S.Ha.R.K. User Manual

Volume VI

S.Ha.R.K. File System

Written by

Paolo Gai (pj@sssup.it)

Original italian version by

Massimiliano Giorgi (massy@gandalf.sssup.it)

Scuola Superiore di Studi e Perfezionamento S. Anna
RETIS Lab

Via Carducci, 40 - 56100 Pisa

Contents

1 File system architecture

1.1 Features o o i i e e e e e e
1.2 Low Level: Device Drivers o it i
1.3 High Level: File systems
2 Device drivers

2.1 Imterface oL
2.1.1 Imitialization L
2.1.1.1 How to create a new device driver

2.1.2 Device serial numbero
2.1.3 Implementation detailso L. o
2.1.3.1 block device operation structure.

2.1.3.2 The “lodsk” module oL,

2.1.3.3 Semaphores e e e e e

2.1.4 Exported interfaceo

2.2 I/Orequests scheduling
2.3 Disk scheduling algorithms implemented in SHa.R.K.
2.3.1 FCFS . . . e
2.3.2 SSTF . . . o e
2.3.3 LOOK e e
2.3.4 CLOOK e e
2.3.5 EDF . . . e

2.4 Device driver: the IDE interface
2.4.1 Descriptiono
2.4.2 TImplementation
2.4.2.1 Imitialization L

2.4.2.2 Policy queues Interface L.

2.4.2.3 Minor numbers Lo

3 File system

3.1 Imterface o e e e
3.1.1 Imitialization L e
3.1.1.1 Struct file_system type

3.1.2 Imternal interface L L
3.1.2.1 struct super operations.

3.1.2.2 Struct dentry operations

3.1.2.3 struct inode operations Lo

3.1.2.4 struct file operations oo

3.1.3 External interface
3.1.3.1 Non standard functions oL

3.1.4 Initialization: an example Lo L oo

3.2 Imternal structure e

3.3

3.2.1 The data structures e e e e e 28

3.2.1.1 struct super_block oo 28
3.2.1.2 structdentry 29
3.2.1.3 structinode e e 31
3.2.14 structfile e e 33
3.2.1.5 struct file descriptors o oL 34
3.22 DiskCache e 35
3.22.1 Howtousethecache 35
3.2.2.2 structdcache e 35
3223 struct rwlock to oo o 38
Filesystem: MS-DOS (FAT16) ittt 39
3.3.1 Description 39
3.3.1.1 Internal structure 39
3.3.1.2 Thebootsector 39
3.3.1.3 The File Allocation Table 39
3.3.1.4 The “root directory” o 42
3.3.1.5 Thedataarea, 43
3.3.2 Implementation notes 43

List of Figures

1.1
1.2
1.3
1.4

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

File system architecture Lo 2
Device Drivers e e e e e e e 2
Device Drivers - details e e 3
High Level - File system details 4
Device Drivers Initialization. 6
Device Serial Number e e e 7
The IDE subsystem e 16
IDE minor numbers e e e e e e e 19
Filesystem init L e 21
Super block tree e e e e 29
Directory entry tree. e 30
Inode data structures. e e e e e e e 32
Data structure for disk cache o 36
Internal structure of the MSDOS FAT16. 40
An example of File Allocation Table (FAT) 41
The FAT16 file serial number. i e 43

List of Tables

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21

The BDEV_PARMS structuret 5
Block device registration functionso 7
The phdsk structure. L 8
block device Structure 8
block device operations structure. 0oL 9
Thelodsk module. 9
The semaphore interface e 10
The mutex interface L 10
Low level functions Lo 11
Queue handling functionso L 12
struct request _prologue t. L. 13
struct fefs _queue t oL 13
struct sstf _queue t 14
struct look _queue _t L L 14
struct clook _queue t 15
struct look _queue t L 15
Resource Module for deadlines 16
Data structures used to initialize the IDE driver. 17
The glue code for the IDE driver. 17
structidereq to 18
struct filesystemn parms 20
struct mount_opts Lo 21
struct file_system _type 22
struct super _operations L. Lo 22
struct dentry operations L.l 23
struct inode_operations Lo 23
struct file_operations 24
mount/umount functions L. Lo L 25
struct super_block L 28
struct dentry L L e e 30
struct gstr L L e e e e e 31
struct inode L e e e e 32
struct stat L L e 32
struct file L e 33
struct file_descriptors 34
Disk cache interface L 35
struct dcache L L 36
struct rwlock t. 38
Lockers functions L e e 38
The MS-DOS boot sector. L o e e e e 41
MSDOS Directory Entry. 42

Abstract

This document is the raw translation from Italian to English of Massimiliano Giorgi’s Thesis. It
has not been checked by anyone (neither me ;-)), except for an ispell pass.

This is the only documentation currently available for the S.Ha.R.K. File system. The docu-
ment gives an insight on many data structures used internally by the file system. We can say this
is a first step toward a real file system user manual. If you carefully read it, you will understand
how it works, and how you can initialize and use it...or, at least, I hope that...

In any case, please send any comments to pj@sssup.it.

Enjoy,

Paolo

Chapter 1

File system architecture

1.1 Features
The library is composed by two main layers:

File system The file system contains all the data structures used to handle files.

Blocks devices This part handles directly the hardware. They provide a common interface that
unifies the usage of all the block devices (i.e., the hard disks).

The architecture of the library is modular, and it is described in Figure 1.1.
The library is connected to the Kernel via a glue layer, to the application via a wrapper layer;
the block devices and the file system operations are separated by a cache, that may be excluded.
The library needs a set of primitives that must be supported by the underlying kernel, as
memory handling, string handling, and functions with a variable number of parameters. Moreover,
the kernel should support functions that implement:

e Mutual exclusion.
o Allocation of low level resources (as I/O spaces and interrupts).

e Memory protection (not needed in S.Ha.R.K.).

1.2 Low Level: Device Drivers
The device drivers are divided in two main parts:

e A general part that exports the basic low level services. It also gives a set of internal routines
to the internal modules.

e A set of internal modules that handle one or more peripherals. The application can choose
which module must be linked, initialized and used at compile time.

The general part is composed by four modules:

Block device The main part; it exports the interface to the upper layers, inits the device driver
subsystem and register all the drivers present in the system.

Logical disk This module provides functions that allow to inspect the logical structure of an
hard disk, like start, end, size and type of each partition on the Hard Disk.

Wrappers

Filesystem
operations

o H

Disk cache

Block device

g

Glue

Figure 1.1: File system architecture

bdev_repd()
bdev_wrfite()

<

T QH T

Device Interface

read() read()
Write() write()
\4
L
I @)
D 0
E P

Glue

Figure 1.2: Device Drivers

)

| Logical disk | | Block device | | Phisical disk |
R\ $
TDE SUBSYSTEM Queue policy

)

Glue interface |

Figure 1.3: Device Drivers - details

Physical disk This module provide a small data base that contains informations about all the
hard disks in the system; these informations can be useful for the module that must handle
the low level pending request queues.

Queue policy This module handles the low level policies for the pending requests (SCAN, LOOK,
EDF, ...).

1.3 High Level: File systems
The high level is divided in three parts:

e The first part handle the file systems, its initialization and its interface to the internal
modules.

e A second part composed by a set of modules that implement a particular file system (i.e.,
FAT16).

e A cache module (whose policy can be easily changed).

The first part is composed by sub-modules (internal implementation of a sub-module can be
changed without affecting the rest of the library):

Filesystems It is responsible for the initialization and termination of all the high level layer.
It registers all the file systems, and it contains the routines for mounting/unmounting the
partitions.

File It handles the descriptor tables and the files; it defines the file structure.

Super It handles the super blocks (that contains the global informations about partitions on a
disk).

Inodes It handles the inodes (informations about a file in the file system).
Dentry It handles file names in a tree structure.

Open, read, umask, ... They implement the correspondent system primitives.

feemmeennn \7Z
Filesystems H
:_ - Read I
/?\ Umask I
s Open
5 File
Super Inocdes Dentry
\\ 7

:.............>, FAT16 Subsystem

DCache

0

Figure 1.4: High Level - File system details

Chapter 2

Device drivers

2.1 Interface

2.1.1 Initialization

The bdev_init() function (see Table 2.1) must be called to initialize a device driver, passing a
pointer to a BDEV _PARMS structure. Use the provided macros to init that structure.

The structure is composed by two parts: a generic part and a specific part. The generic part
is composed by the following fields:

showinfo If this flag is set, the initialization of the device will be “verbose”. To set this flag, use
the macro bdev _def showinfo.

config It is a string that can have a particular meaning for the device driver. The string is parsed
by the device driver, that usually searches for some initialization parameter (something like
“foo:[number]”). To set this string, use the macro bdev_def configstring.

bmutexattr This parameter can be used to tell the system which is the kind of mutex to use to im-
plement the mutual exclusion. To set this parameter, use the macro bdev_def_mutexattrptr.

dummy Used to align the data structure (see the macro BASE DEV).

