S.Ha.R.K. User Manual

Volume I

Kernel Primitives

Written by
Giorgio Buttazzo (giorgio@sssup.it)
Paolo Gai (pj@sssup.it)
Luigi Palopoli (luigi@hartik.sssup.it)
Marco Caccamo (caccamo@sssup.it)

Giuseppe Lipari (lipari@sssup.it)

Scuola Superiore di Studi e Perfezionamento S. Anna
RETIS Lab

Via Carducci, 40 - 56100 Pisa

Contents

1 Introduction

1.1 General Description
1.2 SHARK.CFG
1.3 Predefined Types and Constants . . .
2 System Start-up and Termination
2.1 Initialization File
2.2 System primitives.
3 Task Management
3.1 TaskModel
3.2 The scheduling policy
3.3 Task Creation
3.4 Group Creation
3.5 Task Activation and Termination . . .
3.6 Task Instances
3.7 Task (thread) specific data
3.8 Task cancellation
39 Join
3.10 Preemption control
3.11 Suspending atask
3.12 Job ExecutionTime (JET) estimation
4 Synchronization and communication
4.1 POSIX Semaphores.
4.2 Internal Semaphores
4.3 Mutexes and Condition Variables . . .
4.3.1 Mutex attributes
4.3.2 Functions
4.4 Communication Ports
4.5 Cyclical Asynchronous Buffers
4.6 POSIX Message Queues
5 TUtility functions
5.1 Reading time
5.2 Getting information on tasks
5.3 Printing messages on the console . . .

6 Signals and Exception Handling

6.1 Signals................
6.2 Exception handling
7 Interrupt and HW Ports handling
7.1 Setting an interrupt handler
7.2 Reading and writing from I/O ports
7.3 Disabling/Enabling interrupts . . .
7.4 Saving/Restoring interrupts
7.5 Masking/Unmasking PIC interrupts

8 Memory Management Functions

A Errors and Exceptions

Al

Abortcodes

A.2 Exceptions posted with kern raise
A.3 POSIX errorcodes
A4 S.HaR.K.errorcodes

47
47
47

49
50
50
51
51
51

52

Chapter 1

Introduction

Real-time computing is required in many application domains, ranging from embedded process
control to multimedia systems. Each application has peculiar characteristics in terms of timing
constraints and computational requirements (such as periodicity, criticality of the deadlines, tol-
erance to jitter, and so on). For this reason, a lot of different scheduling algorithms and resource
allocation protocols have been proposed to conform to such different application demands, from
the classical fixed or dynamic priority allocation schemes to adaptive or feedback-based systems.

However, most of the new approaches have been only theoretically analyzed, and sometimes
evaluated using a scheduling simulator. In this case, the algorithm performance is not evaluated
on real examples, but only on a synthetic workload. This choice is often dictated from the fact
that writing a kernel from scratch every time a new scheduling algorithm is proposed would
be unrealistic and would not offer the availability of meaningful applications. A more effective
approach is to modify an existing kernel (such as Linux), since most of the existing applications
and device drivers written for the host OS can be used in a straightforward fashion. On the other
hand, a general purpose kernel is designed aiming at specific goals and generally its architecture
is not modular enough for replacing or modifying the scheduling policy. Moreover, classical OSs
do not allow to easily define a scheduling policy for resources other than the CPU and this poses
a further limitation for testing novel research solutions. This is mainly due to the fact that the
classical OS structure does not permit a precise device scheduling (due to problems involving
resource contention, priority inversion, interrupt accounting, long non-preemptive sections, and
so on). A small kernel providing short non-preemptable sections, aperiodic real-time threads for
handling interrupts, and a distinction between device drivers accessing the hardware and device
managers implementing the device scheduling algorithms would help the progress in this research
field. The problems explained above emerge both in the educational and research environments,
when the focus is oriented in developing and testing new scheduling algorithms rather than
hacking the code of a complex system.

S.Ha.R.K. (Soft and Hard Real-time Kernel), is a research kernel purposely designed to help
the implementation and testing of new scheduling algorithms, both for the CPU and for other
resources. The kernel can be used to perform early validation of the scheduling algorithms
produced in the research labs, and to show the application of real-time scheduling in real-time
systems courses. These goals are fulfilled by making a trade off between simplicity and flexibility
of the programming interface on one hand and efficiency on the other. This approach allows
a developer to focus his/her attention on the real algorithmic issues, thus saving significant
time in the implementation of new solutions. Another important design guideline is the use of
standard naming conventions for the support libraries in order to ease the porting of meaningful

applications written for other platforms. The results have been satisfactory for applications such
as an MPEG player, a set of network drivers and a FFT library.

