshot slot and files can be created only at the end of execution when
the system return in real mode.

SNAPSHOT GETSLOT

void *snapshot_getslot(int nbuff, int wx, int wy, int byesperpixel);

Description: This function allocate the memory for a snapshot of given dimensions. The nbuff
parameter indicate which slot must be allocated. wx and wy are width and height of the screen
resolution while bytesperpixel is the depth of the screen.

SNAPSHOT FREESLOT

void snapshot_freeslot(int nbuff)
Description: This function free the memory reserved for the slot indicated by the nbuff parameter.

SNAPSHOT GRAB

void snapshot_grab(int nbuff)

Description: This function get a snap of the video memory and copy it inside the slot specified by
the nbuff parameter.

SNAPSHOT SAVEPGM

int snapshot_savepgm(int nbuff, char *fname)

Description: This function save the screen snapshot saved inside the nbuff slot to a PGM greyscale
file. The filename passed to the function using the fname parameter.

SNAPSHOT SAVEPPM

int snapshot_saveppm(int nbuff, char *fname)

Description: This function save the screen snapshot saved inside the nbuff slot to a PPM color file.
The filename passed to the function using the fname parameter.

49

Index

_clear(), 46
_scroll(), 46

clear(), 46

cprintf(), 45

CPU26_ close(), 27
CPU26_DVS_close(), 28
CPU26_DVS_init(), 28
CPU26_DVS _instaled(), 28
CPU26 get cur_frequency(), 28
CPU26 get frequencies(), 29
CPU26 get latency(), 28
CPU26_get max_frequency(), 28
CPU26_get min_frequency(), 28
CPU26_init(), 27

CPU26 _instaled(), 27
CPU26_set_frequency(), 28
CPU26_show_frequencies(), 29
CPU26 _showinfo(), 27

cputc(), 45

cputs(), 45

cursor(), 46

cursor _blob(), 46

cursor _info(), 46

cursor _ off(), 46

cursor _std(), 46

dma_ getpage(), 43
DOS_error(), 48
DOS_ fclose(), 47
DOS_ fopen(), 47
DOS_fread(), 47
DOS_ fwrite(), 48

eth close(), 38

eth getAddress(), 36
eth getFDB(), 37
eth init(), 36

eth sendPkt(), 38
eth setHeader(), 37
eth setProtocol(), 37
eth str2addr(), 37
EVBUG26_ close(), 8

50

EVBUG26_ init(), 8

EVBUG26 _installed(), 8

FB26 close(), 22
FB26_init(), 22
fb26_open(), 22
FB26_setmode(), 22

get active page(), 46
get rtc_time(), 39
get visual page(), 46
getc_xy(), 45
grx_box(), 24

grx_ circle(), 24

grx_ clear(), 23
grx_disc(), 25

grx_ getimage(), 24
grx_ getpixel(), 23
grx_line(), 24
grx_plot(), 23
grx_putimage(), 23
grx_rect(), 24
grx_text(), 24

htons(), 36

INPUT26_init(), 7
ip_str2addr(), 31
isCentralButton(), 16
isLeftButton(), 16
isRightButton(), 16

JOY26_close(), 20
JOY26_init(), 20
JOY26 _installed(), 20
joy _disable(), 20
joy__enable(), 20

joy _getstatus(), 20
joy_setstatus(), 20

KEY EVT, structure, 12

KEYB26 close(), 9
KEYB26_init(), 9
KEYB26 installed(), 9

keyb def ctrlC(), 10
keyb def map(), 10
keyb def task(), 10
keyb default parm(), 10
keyb _disable(), 12
keyb enable(), 12
keyb get map(), 12
keyb getch(), 10
keyb getchar(), 10
keyb getcode(), 10
keyb hook(), 11
keyb set map(), 12

linuxc26 _init(), 6

MOUSE26 close(), 13
MOUSE26_init(), 13
MOUSE26 _installed(), 13
mouse_def task(), 14
mouse_default parm(), 13
mouse_disable(), 15
mouse _enable(), 15
MOUSE_EVT, structure, 16
mouse _getlimits(), 15
mouse_ getstatus(), 15
mouse_getthreshold(), 15
mouse_grxcursor(), 17
mouse_grxshape(), 17
mouse_hook(), 15
mouse_off(), 19
mouse_on(), 19

mouse _setlimits(), 15
mouse _setstatus(), 15
mouse _setthreshold(), 15
mouse_txtcursor(), 17
mouse_txtshape(), 17
mousedef def threshold(), 14
mousedef def x0(), 14
mousedef def xmax(), 14
mousedef def xmin(), 14
mousedef def y0(), 14
mousedef def ymax(), 14
mousedef _def ymin(), 14
mousedef def z0(), 14

net_ init(), 30
netbuff get(), 36
netbuff _init(), 35
netbuff _release(), 36
ntohs(), 36

place(), 46

51

printf xy(), 45
putc_xy(), 45
puts_xy(), 45

rgb16(), 23
RTC_ TIME, struttura, 39

set_active_page(), 46
set_rtc_time(), 39

set visual page(), 46
snapshot_ freeslot(), 49
snapshot_ getslot(), 49
snapshot_ grab(), 49
snapshot_savepgm/(), 49
snapshot_ saveppm(), 49
sound _info(), 41

sound _init(), 41

sound play(), 43

sound _sample(), 42
sound _setfun(), 41
sound wait(), 44
SPEAK26 close(), 21
SPEAK26 _init(), 21
SPEAK26 _installed(), 21
speaker mute(), 21
speaker _sound(), 21

udp_bind(), 31
udp_notify(), 34
udp _recvirom(), 33
udp _sendto(), 33