The specific part is directly specified by the device driver; the bdev init function can be called
can be called passing a pointer to a BDEV_PARMS structure initialized with a BASE_BDEV
value. If NULL is specified, the default values are used.

typedef struct bdev_parms {
__uint32_t showinfo:1;
char *config;
void *bmutexattr;
__uint16_t dummy;
#ifdef IDE_BLOCK_DEVICE
IDE_PARMS ideparms;
#endif

} BDEV_PARMS;

void bdev_def_showinfo (BDEV_PARMS s, int v);
void bdev_def_configstring (BDEV_PARMS s, char *v);
void bdev_def_mutexattrptr (BDEV_PARMS s,void *v);

Table 2.1: The BDEV_PARMS structure

bde%nit()

Block device | | Phisical disk

(blockfdeviceﬁoperations)

read()
Idev_regisker() write()
bdev_register. minor() ecc...

HOQOH< @O

Glue

Figure 2.1: Device Drivers Initialization.

2.1.1.1 How to create a new device driver
1. Add a new major number in t the file include/fs/major.h (see 2.1.2);
2. Add a “#define” into the file include/fs/bdevconf.h (to enable selective compilation);

3. If needed, add fields to bdev_parms, and modify the BASE BDEV macro with the new
default parameters;

4. Modify the function bdev_init to call the init function of the new device driver (into
drivers/block /bdev.c).

The device driver initialization function, after the initialization of its internal part, does the
following actions (see Figure 2.1):

1. It registers itself calling bdev_register(); That function must be called for each device han-
dled by the driver.

2. It registers every block device that it find into its interfaces to the Physical Disk Module.

3. It registers every logical device found calling bdev _register minor().

Data structures and registration functions used in this phased are described in Section 2.1.3.

2.1.2 Device serial number

Every logical device (i.e., a logical partition of a hard disk) has a device serial number of type
__dev_t, that must have a unique value (see the POSIX standard).
The number has an internal structure (see Figure 2.2) composed by a major number, and
another number (whose number depends on the device implementation) called minor number.
Three macro exists (see include/fs/sysmacro.h) to handle the device numbers:

makedev This macro creates a dev_t number from the major and the minor number.
major Returns the major number of a device.

minor Returns the minor number of a device.

major minor

device dri lo7ievice
N\ ¥

major minor

devicg serial nuroey

ide/hda2

nome simbolico (esempio)

Figure 2.2: Device Serial Number

int bdev_register(__dev_t major, char *name, struct block_device x) 3
int bdev_register_minor(__dev_t device, char *name, __uint8_t fsind);
struct phdskinfo *phdsk_register(struct phdskinfo *disk);

Table 2.2: Block device registration functions

The major number is used to decide which device driver will handle a request (see Section 2.1.3).
A device driver can register more than on major number. Minor numbers are device driver
dependent, and the validity of a minor number is checked only by the driver.

To simplify the search of a device, every device has a symbolic name (see Section 2.1.4).
Symbolic names are composed by two parts: a unique name for each major, and a specific name
assigned to each minor. For example, the major MAJOR B IDE has a symbolic name “ide”; a
minor name for that major can be “hda2”, so the full name is “ide/hda2”, that identifies the second
partition on the master hard disk on the first IDE controller interface (see Section 2.4).

2.1.3 Implementation details

These are the registration functions for the device drivers (see Table 2.2):

bdev_register This function registers a device type (see Section 2.1.2); the function receives as
parameter the major number, its symbolic name, and a pointer to a structure block device.
The function returns 0 in case of success, != 0 otherwise.

bdev_register minor It registers a minor number, its symbolic name and the file system type
(see include/fs/fsind.h). This information is used by bdev_finddevice byname (see Section
2.1.4). The function returns 0 in case of success, != 0 otherwise.

phdsk register This function is used to register every physical device found with parameters
that can be used by the Disk Scheduling Algorithms (see Section 2.2). This function receives
a pointer to a structure phdiskinfo that contains the device parameters, and returns NULL
in case of error, or a pointer to the registered structure (that can be != from the parameter)
in case of success.

The phdskinfo structure contains the physical parameters of a device. all the field must be
filled before calling phdsk register. The fields are:

struct dskgeometry {
__uintl16_t cyls;
__uint16_t heads;
__uint16_t sectors;

};

struct phdskinfo {
char pd_name[MAXPHDSKNAME] ;
__dev_t pd_device;
__blkcnt_t pd_size;
int pd_sectsize;
struct dskgeometry pd_phgeom;
struct dskgeometry pd_logeom;

Table 2.3: The phdsk structure.

struct block _device {
char *bd name;
int bd_sectorsize;
__uint32_t bd flag used:1;
struct block device operations *bd_op;

&
Table 2.4: block _device Structure

pd_name Device name, used only for debug purposes.
pd_device device identificator.

pd_size number of logical sectors of the device.
pd_sectsize Dimension (bytes) of a logical sector.

pd_phgeom e pd_logeom Geometry of the device (logical and phisical); geometries are de-
scribed using the struct dskgeometry (see Table 2.3):

cyls number of cylinders (traces) of the device.
heads number of heads.
sectors number of sectors for each cylinder.
The struct block device described in Table 2.4 is used to register the block devices:

bd name Physical device name; for example, for the IDE device driver, “ide”.
bd _sectorsize logical sector dimension (bytes; redundant info but useful ;-)).

bd flag used It should not modified by the device drivers. If set, the corresponding device
driver is present (a table of all the possible devices is used to access the system in a fast
way).

bd_op Virtual device operations.

struct block_device_operations {
int (*_trylock) (__dev_t device);
int (*_tryunlock) (__dev_t device);
int (*read) (__dev_t device, __blkcnt_t blocknum, __uint8_t *buffer);
int (*seek) (__dev_t device, __blkcnt_t blocknum) ;

int (*write) (__dev_t device blkcnt_t blocknum uint8_t *buffer);

y —= | J——

Table 2.5: block device operations structure.

struct lodskinfo {
__uint8_t fs_ind;
__blkcnt_t start;
__blkcnt_t size;

};
typedef int (*lodsk_callback_func) (int, struct lodskinfo*, void *);

int lodsk_scan(__dev_t device, lodsk_callback_func func, void *data, int
showinfo, char *lname);

Table 2.6: The lodsk module

2.1.3.1 block device operation structure.

This structure contains the virtual operation that have to be supplied by every device driver:

read This function should read a logical pblock passed as parameter, writing the result on the
buffer. It returns 0 in case of success, != 0 otherwise.

write Similar to read, but it writes ;-).
seek moves the head on the required block.

_trylock e tryunlock Used to block/unblock a device. They return 0 in case of success, =
0 otherwise; after initialization, and usually, every device is in the unblocked state.

Why blocking/unblocking a device? The problem, described in Section 3.2.2.2, is that the data
cache have to refer to a logical block in an unique way. Since there are logical devices that shares
blocks (think at /dev/hda and /dev/hda2 in Linux), the mount operation must be done in mutual
exclusion, blocking the device.

2.1.3.2 The “lodsk” module

This module (see Table 2.6) offer a service to the device drivers: It recognizes the logical structure
(partitions) of an HD as described into [?] (part of the code is derived from Linux).

before calling lodsk scan, the device driver must be already registered; the function has five
parameters:

1. The device ID where the search have to be done.
2. A callback function called for each partition found.
A generic pointer passed to the callback function.

A verbose flag.

A

The name of the logical device (i.e., “hdb”, used if the verbose option has been set.

typedef internal_sem_t __sem_t;

#define __sem_init (ptr,val)
#define __sem_wait (ptr)
#define __sem_trywait (ptr)
#define __sem_signal (ptr)

Table 2.7: The semaphore interface

typedef internal_sem_t __mutex_t;
#define __mutex_init (ptr,attr)
#define __mutex_lock (ptr)
#define __mutex_trylock (ptr)
#define __mutex_unlock (ptr)
typedef SYS_FLAGS __fastmutex_t;
#define __fastmutex_init (ptr)
#define __fastmutex_lock (ptr)
#define __fastmutex_unlock (ptr)

Table 2.8: The mutex interface

Each callback function is called passing as arguments:

1. The logical number of the partition (the Linux numbering scheme is used).

2. A structure with informations on the partition found. The structure has the following fields:

fs _ind The file system number (see include/fs/fsind.h).
start The partition starting block.

size The partition size (number of blocks).
3. A the generic pointer passed to lodsk scan.

The low_level routines always check these values to avoid read /write operations outside the par-
tition.

2.1.3.3 Semaphores

The files include/fs/mutex.h and include/fs/semaph.h contain the mutex/semaphore interface used
by the file system.

In particular, the semaphore interface (see Table 2.7) is simply a wrapper to the S.Ha.R.K.
Internal Semaphores.

The mutex interface requires two types of mutexes:

1. Fast mutexes: when only a few lines have to be protected (remapped to kern_fsave/kern_frestore).

2. Normal mutexes: without any restriction (remapped again to the internal semaphores).

Please note that these functions are not directly used in the code; instead, functionslike b mutex lock
and fs mutex lock are used. This is done to make possible the disabling of the mutual exclu-
sion requirement when not needed (i.e., if the file system runs as a process with its own address

space).