The kernel provides the basic mechanisms for queue management and dispatching and uses
one or more external configurable modules to perform scheduling decisions. These external
modules can implement, periodic scheduling algorithms, soft task management through real-time
servers, semaphore protocols, and resource management policies. The modules implementing the
most common algorithms (such as RM, EDF, Round Robin, and so on) are already provided,
and it is easy to develop new modules. Each new module can be created as a set of functions
that abstract from the implementation of the other scheduling modules and from the resource
handling functions. Also the applications can be developed independently from a particular
system configuration, so that new modules can be added or replaced to evaluate the effects
of specific scheduling policies in terms of predictability, overhead, and performance. Low-level
drivers for the most typical hardware resources (like network cards, graphic cards, and hard
disks) are also provided, without imposing any form of device scheduling. In this way, device
scheduling can be implemented by the user to test new solutions. To avoid the implementation
of a new non-standard programming interface, which would discourage people from using the
kernel, S.Ha.R.K. implements the standard POSIX 1003.13 PSE52 interface [?, ?].

This manual was derived from the Hartik User Manual release 3.3.1.

1.1 General Description

S.Ha.R.K. has been designed as a library of functions which extends the classical C library, by
providing a multiprogramming environment with an explicit management of time. From a logical
point of view, the system is based on a Host computer where the application is developed and on
a Target computer where the application executes. Development tools are located on the host
system, where a general purpose operating system is used. After its compilation, the application
is loaded on the target system using the appropriate loader. This separation, typical of many
hard real-time development systems, enables the final application to run on a variety of target
systems, ranging from typical PC to embedded micro-controllers. From a practical point of view,
host and target may be the same computer and in the rest of this manual we will not further
distinguish between them.

S.Ha.R.K. has been developed focusing on modularity of the kernel source code. S.Ha.R.K.
is fundamentally a set of routines that runs on top of a library for OS development called OSLib
(see http://oslib.sourceforge.net) that has these requirements:

Operating System (OS) You can compile OSLib/S.Ha.R.K. programs using some different
host OS in theory, any OS supporting gcc can be used; in practice, we successfully compiled
OSLib/S.Ha.R.K. from Linux, DOS and Cygwin.

Compiler The used compiler is gee. You can use the gee version that you prefer (we tested gee
3.3.3 and older version), the important thing is that the linker must produce ELF binaries
(in order to be MultiBoot compliant and to avoid problems with the Linux source code
inside S.Ha.R.K.). An ELF cross-compile version of gcc is included inside the DJGPP dis-
tribution on the S.Ha.R.K. website, so you can easily compile OSLib/S.Ha.R.K. programs
inside a standard DOS environment. To compile under Cygwin, it is required to build an
ELF cross-compile gee/linker couple.

Other utilities GNU Make , uname, pwd, cp, rm, X (these utilities can be found in the utility
package on the S.Ha.R.K. web site).

Target Requirements The target have to be at least a PC based on Intel 80486 (or compatible)
- SMP is not supported - with at least 4Mb of RAM. In order to load OSLib/S.Ha.R.K.
programs (MultiBoot compliant), the target must have GRUB installed, or it must run
a real mode operating system (such as MSDOS or FreeDOS). If you intend to boot
OSLib/S.Ha.R.K. programs from DOS, you also have to download our DOS eXtender
X.

Compilation and application linking can be done using the make utility, available in any of the
development environments mentioned above. In this case, a “makefile” containing the names of
all of the .C files composing the application and the directives to link the needed libraries have
to be written. For more information, you can look at the installation txt file from the website
download page.

1.2 SHARK.CFG

Inside SHARK.CFG you can find the main parameters for S.Ha.R.K. configuration. All the stettings
inside this file will be crucial to run correctly S.Ha.R.K. and to get the maximum performaces
on a x86 machines. The most important options related to the Real-Time behaviour are:

TSC = TRUE/FLASE

e This option enables the Time Step Counter inside the CPU (Pentium or higher). Kern _gettime
function will use the TSC register which is faster and more precise than the external PIT.
The default value is TRUE. If the system cannot find the TSC, this feature will be disabled
and PIT will be used to get the system time.

APIC = TRUE/FALSE

e This option enables the APIC (Pentium Pro or higher). As TSC, APIC is faster and more
precise than the standard PIT. It will be used to generate the timer interrupts. The default
value is TRUE. If the system cannot find the APIC, the feature will be disabled. On some
embedded systems or old PC, the APIC check could hang the system, so you must disable
it manually. APIC requires the TSC.

Look inside SHARK. CFG to discover all the remaining system options, which are version dependent.

NOTE: You must recompile S.Ha.R.K. if you modify SHARK.CFG

1.3 Predefined Types and Constants

Tables 1.1, 1.3, 1.2, 1.4 show a subset of the predefined data types in S.Ha.R.K., a subset of the
possible task states and Models and the system basic constants.