10

int bdev_read (__dev_t dev, __blkcnt_t blocknum, __uint8_t *buffer);
int bdev_write (__dev_t dev, __blkcnt_t blocknum, __uint8_t *buffer);
int bdev_seek (__dev_t dev, __blkcnt_t blocknum);

int bdev_trylock(__dev_t device); int bdev_tryunlock(__dev_t device);
__uint8_t bdev_getdeffs(__dev_t device);

__dev_t bdev_find_byname(char *name) ;

__dev_t bdev_find_byfs(__uint8_t fsind);

int bdev_findname(__dev_t device, char **majorname, char **minorname) ;
int bdev_scan_devices(int(*callback) (__dev_t,__uint8_t));

f——

Table 2.9: Low level functions

2.1.4 Exported interface

The low level exports two kinds of functions: one to use the devices, one to search/get the logical
devices present on a system.
The three main functions are:

bdev_find byname This function accepts a symbolic device name, as described in Section
2.1.2, and returns 0 if the device is not registered, or its number otherwise.

bdev_find byfs This function accepts a file system ID (see include/fs/fsind.h), and returns the
first device that contains that file system, or 0 if no one provides it.

bdev scan_device This function can be used to get a list of all the devices in the system; the
user have to pass a callback that is called for each device in the system. The function returns
0 in case of success, -1 if an error occurred, or a value != 0 if the callback returns a value !=
0. The callback is called with a device serial number and a file system type that should be
present in the device.

These function are useful when at system startup the root file system have to be mounted (see
Section 3.1.3.1).
The functions bdev_ getdeffs and bdev\ findname are used for these purposes:

bdev getdeffs to know a probable file system present on a logical device.

bdev_findname to know the logical name of a device. The function returns != 0 in case of
error, and 0 in case of success. In the latter case, the two buffers passed as parameter are
filled with the major and minor names.

These functions simply check the parameter values and then they calls the device drivers functions
(see Section 2.1.3.1):

bdev read Reads a block on the device.
bdev_write Write a block on the device.
bdev_seek Move the head in the position passed as parameter.

bdev_trylock e bdev _tryunlock Tries to block/unblock a device.

These functions can block the calling thread for an unspecified amount of time. All the device
drivers were thought to be used in a multithreaded systems.

If a device driver is not multithread, proper mutual exclusion must be ensured, because the
file system high level functions will call a low level service before the previous request has been
served. Note that if such a mutual exclusion is used, the access to the device driver will be forced
by the mutex policy, and so all the disk scheduling algorithms will not work properly.

11

int bqueue_init (bqueue_t *);

int bqueue_numelements (bqueue_t *);

int bqueue_removerequest (bqueue_t *);

int bqueue_insertrequest (bqueue_t *,
struct request_prologue *);

struct request_prologue *bqueue_getrequest(
bqueue_t *);

Table 2.10: Queue handling functions

2.2 1/0 requests scheduling

Massy’s thesis here insert a dissertation on the various disk scheduling algorithms that has been
removed :-)

2.3 Disk scheduling algorithms implemented in S.Ha.R.K.

The system currently support 5 different scheduling algorithms that can be changed/increased
simply modifying system configuration.

Only one algorithm can be active at a time. All the device drivers should use the queuing
interface listed in the bqueue.h file (see Table 2.10). The structure bqueue t is specific for each
scheduling algorithm. The semantic of each function in the interface is the following:

bqueue init Initialize the pending request queue; it returns 0 in case of success, != 0 otherwise.
bqueue numelements Returns the number of elements in the queue.

bqueue insertrequest This function inserts a request in the queue, following the specific algo-
rithm behavior. The function returns 0 in case of success, = 0 otherwise. Please note that re-
quests are passed through a pointer to the structrequest _prologue t (see tab:structreqprolog).
That is, every algorithm should use a structure with a struct request_prologue as first field,
passing a casted pointer to that structure.

bqueue getrequest Returns the first request in queue (without removing it), and returns a
pointer to that request, or NULL if there are not any pending requests.

bqueue removerequest Removes the first request in queue, that is the request that would
have been returned by bqueue getrequest; it returns 0 in case of success, != 0 in case of
€rror.

before calling bdev _insertrequest, all the fields of the struct request _prologue t must be filled
(see Table 2.11):

sector, head, cylinder This is the starting position in the hard disk.
nsectors This is the number of sectors to transfer.

operation The operation that must be performed:

REQ_ DUMMY request not specified.
REQ_SEEK head seek to the specified position.
REQ_ READ read request.

REQ_ WRITE write request.

12

#define REQ_DUMMY O
#define REQ_SEEK 1
#define REQ_READ 2
#define REQ_WRITE 3
struct request_prologue {
unsigned sector;
unsigned head;
unsigned cylinder;
unsigned nsectors;
unsigned operation;
[*--x/
struct request_specific x;
s

#define request_prologue_t struct request_prologue
Table 2.11: struct request _prologue t

typedef struct TAGfcfs_queue_t {
struct phdskinfo *disk;
/xx/
__b_fastmutex_t mutex;
struct request_prologue *head;
struct request_prologue *tail;
int counter;

} fcfs_queue_t;

struct request_specific {
void *next;

};
Table 2.12: struct fcfs _queue_t
To add algorithm specific fields, you can use the method used for the deadlines into Section 2.3.5.
struct request_specific (see Table 2.11) must be defined by each algorithm, and contains
algorithm-specific fields.
struct bqueue t contains a scheduling queue. Its first field must be a pointer to a struct

phdiskinfo (see Section 2.1.3, and Table 2.3).
Here is a description about the implementation of various disk scheduling algorithms.

2.3.1 FCFS
The FCFS policy is implemented using the structure in table 2.12:

mutex A mutual exclusion semaphore.
head e tail a pointer to head and tail of a request queue.

counter number of pending requests.

Then, the struct request _specific contains a pointer that is used to link the list.
2.3.2 SSTF

This scheduling policy is implemented using the data structures in Figure 2.13:

mutex for mutual exclusion.

13

typedef struct TAGsstf_queue_t {
struct phdskinfo *disk;
/%x/
__b_fastmutex_t mutex;
struct request_prologue *actual;
struct request_prologue *lqueue;
struct request_prologue *hqueue;
int counter;

} sstf_queue_t;

struct request_specific {
void *next;

};
Table 2.13: struct sstf _queue t

typedef struct TAGlook_queue_t {
struct phdskinfo *disk;
/*x/
__b_fastmutex_t mutex;
int dir;
struct request_prologue *queue[2];
int counter;
} look_queue_t;
struct request_specific {
void *next;

};

Table 2.14: struct look queue t

actual the current request (that is returned by bqueue getrequest()).

lqueue e hqueue two lists ordered in decreasing and increasing order: when a new request
arrives, the request is inserted on one of the two queues depending on the value of the current
request cylinder. The current request will become the nearest to the current cylinder. Note:
This algorithm can cause starvation.

counter The request counter.

Then, the struct request specific contains a pointer that is used to link the list.

2.3.3 LOOK

This scheduling policy is implemented using the data structures in Figure 2.14:
mutex for mutual exclusion.

dir Is the looking direction: 0 ascending, 1 descending.

queue two ordered lists (one ascending, one descending). queue[dir| is the queue used. When the
list becomes empty, dir=Idir. a new request is inserted in the current queue if its position is
after /before the actual position (otherwise, it is inserted in the other list).

counter the request counter.

This algorithm can be implemented in two variants:

14

typedef struct TAGclook_queue_t {
struct phdskinfo *disk;
/%x/
__b_fastmutex_t mutex;
int act;
struct request_prologue *queue[2];
int counter;
} clook_queue_t;
struct request_specific {
void *next;

};
Table 2.15: struct clook queue t

typedef struct TAGbd_edf_queue_t {
struct phdskinfo *disk;
/xx/
__b_fastmutex_t mutex;
struct request_prologue *queue;
int inservice;
int counter;

} bd_edf_queue_t;

struct request_specific {

void *next;

long dl;

s

Table 2.16: struct look queue t

1. Requests with position = current position are inserted in the current queue (starvation can
happen).

2. Requests with position = current position are inserted in the queue not currently used. This
is the default choice; to modify it, you have to modify the look.c file.

2.3.4 CLOOK

This scheduling policy is implemented using the data structures in Figure 2.15:
mutex for mutual exclusion.

dir This is the current queue.

queue Two ascending lists. queue[dir] is used until it is emptied. Then, dir is changed. A new
request is inserted in the current queue if the current position is greater than the current
one.

counter the request counter.

This implementation can introduce starvation because insertions at the current position are done
on the same queue.

2.3.5 EDF

This is the only real-time disk scheduling algorithm implemented in S.Ha.R.K. This scheduling
policy is implemented using the data structures in Figure 2.16:

15

typedef struct {

RES_MODEL r;

TIME dl;
} BDEDF_RES_MODEL;
#define BDEDF_res_default_model (res)
#define BDEDF_res_def_level(res,l)
#define BDEDF_res_def_dl(res,dl)

Table 2.17: Resource Module for deadlines

Block Device Substrate | | Queues Policy

IDE SUBSYSTEM

IDE interface

IDE request

IDE specific
glue

Figure 2.3: The IDE subsystem

mutex For mutual exclusion.
queue An ordered list, increasing with the deadline.
inservice This flag is set when a request is in service.

counter The request counter.

The request’s deadline is got during task creation using the S.Ha.R.K. resource module shown
in Figure 2.17.

If the resource module is not used, the deadline is set to infinity. That is, in that case the
scheduling algorithm become a FCFS.

2.4 Device driver: the IDE interface

2.4.1 Description

A description of the IDE standard can be found in[?] and [?]. This interface allows the connection
of up to 2 IDE peripherals using the ATA or ATAPI protocol (as described into[?]). This driver
implements the ATA-4 protocol®.

2.4.2 Implementation

The architecture of the IDE subsystem is shown in Figure 2.3: there is a part of the interface
responsible for the system initialization (for example, for finding the IDE interfaces in the system,
for finding the devices and their logical structure, for transforming the low level requests in ATA-
4 commands), for command handling and another part for interfacing with the disk scheduling

IThe original Massy’s thesis have a small description of the standard, that T have removed.

16

typedef struct ide_parms {
void *parm_initserver;

} IDE_PARMS;

struct ide_server_model {
TIME d1;
TIME wcet;
TIME mit;

s

Table 2.18: Data structures used to initialize the IDE driver.

void ide_glue_send_request (int ideif);
int ide_glue_activate_interface (int ideif);
void ide_glue_unactivate_interface (int ideif);

Table 2.19: The glue code for the IDE driver.

queue handling. Finally, there is a small part OS-dependent that should be rewritten to port it
to other OSes.

If possible, the driver uses the DMA; in any case, polling can be forced. DMA is only supported
in bus-master mode [?].

The system actually use only some commands of the classes ‘PIO data in”, “PIO data out”,
“Non-data” e “DMA”; it uses the “read”, “write”, “seek”, “dma read”, “dma write”, “identify”, “pi-
dentify” and “set feature” commands; packet commands are not currently supported, so ATAPI

devices (like cd-roms) are currently not supported.

2.4.2.1 Initialization

The system is initialized calling the ide init() function into bdev_init(). This is automatically
done if the IDE support is compiled. The user should only initialize the struct bdev_parms, as
specified in Section 2.1.

The IDE_ PARMS structure has only one parameter, and is included into the ideparms field
in the global init data structure:

parm__initserver This parameter is OS-specific and is related to the glue code.

The system dependent part of the IDE driver is contained into the file ideglue.c (see Figure
2.19):

ide glue activate interface It enables the interface passed as parameter: It creates an ape-
riodic task, and assigns to it the interface interrupt. The task is activated when the interrupt
arrives.

ide glue activate interface It disables the interface. The aperiodic task is killed.

ide glue send request It executes the first available request: it explicitly activates the task
interface; when the task is activated because of an interrupt, the pending request is termi-
nated, and another request (if present) is activated.

the parm__initserver field contains a pointer to the struct ide server model, used to create the
aperiodic tasks (see Figure 2.18):

dl task deadline in usec.
wceet task worst case execution time in usec.

mit the mean inter arrival time.

17

typedef struct TAGidereq_t {
request_prologue_t info;
int next;
__uint8_t resetonerror;
__uint8_t cmd;
__b_sem_t wait;
int result;
__uint8_t features;
__uint8_t cyllow;
__uint8_t cylhig;
__uint8_t seccou;
__uint8_t secnum;
__uint8_t devhead;
__uint8_t *buffer;

} idereq_t;

Table 2.20: struct idereq_t

If these parameters are not specified, standard parameters are used.
These defines are used to conditionally compile the driver (see the source code):

FORCE_SCANNING this define force the search of the IDE peripherals also if the bus reset
fails. This is useful if some peripherals does not follow the standard timings.

IDE_OLDATAPIDELAY this define forces a little delay that can be useful when using old
ATAPI interfaces.

IDE_FORCERESET if defined a soft reset operation cannot be aborted because of a timeout.
It must be specified if the peripheral does not follows the soft reset timings or if it cannot
go in stand-by mode.

IDE_SKIPSTATUSTEST with this symbol we do not check if the command is being executed
correctly (that is done reading on a status register); all the TX-based motherboard we found
needs this symbol.

IDE_SKIPALLTEST when set, all the command are written into the registers without looking
on the status register. This symbol implies the previous. This mode was needed on a TX
motherboard where the polled mode for commands was unreliable.

2.4.2.2 Policy queues Interface

Table 2.20 shows struct idereq t that is used by the driver to store the pending requests. It can
be noted that the info field is of type request prologue t, as required by the modules that handle
the scheduling policies (see 2.3).

Note that (since the IDE interface allows only a command at a time) there are two queues
for each IDE interface (one for the master device, one for the slave). These request queues are
prioritized. That is, the master queue always have priority on the slave queue.

Here a small description of the fields showed in Table 2.20:

info To handle the requests using a module for disk scheduling.
next used internally to handle a request pool.
resetonerror If set, an error during a command implies a soft reset.

cmd The command for the peripheral (see [?]).

18

N 1ogical disk (partition)

Drive Id (master/slave)

Interface

Figure 2.4: IDE minor numbers

wait Synchronization semaphore: when a task sends a command, it waits the end of the execution
of the command.

result This is the result: 0 in case of success, != 0 in case of error (see idelow.c for the error
codes).

features, cyllow, cylhigh, seccou, secnum e devhead Values to be inserted into the I/0O
registers of the IDE interface. The behavior is different depending on the peripheral mode
(LBA or C/H/S) (see Section 2.4.1).

buffer read/write buffer (if needed).

2.4.2.3 Minor numbers

This section describes how minor numbers are handled.

As described in Section 2.1.4, the generic low level part uses the major number to pass a request
to a device. The specific device is then selected using the minor number.

Figure 2.4 shows the minor number structure of this device:

e The first 3 bits identifies the interface (8 interfaces maximum).
e A bit for the peripheral (master/slave). This is used to enqueue request in the right queue.

e The last 4 bits says which partition should be used. This info is used to convert relative
sector numbers into absolute sector numbers.

Minor numbers are accessed only via macros. To modify the minor number mapping you should
only modify these macros.

19

Chapter 3

File system

With the word “file system” we mean the internal organization of a block device; the purpose of
such an organization is to store a set of files, usually divided in directories.

A block device is seen by the file system as an ordered sequence of fixed sized blocks. The
basic operations of a file system are read/write operations on the n-th block.

3.1 Interface

This section describes the interface between the system and the user tasks. It also describes the
interface between a specific instance of file system and the system (just to make easy the expansion
of the system with new real-time file systems).

3.1.1 Initialization

To initialize the higher level of the system we use an interface similar to the device drivers interface
(see Section 2.1.1.

The function filesystem init() is called to initialize the higher layer passing the parameters
showed in Figure 3.1. These parameters must be initialized using the following macros:

filesystem def rootdevice Set the partition that must be used as root device, that is, the
directory associated to “/”. This field is mandatory, and that implies that the higher layer
must be initialized after the device drivers.

filesystem def fs Selects the filesystem that must be used with the device. It must be one
of the symbols defined into include/fs/fsind.h; if the special symbol FS_DEFAULT is used,

typedef struct filesystem_parms {

__dev_t device;

__uint8_t fs_ind;

__uint32_t fs_showinfo:1;

void *fs_mutexattr;

struct mount_opts *fs_opts;
} FILESYSTEM_PARMS;
#define filesystem_def_rootdevice(par,rootdev)
#define filesystem_def_fs(par,fs)
#define filesystem_def_showinfo(par,show)
#define filesystem_def_options(par,opts)
int filesystem_init(FILESYSTEM_PARMS *);

Table 3.1: struct filesystem parms

20

struct mount_opts {
__uint32_t flags;

union {

struct msdosfs_parms msdos;
} x;

s
/* Flags */

#define MOUNT_FLAG_RW 0x01

Table 3.2: struct mount_opts

filesystem [init()

Filesystems

[
(: file system type :)
read super()
filesysten| register()

F
S

Disk Cache

Figure 3.1: Filesystem init

the system tries to autodetect the filesystem type.

filesystem def showinfo If this flag is set, then initialization messages are printed on the
screen.

filesystem def options There are the mount options.

The field fs mutexattr has the same meaning of the correspondent field into bdev parms (see
Section 2.1.1).

You can use the macro BASE FILESYSTEM to initialize a struct filesystem parms with
some default values. NULL is not allowed as a parameter of filesystem init.

The mount options for every device must be inserted into a struct mount _opts showed in Table
3.2. The structure is composed by two parts: a general part and a filesystem-specific part. The
general part actually contains the following fields:

flags This field contains the mount fields. The only flag currently defined is MOUNT FLAG_RW,
that allows write operations on the file system (default is read-only).

Filesystem initialization proceeds as shown in Figure 3.1:

1. The user calls filesystem _init();

21

struct file_system_type {
const char *name;
int fs_flags;
__uint8_t fs_ind;
struct super_block *(*read_super) (
__dev_t device,
__uint8_t fs_ind,
struct mount_opts *options
)
};

Table 3.3: struct file system type

struct super_operations {
int (*init_inode) (struct inode *);
int (*read_inode) (struct inode *);
int (*write_inode) (struct inode *);
int (*put_super) (struct super_block *);
int (*delete_inode) (struct inode *);

Table 3.4: struct super operations

2. filesystem _init() initializes itself and its modules, then all the file systems are initialized.
filesystem init() have to be changed if a new filesystem is introduced.