Type

Description

BYTE
WORD
DWORD
TIME
PID
TASK
PORT
CAB

unsigned char, [0, 255]

unsigned int, [0, 65535]

unsigned long, [0, 0xFFFFFFFF]
unsigned long, [0, 0xFFFFFFFF]
Task identifier

task

communication endpoints

cyclic asynchronous buffers

Table 1.1: Predefined types.

Identifier Value
FREE 0
EXE 1
SLEEP 2
WAIT JOIN 3
WAIT COND 4
WAIT _SIG 5
WAIT SEM 6
WAIT NANOSLEEP 7
WAIT SIGSUSPEND 8
WAIT MQSEND 9
WAIT MQRECEIVE 10

Table 1.2: Task states. (Note that a scheduling module can add its private task states.)

Identifier

Class

HARD TASK MODEL
SOFT _TASK MODEL
NRT TASK MODEL
JOB_TASK MODEL
DUMMY_TASK MODEL
ELASTIC_TASK MODEL

Periodic and sporadic hard tasks
Periodic and aperiodic soft tasks
Non-real-time tasks
A task instance (job) that can be inserted into another module
Model used for the Dummy Task
Elastic task, used with the Elastic Module

Table 1.3: Basic Task Models included with the default distribution (see include/kernel/model.h).

Identifier Value
MAX PROC 66
MAX RUNLEVEL FUNC 40
JET TABLE DIM 20
MAX CANCPOINTS 20
MAX SIGINTPOINTS 20
MAX SCHED LEVEL 16
MAX RES LEVEL 8
MAX LEVELNAME 20
MAX MODULENAME 20
MAX TASKNAME 20
NIL -1
RUNLEVEL_ STARTUP 0
RUNLEVEL _INIT 1
RUNLEVEL RUNNING 3
RUNLEVEL SHUTDOWN 2
RUNLEVEL BEFORE EXIT 4
RUNLEVEL AFTER_EXIT 5
NO_ AT ABORT 8

Table 1.4: System constants (see include/kernel/const.h).

Chapter 2

System Start-up and Termination

Each S.Ha.R.K. application starts as a sequential C program, with the classical main funcion.
The multitasking environment is already initialized when the application starts. From the main
task you can call any system primitive.

The system finishes when a sys _end or sys abort function is called, or when the last user
task is terminated. For more information, see The Generic Kernel Internals chapter of the
S.Ha.R.K. Kernel Architecture Manual.

The sys_atrunlevel () primitive allows to post some handlers, which are automatically ex-
ecuted by the kernel when it changes runlevel. Such functions can be issued either in the target
execution environment (generally MS-DOS) or just before terminating the S.Ha.R.K. kernel, de-
pending on the third argument of the primitive. The handlers posted through sys_atrunlevel ()
may also be called on a kernel abort due to fatal errors.

2.1 Initialization File

When the system starts, one of the things to be done before going in multitasking mode is to
initialize the devices, the resources and the schedulers which will be used by the application. To
do that, the Kernel calls the __ kernel register levels function, that usually registers the
following modules (see the S.Ha.R.K. Kernel architecture Manual for more details):

Scheduling Modules A scheduling module implements a particular Scheduling Algorithm (for
example EDF, RM, Round Robin, and so on).

Resource Modules A resource module implements a shared resource access protocol (for ex-
ample the semaphores, the mutexes, and so on).

Other devices Such for example the File System, and other devices that need to be initialized
when the Multitasking Mode is not started yet.

The function returns a TICK value (in microseconds) that is the time that will be used for
programming the periodic timer interrupt of the PC. If a value of 0 is returned, the one-shot
timer is used instead (see the OSLib documentation for more informations). Typical return
values range from 250 to 2000 microseconds.

Here is a typical initialization function:

TIME __kernel_register_levels__(void *arg)

10

struct multiboot_info *mb = (struct multiboot_info *)arg;
EDF_register_level (EDF_ENABLE_ALL);

RR_register_level (RRTICK, RR_MAIN_YES, mb);
CBS_register_level (CBS_ENABLE_ALL, 0);
dummy_register_level();

SEM_register_module();
CABS_register_module();

return 1000;
}

As you can see, the system initialization function registers an EDF, a Round Robin and a CBS
module. Then, It register a dummy Module (that usually is the last of the Scheduling Modules).
For more informations about the Scheduling policies, see Section 3.2. Finally, Semaphores and
CABS are registered, and a value of 1 ms Tick time is returned to initialize the PC’s real-time
clock.

For a survey of the architecture of the Scheduling Modules and the Resource Modules see
theKernel Overview Chapter of the S.Ha.R.K. Kernel Architecture Manual. A set of Initialization
functions can be found on the kernel /init directory of the S.Ha.R.K. source tree. An explanation
of each registration function for each Module can be found in the S.Ha.R.K. Module Repository
Manual.