3. The file systems initialization functions have to register themselves calling the function
filesystem _register() with a struct file_system _type.
3.1.1.1 Struct file system type

This structure (see Table 3.3)stores the informations needed for the filesystem registration. Here
a short description of its fields:

name Pointer to the filesystem name (e.g., “FAT16").
fs flags Filesystem flags (currently not used).
fs _ind Filesystem ID (every filesystem has a different ID).

read super This the filesystem initialization function. It is called when a partition is mounted
to initialize the correspondent struct super block.

3.1.2 Internal interface

This section describes the interface between the high layer (that handles the file systems), and the
modules that implements a specific filesystem.

When a user mount a device into a directory using a filesystem, the system uses the file system’s
specific struct file system type, calling the function read super() to read the superblock of the
specified device.

The struct super_block contains a pointer to a structure that contains a set of “virtual opera-
tions” (see Section 3.2), that implements the behavior of a specific filesystem.

22

struct dentry_operations {
int (*d_compare) (struct dentry *, struct gstr *, struct gstr *);

};
Table 3.5: struct dentry operations

struct inode_operations {
struct file_operations *default_file_ops;
struct inodex (*create) (struct inode *,
struct dentry *);
struct inodex (*lookup) (struct inode *,
struct dentry *);
int (*#unlink) (struct dentry *);
void (*destroy) (struct inode *);
int (*truncate) (struct inode *,
_off_t len);

};

Table 3.6: struct inode operations

3.1.2.1 struct super operations

The structure in Table 3.4 is used for super block manipulation. All the functions should return
0 in case of success, or a value != 0 otherwise.

init _inode This function initializes a struct inode passed as parameter. That structure must
have the fieldsi sp and i_st.st _ino already initialized (see Section 3.2.1.3).

read inode This function reads the inode passed as parameter from the filesystem. The inode
structure must have the fieldsi sp and i _st.st_ino already initialized.

write inode This function writes a (valid, full initialized) inode into the filesystem.

delete inode This function removes the inode from the filesystem (the inode must already exist
on the filesystem).

put_super This function writes the super block passed as parameter into the filesystem. This
function is called when a filesystem is unmounted. A dual function (that is, a function that
reads a super _block from a filesystem) (which is only used when mounting the filesystem)
can be found into the struct file system type (see Section 3.1.1.1).

3.1.2.2 Struct dentry operations

This structure contains all the functions used to manipulate a struct dentry.

d_compare This function compares the two strings passed as parameter. it returns 0 if the
two strings are equal, or != 0 otherwise. The filesystem do not use directly the strcmp()
function, because filename comparison depends on the filesystem (e.g., case sensitive, case
insensitive).

3.1.2.3 struct inode operations

This struct contains the virtual operations on the struct inode. These functions returns 0 in case
of success, !=0 in case of error, that will be interpreted as a negate errno() value (e.g., -EPERM
instead of EPERM).

23

struct file_operations {

__off_t (xlseek) (struct file *,
__off_t, int);

__ssize_t (*read) (struct file *,
char *,
__ssize_t);

__ssize_t (xwrite) (struct file x,
char *,
__ssize_t);

int (*readdir) (struct file *,
void *);

int (*open) (struct inode *,
struct file *);

int (*close) (struct inode *,
struct file *);

};

Table 3.7: struct file operations

default file ops these are the file_operations described into the paragraph 3.1.2.4, that must
be used with the inode. By default, the field is initialized with the file operation of its
filesystem. These pointers can be modified to implement a kind of virtual filesystem that
works on a device. For example, we can define an inode “/dev/ide/hdal” in a way that all
read/write operations on it are not mapped in the operations of the filesystem where it is
stored.

create This function creates a new inode (a new file) with the name passed as parameter into
the struct inode passed as parameter (that must be an inode of type “directory”). It returns
the new inode or NULL in case of error.

lookup This function searches an inode passed as parameter into another inode of type directory
passed as parameter. It returns the inode just found or NULL in case of error.

unlink This function unlinks the filename passed as parameter from the parameter of the cor-
responding inode. The inode will be removed (by generic filesystem routines) if it remains
without links associated to it.

destroy This function destroys the file linked to the inode. It frees the space occupied by the
file. Often, it is sufficient to call the truncate function with length 0.

truncate This function truncates the file length of the inode passed as parameter at the length
specified in the second parameter. If the given length is greater than the actual file length,
the function does nothing.

3.1.2.4 struct file operations

This structure contains all the function that must work with files. If not otherwise stated, the
functions can operate both on files and on directory.

Iseek Moves the input/output position of the file specified as parameter. The new position is
specified as in the lseek primitive (described in [?] or in all the Unix programming books).
That is, the position is specified with a delta with respect to a given position (start of file,
end of file, current position); As described in section 3.2.1.4 during the description of the
field f pos, the new position can be greater than the end-of-file. This function must return
a position inside the file or an error code.

24

int mount (dev_t device,
u_int8_t fsind,
char *where,
struct mount_opts *options);
int umount (dev_t device);
dev_t fdevice (char *device_name);

Table 3.8: mount/umount functions

read Reads some data and puts it into the buffer. The function is called only for regular files. Tt
returns the number of bytes read, that can be less than requested, or an error code.

write Writes some bytes from the specified buffer. It is called only for regular files. It returns
the number of bytes written, that can be less than requested, or an error code.

readdir Reads the next filename of the directory parameter passed through a struct file. It inserts
it into the struct dirent passed as parameter. Returns 0 in case of success, a negative number
in case of error.

open Opens the file linked to the inode. Fills some internal fields in the filesystem-specific struct
file. Returns 0 in case of success, an error otherwise.

close Closes the file passed as parameter. returns 0 in case of success, an error in case of failure.

Most of the function described in this section works on buffers passed by the user. the general
routines checks that these buffer are corrects. In case the operating system implement some mem-
ory protection mechanisms, the functions copyfromuser() and copytouser() should be used (their
syntax is similar to memcpy()). Note that Shark currently do not provide memory protection, so
memcpy() can be used.

3.1.3 External interface
3.1.3.1 Non standard functions

The mount/umount functions are the non-standard functions provided by the filesystem (their
prototype can be found in include/sys/mount.h). Here is a small description of these functions
(see Table 3.8):

fdevice This function returns the device serial number of a given filename. See Section 2.1.2.

mount Is used to mount a partition. These are the informations that must be passed to it:
e The device serial number that must be mounted
o The filesystem identifier (fsind) that should be used (see include/fs/fsind.h).
e The directory where the device will be mounted.
e Other parameters (see Section 3.1.1).

The function returns 0 in case of success, != 0 in case of failure (errno is modified).

umount This function unmount a device that was previously mounted. This function cannot
unmount the “root” device. During shutdown, all the filesystem will be unmounted in the
proper order.

25

3.1.4 Initialization: an example

This is an example of the filesystem initialization in S.Ha.R.K. To initialize the system, we must
register the kernel modules first:

TIME __kernel_register_levels__(void *arg)

{

¥

struct multiboot_info *mb=(struct multiboot_infox)arg;

EDF_register_level (EDF_ENABLE_ALL);
RR_register_level (RRTICK, RR_MAIN_YES, mb);
CBS_register_level (CBS_ENABLE_ALL, 0);
dummy_register_level();

SEM_register_module() ;
CABS_register_module() ;
NOPM_register_module();
return TICK;

The filesystem always require the registration of a module that can accept soft aperiodic tasks
(such as the CBS, for example). Moreover, a mutex protocol must be present (NOPM, in this

case).

TASK _{_{i}}nit_{_{(}}void *arg)

{

}

extern int __bdev_sub_init(void);
extern int __fs_sub_init(void);
struct multiboot_info *mb=(struct multiboot_infox)arg;

/* block devices initialization */
__bdev_sub_init();

/* filesystem initialization */
__fs_sub_init();

__call_main__(mb);
return (void *)0;

This is a typical S.Ha.R.K. _init function. In this function, block devices and file systems
should be initialized.

int __bdev_subinit(void)

{

extern dev_t root_device;

BDEV_PARMS bdev=BASE_BDEV;

/* low level initialization */
bdev_def_showinfo(bdev,TRUE) ;
bdev_init (&bdev) ;

/* root device specification */

root_device=bdev_scan_devices(choose_root_callback) ;
if (root_device<0) {

26

/* in caso di errore... x/
sys_end () ;
return -1;

}

return 0;

}

This function initializes the block device layer. This function sets the parameters of the bdev
variable, calls the low level initialization functions and searches for the root device; basically, the
function must specify in some way which is the root device. In the function, the low level layer
lists all the available devices, calling the function choose root callback() for each of them. That
function will choose the root device.

int choose_root_callback(dev_t dev,u_int8_t fs)
{
if (£s==FS_MSDO0S)
return dev;
return -1;

¥

In this case, the choice of the root device is quite simple: the first FAT16 MSDOS partition
becomes the root device. Usually, MSDOS calls that partition “C:”.
int __fs_sub_init(void)
{
extern __dev_t root_device;

FILESYSTEM_PARMS fs=BASE_FILESYSTEM;
struct mount_opts opts;

/* mount parameters */
memset (&opts,0,sizeof (struct mount_opts));
opts.flags=MOUNT_FLAG_RW;

/* filesystem initialization */
filesystem_def_rootdevice(fs,root_device);
filesystem_def_fs(fs,FS_MSDOS);
filesystem_def_showinfo(fs,TRUE);
filesystem_init(&fs);

/* C library initialization */
libc_initialize();

return 0O;

}

This functions initializes the filesystem giving R/W permission on the root partition previously
found. Then, the C library is initialized.

3.2 Internal structure

Many data structures are composed by two parts: a generic part, that is independent from the
particular filesystem, and a filesystem specific part, that are usually stored into an union.

27

struct super_block {
struct super_block *sb_parent;
struct super_block *sb_childs;
struct super_block *sb_next;
__dev_t sb_dev;
struct inode *sb_root;
struct dentry *sb_droot;
struct file_system_type *sb_fs;
struct super_operations *sb_op;
struct dentry_operations *sb_dop;
struct mount_opts sb_mopts;
int sb_busycount;
__uint32_t sb_used:1;
__uint32_t sb_blocked:1;
union {

struct msdos_super_block msdos_sb;
} u;
3

Table 3.9: struct super block

Almost all the data structures have a set of functions that modifies them. Pointers to these
functions are included in a structure that has the name of the structure that is modified by the
functions with a suffix “operations”. For example, the structure super block (see Section 3.2.1.1)
has a structure super operations (see Section 3.1.2.1) that contains a function create inode.

Since the high layer functions influences the global system throughput, some informations are
duplicated in the data structures to speed up the execution.

The system is basically structured with a Unix-like approach, with 4 fundamental structures:

super contains informations on each device that is mounted (a table is used);
inode contains informations on the files in a filesystem (double lists with hash keys are used);
dentry contains the file names (a tree is used);

file contains informations on each open file (a descriptor table is used).

3.2.1 The data structures
3.2.1.1 struct super_ block

From a user point of view, the filesystem exports a unix-like view of the system. That is, partitions
can be mounted into the directory tree. When the system starts, the root directory is mounted as
“/”-

The struct super block contains the fundamental information of the filesystem (a unix-like
filesystem usually duplicates this informations a few times into the Hard disk). Every time a
partition is mounted a new structure is allocated and initialized. These structures are maintained
in a tree, that is, if a partition is mounted into a directory the new structure becomes a leaf of the
structure that contains the mount directory.

The root super block is stored into the global pointer root superblock; Figure 3.2 shows a
possible super block tree.

Here a short description of the struct super_block fields (see Table 3.9):

sb_parent, sb_childs, sb_next are used to store the tree structure: sb_ parent points to the
father of the structure, whereas sb__childs points to the first structure of the childs; sb_next
is used to create the brothers list (that is the children list of the father).

28

images/supertree.eps not found!

Figure 3.2: Super block tree

sb_dev Contains the device, that is the partition that contains the filesystem (the low level part
is responsible of the devices, that are typically associated to an hard disk partition. It is
possible for example to extend the low level to associate to a device other entities, such a file
on another filesystem (this is usually possible on Unix system through loopback devices).

sb_root This is the root directory inode of the filesystem.
sb_droot This is the directory entry (the filename) of the root directory.

sb_fs This is the pointer to the filesystem present in the filesystem. Every supported file system
is registered at init time (see Section 3.1.1).

sb_op Pointer to a structure that contains the specific filesystem functions used to use the struct
super _block.

sb _dop These are the specific function used for the directory entries.
sb_mopts Mount options used during initialization.

sb_busycount This is a counter that counts the number of entities that are using the filesystem
(e.g., a partition can be unmounted if someone is reading it).

sb used A flag that signals if the structure is used.

sb_blocked Some operations on this structure must be executed in mutual exclusion; if this flag
is set there is some operation on the structure. This flag can not be used/tested /modified
directly by the user functions.

3.2.1.2 struct dentry

The struct dentry contains the file names independently from the file type (regular file, directory,
...)L. Each file in the filesystem is always stored in two structures:

e struct dentry contains the filename;

e struct inode contains the other informations on the file.

This separation is made because in most file systems (not in the MSDOS FAT16) more than one
name can be linked to the same file (inode).

These data structures are stored internally in a tree structure. Please note that the inodes are
not structured as a tree; every dentry has a pointer to the correspondent inode.

Figure 3.3 shows a directory entry tree. Directories are showed with a continuous line, whereas
files are showed with a dashed line (note that the internal structures for files and directories are
the same).

l¢dentry” means Directory ENTRY.

29

struct dentry {
struct dentry *d_next;
struct dentry *d_prev;
struct dentry *d_parent;
struct dentry *d_child;
__time_t d_acc;
struct gstr d_name;
short d_lock;
struct dentry_operations *d_op;
struct inode *d_inode;
struct super_block *d_sb;

Table 3.10: struct dentry

root_direnetry

I
'
'
'

s
:
"config.sys" H
.

"ja L i

i Voo dentry :
v "readme.txt" H 1 "command. com" H
' ’ ' ‘

Figure 3.3: Directory entry tree.

30

struct gstr {
char name [MAXFILENAMELEN+1];
char *nameptr;

};

Table 3.11: struct gstr

The system do not load all the file names in the filesystem. Only the recent filenames are
stored in memory in a partial tree. These informations are continuously updated removing and
adding dentry struct.

Directory names are stored into a struct gstr (see Table 3.11). A string is not used to avoid
too much sting copies. The structure is composed by two fields:

nameptr If |= NULL, it is the name to use.

name If nameptr==NULL, it is the name to use.

The QSTRNAME can be used on a structure QSTR to get a (char *). When filling the structure,
one of the two fields can be used. If nameptr is used, the pointed string must be statically allocated.
If name is used, nameptr must be set to NULL.

The fields of the struct dentry contains the following informations:

d next,d prev,d parent e d child canbe used to store a dentry tree structure: d_ parent
is a pointer to the father’s dentry, d child is a pointer to a list of children dentry, d next
and d_prev are used to navigate into the children dentry list.

d_acc It is the time of the last access to the dentry structure.
d_ name Is the name associated to the dentry.

d_lock is a blocking counter: it is incremented every time a routine needs to use the dentry, and
it is decremented when it is no more needed. In that way, it is possible to know which are
the structures currently in use. The filesystem routines should not directly modify this field.

d_op Pointer to the virtual operations used to handle this structure.
d_inode is the inode associated to the structure.

d_sb It is the super_block that contains the directory. This a redundant information used to
speed-up the code.

3.2.1.3 struct inode

An inode is a file into a filesystem. It contains all the file informations except the name that is
maintained into a struct dentry (see 3.2.1.2; more details can be found into [?]).

All the inodes temporarily present in memory are stored into an hash bucket structure as
showed in Figure 3.4: for each device a number is computed using an hash function, the inode
number (file serial number) and the device number. All the inodes with the same hash entry are
stored in a list. The first inode in the list is stored in a table at the index given by the hash key.

An inode contains the following fields:

i_st Contains all the standard informations for a file (e.g., the length, the type); a task can
inspect these informations using the stat() primitive. These informations are included into
a stat structure that is shared between the user libraries and the internal implementation,
in a way that a memcopy should be enough to pass these informations.

31

images/inodebuckets.eps not found!

Figure 3.4: Inode data structures

struct inode {
struct stat i_st;
struct inode *i_next;
struct inode *i_prev;
int i_hash;
__rwlock_t i_lock;
__uint16_t i_dlink;
__uint32_t i_dirty:1;
struct inode_operations *i_op;
struct super_block *i_sb;
union {
struct msdos_inode_info msdos_i;
} u;
};

Table 3.12: struct inode

struct stat {
__dev_t st_dev;
__ino_t st_ino;
__mode_t st_mode;
__nlink_t st_nlink;
__uid_t st_uid;
__gid_t st_gid;
__off_t st_size;
unsigned long st_blksize;
__time_t st_atime;
__time_t st_mtime;
__time_t st_ctime;

};

Table 3.13: struct stat

32

struct file {
struct file *f_next;
struct dentry *f_dentry;
struct file_operations *f_op;
__loff_t f_pos;
unsigned int f_count;
__uint32_t f_flag isdir:1;
union {
struct msdos_file_info msdos_f;
} u;
+;

Table 3.14: struct file

i next,i prevei hash These fields are used to implement the double linked list and the
hash key: i next and i _prev implement a double list, whereas i hash is the hash key
(redundant information).

i_lock It is a lock for the structure (see Section 3.2.2.3).

i_dlink Number of directory entries that points to the inode (see Section 3.2.1.2).

i_dirty A flag that says if this inode has been modified.

i_op Virtual operations used for working with this inode. Usually they are filesystem specific.
i_sb Super block where the inode is stored (see Section 3.2.1.1).

The struct stat showed in Table 3.13, contained into the struct inode and described in the para-
graph 5.6 of [?], contains the following fields:

st _mode It is the file mode (informations about who can read/modify/execute a file).
st _ino An unique number that identifies a file (“file serial number” in the Posix terminology).

st _dev It is the device serial number; st_ dev and st_ ino are necessary and sufficient to uniquely
identify a file in the system.

st nlink Number of hard links to a file (Always 1 for FAT16 file systems).

st uid e st _gid File group and user identifiers. 0 is used for the system administrator. The
FAT16 filesystem always set these fields to O.

st_size File length (bytes).

st atime, st mtime e st ctime File times: st_ atime is the time of the last access, st_ mtime
is the time of the last modification and st_ ctime is the time of the last state change (e.g.,
when the file has been created or modified using chmod).

3.2.1.4 struct file
Every open file has a struct file associated to it (see Table 3.14).
f next Pointer used internally to the filesystem modules.

f dentry contains the filename (see Section 3.2.1.2). From here we can get the corresponding
inode number.

f op Contains a pointer to the virtual operation that works on struct file, described in Section
3.1.2.4.

33

struct file_descriptors {
struct file *fd_file[MAXOPENFILES];
__uint16_t fd_flags[MAXOPENFILES];
__uint32_t fd_fflags[MAXOPENFILES];
__mode_t fd_umask;
char fd_cwd[MAXPATHNAMELEN+1];
struct dentry *fd_cwden;
__mutex_t fd_mutex;

};

Table 3.15: struct file descriptors

f pos Contains the current position into the file. read/write operations are done starting from
this point; moreover, Posix specification allow a seek to a position beyond file termination:
in that case read operation should fail, whereas write operation should fill the gap with
ZEeroes.

f count Contains the number of file descriptors that are using this structure for input/output
operations on the file.

f flag isdir Flag that says if this is a directory (redundant information).
msdos__f FAT16 specific informations.

The applications use a file descriptor to index the file to use. A file descriptor is a number
meaningful only for the processor that obtained it (e.g. through an open operation) that is
assigned to a struct file through a descriptor table. Every process has a different table, contained
into the struct file descriptors described in section 3.2.1.5. The whole S.Ha.R.K. Kernel can be
considered a monoprocess multithread application, and for that reason it has only one descriptor
table.

3.2.1.5 struct file descriptors

This struct is used to store all the general parameters assigned to a process (e.g., the current di-
rectory). Again, S.Ha.R.K. has only one structure because it can be considered like a monoprocess
multithread system. A mutex is used to guarantee mutual exclusion when the struct is used by
more than one thread. The structure contains the following fields:

fd file This is the descriptor table; every descriptor (with value between 0 and MAXOPEN-
FILES) is associated an element that can have the following values:

e NULL if it is a free descriptor;

e RESERVED if it is reserved for special uses (e.g., descriptors assigned to the keyboard
or to the console)

e pointer to the file

fd flags Flags associated to the file (e.g., FD_ CLOSEXEC), described in detail in [?], when the
fentl() primitive is described.

fd fHlags Flag used when the file was opened (e.g., O_APPEND, O_RDONLY, ecc...).
fd umask Mask used during file creation;can be modified with the function umask().

fd cwd Current working directory used by all the primitives that receives a relative pathname
(that does not start with “/” (redundant information).

fd cwden The current working directory; it can be modified using the function chdir().

fd mutex Mutual exclusion semaphore used for concurrent multithread access.

34

dcache_t *dcache_lock (__dev_t dev,
__blkcnt_t lsector);

void dcache_unlock (dcache_t *);

dcache_t *dcache_acquire (__dev_t dev,
__blkcnt_t lsector);

void dcache_release (dcache_t *);

void dcache_dirty (dcache_t *d);

void dcache_skipwt(dcache_t *d);

Table 3.16: Disk cache interface

3.2.2 Disk Cache
3.2.2.1 How to use the cache

The filesystem modules use the disk cache to get all the informations they need.
The disk cache interface is showed in Table 3.16:

dcache lock This function can be used to require a read only access to the cache. More than
one thread can lock a block. the parameters are the device number and the sector number;
it returns a pointer to the struct dcache t in case of success, or NULL in case of error. This
function do not return until the access is granted or an error occurred. To avoid critical
blocking times in case more than one block is needed, you must use a proper access protocol:
the blocking must be done with increasing block numbers; moreover, if possible, only one
block should be blocked at a time.

dcache unlock This function can be used to unblock a cache entry previously blocked.

dcache acquire This function behaves as dcache_lock(), but it requires a read/write access.
Only one task at a time can acquire the lock. This access do not imply that the cache entry
is considered dirty (see the dcache_ dirty() function).

dcache release This function is similar to dcache_unlock(), and works with the locks acquired
by dcache acquire().

dcache dirty Signal that the cache entry has been modified. This function must be called only
if we own a read/write lock and if the cache has been modified.

dcache skipwt This function signals to the system that the cache entry contains system infor-
mations that are often modified. That means that the write through flag should not be
considered. See section 3.2.2.2 for a detailed description.

3.2.2.2 struct dcache

This data structure, used by the module that implements the data cache, represents a cache entry.
All the high level functions uses the cache module as an interface to the lower layer.

These structures are maintained in the system wit a structure similar to the inodes, that is a
set, of double linked lists that I can access using an hash key, as showed in Figure 3.5; the hash key
is computed using the device (that is the physical peripheral) and the lsector (the logical sector).

Every struct dcache is an elementary block that can be transferred to a device. It is not
possible to have 2 data structures that refers to the same block. That is, the pair (device,lsector)
must uniquely identify the data sector on the physical device (e.g., the block 64 in “ide/hda” could
be the block 0 of “ide/hdal”, as explained in section 2.1.2).

The field of the structure (see Table 3.17) are:

prev, next e hash Are used to store the structures into the lists that are accessed using the

hash key: next and prev are used to implement a double linked list, whereas hash is the
hash key.

35

Bucket dev: hdal dev: hdc2 dev: hdb
key:0 lsect: 123 lsect: 97 lsect: 10827

Bucket

key: 1 1

Bucket dev: hdal dev: hdal
key: n lsect: 127 lsect: 32168
Bucket dev: hdb

key: rmax lsect: 9997

Figure 3.5: Data structure for disk cache

typedef struct TAGdcache {
int prev;
int next;
int hash;
__dev_t device;
__blkecnt_t lsector;
__uint8_t buffer [MAXSECTORSIZE];
int used;
__time_t time;
int numblocked;
__fs_sem_t sync;
__fs_sem_t esync;
__rwlock_t rwlock;
__uint32_t dirty:1;
__uint32_t ready:1;
__uint32_t esyncreq:1;
__uint32_t skipwt:1;

} dcache_t;

Table 3.17: struct dcache

36

device, Isector e buffer These fields contain the physical device, the logical sector and the data
contained in the corresponding physical block. These are the unique fields that a high level
routine should use (and that shall be provided by a data cache).

used The number of tasks that are using the block; -1 means that no one is using the block, and
that the block is free.

time The last block access time.

numblocked It is the number of tasks that are waiting the availability of the block, (that is, they
are waiting the flag ready to be set). That is, if a task asks for a block already asked by
another task, but not yet available (not made available by the lower layer), then the task
blocks on a synchronization semaphore, and it increments that field.

sync This is the synchronization semaphore used by the blocked tasks that waits the setting of
the ready flag.

esync It is a synchronization semaphore on the errors needed during the cache “purging” phase
(see later).

rwlock This is a locker used to require the R/W access to the block (see Section 3.2.2.3).
dirty This flag is set if the block has been modified.
ready This flag is set if the block is available.

esyncreq This flag is set if the synchronization on errors is required (that is, the field esync is
used).

skipwt This flag says if the write through handling should be done.

The fields esync and esyncreq are used during the “purging phase”: a task requires a read or write
operation on a block, the block is not into the data cache, and the cache is full. That is, another
block must be discarded from the cache. To discard a block it can happen that a disk write
operation must be done. While this write operation is in progress other tasks can require the same
(discarded, in writing) block. These tasks can block waiting for synchronization on the block. In
that case the cache behavior could be the following: the requests on the block are aborted (the
failure is only needed if we are able to free the block; the blocked tasks are awakened with an
error); or, the requests on the block are not aborted (the block can not be freed, and the tasks
blocked on it are woken up). The problem is that after the task has wake up all the blocked
tasks, it must wait that all the awakened tasks check for an error. To do that, the task set the
esyncreq flag, and it blocks on the esync semaphore; the last task that checked for errors, checks
the esyncreq flag and signal the esync semaphore waking up the waiting task.

The disk cache can work in three different modes: “copy-back”, “write-through” and “modified
write-thought”. Usually most time-sharing OSes handle a copy-back cache. that is, write opera-
tions are done only in cache; a low priority task is used to synchronize cache and disk data. In
such a system, if a cache request arrives and the cache is full, a block is freed eventually writing
it on the disk. On a real-time system such a behavior can give some problems, because the time
spent freeing the cache can be accounted to the running task. For example, a task that only reads
can be delayed by another task that fills the cache memory writing blocks on the disk. To solve
this problem there are 2 solutions: the cache is not used (that is, no caching on write), or the
cache behavior is set to write-through, that is the write operations are immediately synchronized
on the disk, in a way that who dirties the cache is also responsible for its synchronization.

If the cache is used in write-through mode, another problem arises: sometimes a few bytes
are modified frequently (e.g. the filesystem information for the allocation of a file on the disk),
that leads to continuous disk writes. For that reason, the disk cache provides the flag skipwt,
that forces the copy-back mode for a particular block. By default, this flag is not set. When the
write-through policy must be disabled, the file system should call the function dcache skipwt()
on the cache-entry before releasing it.

37

typedef struct {
__mutex_t mutex;
int active_readers;
int active_writers;
int blocked_readers;
int blocked_writers;
__sem_t readers_semaph;
__sem_t writers_semaph;
} __rwlock_t;

Table 3.18: struct rwlock t

void __rwlock_init (__rwlock_t *ptr);
void __rwlock_rdlock (__rwlock_t *ptr);
void __rwlock_wrlock (__rwlock_t *ptr);
int __rwlock_tryrdlock (__rwlock_t *ptr);
int __rwlock_trywrlock (__rwlock_t *ptr);
void __rwlock_rdunlock (__rwlock_t *ptr);
void __rwlock_wrunlock (__rwlock_t *ptr);

Table 3.19: Lockers functions

3.2.2.3 struct rwlock ¢t

The cache module and other modules need a locker protocol, that is a protocol that solves the
reader /writer problem: basically, there is a shared resource where some processes must read or
write. These rules must be imposed by the protocol:

1. If someone is writing, no one is authorizes to read or write.

2. If someone is reading, other tasks are authorized to read, but not to write.

In literature, there exist different methods to solve the problem with different behaviors. This
filesystem implements the protocol proposed into paragraph 4.2.3.1 of [?]. To replace that policy,
the rwlock.c file should be modified with another algorithm, maintaining the same interface.

Table 3.18 contains the internal data structure of the implemented protocol. To implement
a “locker”, all the needed data must be inserted into a structure _ wrlock t. The following
functions have also to be provided (see Table 3.19):

__rwlock init Initializes the structure passed as parameter. That structure is passed to all
the functions and it is used to protect a shared resource.

__rwlock rdlock Read request (read lock); when this function returns, the calling task is
authorized to read the shared resource.

__rwlock wrlock Write request (write lock).

_rwlock tryrdlock Conditional read request (try read lock); The function return 0 if the
calling task can read, another number otherwise. At the end of the read operation (if the
lock has been granted), rwlock rdunlock must be called.

__rwlock_trywrlock Conditional write request (try write lock); The function return 0 if the
calling task can write, another number otherwise. At the end of the write operation (if the
lock has been granted), rwlock wrunlock must be called.

__rwlock rdunlock Read unlock; the task has finished the use of the shared resource.

38

__rwlock wrunlock Write unlock; the task has finished the use of the shared resource, that
is again in a consistent state.

The functions rwlock rdlock and ~ rwlock rdunlock must always be used together. Nested
calls are not allowed. The same rules apply to __rwlock_wrlock and _ _rwlock_wrunlock.

Please note that __rwlock rdlock and __rwlock wrlock can cause undefined task blocking.
The other functions do not block the calling task.

3.3 Filesystem: MS-DOS (FAT16)

3.3.1 Description
A technical description of the FAT16 filesystem can be found in [?] or [?].

3.3.1.1 Internal structure

As showed in Figure 3.6, this filesystem is divided in areas:

Boot sector Contains a small program that loads the MSDOS operating system, as specified into
[?]. It also contains other informations like the number of FATS, the kind of support and
the dimension of the Root Directory; It can be thought as a super-block. The informations
contained in this sector are showed in Table 3.20.

FAT tables This data area contains some copies of the File Allocation Table (FAT) These infor-
mations are used to know where a file can be found on the hard disk.

Root directory This block is structured as all the blocks that contains a directory, with the
exceptions that it is allocated in a contiguous way and that it has a fixed size.

Data area This is the area where the files and directories are stored. The minimal allocation
unit is a cluster, that is a set of contiguous sectors on the hard disk. The boot sector stores
the number of sectors that compose a cluster.

3.3.1.2 The boot sector

Table 3.20 shows the boot sector structure. The boot sector is always 512 bytes large. The struct
is only the first part of the sector, the second part is the boot loader. Here is a small description
of some fields:

sectorpercluster stores the number of sectors included into a cluster.
sectorsperfat stores the number of sectors in the FAT

fatsnumber stores the number of FATs on the disk.

A note: when MSDOS formats (creates a FAT16 filesystem) a disk, the informations that comes
from a pre-existing filesystem have precedence over the informations given by the hardware. That
is, if an hard disk declares to have 8 heads, and the pre-existing filesystem has headsperdisk=13,
the new file system will have 13 heads :-).

3.3.1.3 The File Allocation Table

Every FAT is organized as a table of 16 bit elements. Every element is a cluster; the element value
gives informations about the cluster:

e 0 means the cluster is available.

e values between 0xfff0-0xfff7 are reserved; for example, 0xfff7 means bad (damaged) cluster.

39

Boot Sector

FAT tables

Root directory

Data area

Figure 3.6: Internal structure of the MSDOS FAT16.

40

struct bootrecord {
__uint8_t reserved[3];
char oemname[8] ;
__uint16_t bytespersector;
__uint8_t sectorspercluster;
__uint16_t hiddensectors;
__uint8_t fatsnumber;
__uint16_t rootentry;
__uint16_t sectors;
__uint8_t media;
__uint16_t sectorsperfat;
__uint16_t sectorpertrak;
__uint16_t headsperdisk;
__uint32_t hiddensectors32;
__uint32_t sectors32;
__uint16_t physicaldrive;
__uint8_t signature;
__uint8_t serialnumber[4];
char volumelabel[11];
char fattypel[8];

Table 3.20: The MS-DOS boot sector.

/_N 27
24 XX
25 31
26 XX
27 25
28 XX
29 XX
30 XX
31 OxEFEFE

Figure 3.7: An example of File Allocation Table (FAT)

41

struct directoryentry {
__uint8_t name[8];
__uint8_t ext[3];
__uint8_t attribute;
__uint8_t reserved[10];
__uint16_t time;
__uint16_t date;
__uint16_t cluster;
__uint32_t size;

};

Table 3.21: MSDOS Directory Entry.

o (OxfIf8-Oxfiff says that the cluster is the last cluster in a file.

e Every other value index which is the next cluster of the file.

The FAT is used to create a set of chains that make a file. For example, Figure 3.7 shows the
information for a file stored in 4 clusters (23, 27, 25, 31). The first cluster of the chain is contained
into the directories. Please note that the first cluster of the data area is the number two, because
cluster 0 and 1 (the first 4 bytes) are used to store the type of FAT (12 or 16 bit), and the disk
format.

Directories (except the root directory) are common files with a particular structure. The
system usually give access to directories through other primitives (mkdir, creat, and so on).

3.3.1.4 The “root directory”

This area has the same structure of a directory file, except that it has fixed dimension, it is not

allocated into the data area and its allocation is contiguous. Common directories have the same

structure except that they are allocated into the data area, and that they can be fragmented.
The directory structure is showed in Figure 3.21:

name and ext Contains the filename in the classic format 843. Non used chars are filled with
spaces.

attribute File flags: they specify if it is regular, a directory, a volume label, it has been archived
or if it is read-only.

time Creation time (2 seconds resolution) (all the 3 times specified by the POSIX standard are
mapped on that date). The time format is MSDOS specific.

date Creation date (until 2099). The date format is MS-DOS specific.

cluster The first cluster of the file. A value 0 means empty file (the first available cluster is the
cluster 2).

size File size (32 bit).

Note the difference with the typical Unix file systems, where file names and file informations are
stored in different areas.

Directory entries are not contiguous. If the first character name is Oxeb, the file has been
deleted, if it is 0x00, it has been never used. Any other character means that the entry is valid.
0x00 is used for efficiency: if it is found, directory scan is ended also if there are other sectors in
the cluster that contains a directory.

42

file serial number

<
I% #entry

S#cluster
~

Figure 3.8: The FAT16 file serial number.

3.3.1.5 The data area

The data area is divided in clusters, that are a set of sectors. It starts from cluster number 2, and
it stores regular files and directories.

linear addresses are used to identify a sector on a hard disk, and its cluster. Hard disk sectors
are numbered starting from sector 0. The filesystem specifies an algorithm that associates to every
linear address an address C/H/S (Cylinder /Head/Sector).

Some MS-DOS implementation supposes a particular structure depending on the media used:
a 1.44 Mb floppy disk has sectors composed by 1 sector, and a root directory of 14 sectors. The
best way to implement a filesystem is to rely only on the super block informations.

3.3.2 Implementation notes

The filesystem maintains 2 structures to store file informations: an inode structure and a dentry
structure. In the MSDOS FAT16 filesystem unfortunately there is an unique correspondence
between file names and inodes, and that information is contained into the filesystem directory
entry.

When the system refers to a file, it use the inode number. That is, every file has a number
that is unique inside the file system.

The FAT16 serial number has been specified as shown in Figure 3.8:

e The most significant part is the cluster number (the cluster where the directory is stored).
e The less significant part is the number into the directory entry.

For example, the inode number 0x01230008, refers to the 8th directory entry into the cluster
0x123.

The cluster 1 is used to index the directory entries contained into the root directory, whereas
the cluster 0 is used to index the root directory.

43