After the registration of the modules in the system, the Kernel switch in Multitasking mode,
and starts the execution of the handlers that the modules have posted with the sys_atrunlevel
primitive. Usually at least one Module will create and activate a task (for example, the Round
Robin Scheduling Module does that) that will start when all the handlers will be processed.
The body of that task is usually called __init () and provides an initialization for the most
commonly used devices (such the keyboard, and so on) and modules. As the last thing, the
function simply call the main() function, that is, the user application starts. A sample of a
typical _ init () function is showed below:

TASK __init__(void *arg)
{

struct multiboot_info *mb = (struct multiboot_info *)arg;

HARTPORT_init () ;
__call_main__(mb);
return (void *)0;

3

The source code of the __init () function is usually inserted in the initialization file after
the kernel register levels function. For more information on _ call main _ see the
include/kernel/func.h include file.

Using the new driver layer the _ init() _ function slightly change. First is executed the
HARTPORT _init function that initialize the Hartik Port layer (if required), then a task that
close all drivers is created. The next step is the initialization of all used drivers, followed by the
registration of the shutdown task that will be executed during the system shutdown procedure.

11

At the end the function 'main’ is executed. A tipical example with the new _ _init() __ function
is:

TASK __init__(void *arg)
{

struct multiboot_info *mb = (struct multiboot_info *)arg;
HARTPORT_init () ;

/* Create the shutdown task. */
/* It will be activated at RUNLEVEL SHUTDOWN */
set_shutdown_task() ;

/* Init the drivers x/
device_drivers_init();

/* Set the shutdown task activation */
sys_atrunlevel(call_shutdown_task, NULL, RUNLEVEL_SHUTDOWN) ;

__call_main__(mb);

return (void *)0;

}
ATTENTION! In some initialization files the function that activate the shutdown task is in

the form:
#define SHUTDOWN_TIMEOUT_SEC 3

void call_shutdown_task(void *arg) {
struct timespec t;
sys_gettime (&t);
t.tv_sec += SHUTDOWN_TIMEOUT_SEC;

/* Emergency timeout to exit from RUNLEVEL_SHUTDOWN */
kern_event_post(&t, (void *) ((void *)sys_abort_shutdown),
(void *)0);
task_activate(shutdown_task_PID);
}

This implementation say that the task has 3 seconds to perform drivers stop. After that
interval the system is forced to close even is some drivers are not closed. If a longer time
is needed a greater value for SHUTDOWN_TIMEQUT_SEC constant must be used. If a shutdown
without the timer is preferred the function could be in the simpler form:

void call_shutdown_task(void *arg) {

task_activate(shutdown_task_PID);
}

12

2.2 System primitives

Here is a list of primitives whose use is related to the system initialization.

SYS ATRUNLEVEL

int sys_atrunlevel(void (*func_code) (void *),void *parm, BYTE when);

Description: The Generic Kernel supports the specification of the functions to be called at sys-
tem initialization and termination. These functions can be registered through this system
primitive; the parameters for that function are:

f the function to be registered;
p the parameter to be passed to function £ when the function will be called;

when is the situation in witch that function will be called. The correct values are the following;:

RUNLEVEL_INIT Used when programming Modules;

RUNLEVEL_SHUTDOWN The function will be called after a call to sys_abort or sys_end; The
system is still in multitasking mode;

RUNLEVEL_BEFORE_EXIT The function will be called when the Kernel exits from multitask-
ing mode;

RUNLEVEL_AFTER_EXIT The function is called before the system hangs (or returns to the
host OS, if the proprietary extender is used).

It is also possible to specify with an OR operator a flag NO_AT_ABORT that disables the call
to the functions if the system is exiting with a sys_abort function.

You can post at most MAX_RUNLEVEL_FUNC functions. See the S.Ha.R.K. Kernel Architecture
Manual for more details.

See also: sys_init(), sys_end().

EXIT

void exit(int status);

Description: This function call terminates the Kernel. In this phase, the Kernel tries to cor-
rectly close all the initialized modules and drivers. The functions eventually posted with
the sys_at_runlevel call are also executed.

If called inside an event or inside an ISR, it does return to the caller. The system shutdown
will start when all the current interrupts have been serviced, and the system has been
rescheduled. Otherwise, this function follows the POSIX specification.

See also: _exit(), sys_panic(), sys_atrunlevel ().

_EXIT

void _exit(int status);

Description: Same as exit (). functions posted through sys_at_runlevel with NO_AT_ABORT
set or functions posted with atexit () are not executed.

13

See also: exit(), atexit(), sys_panic(), sys_atrunlevel().

SYS PANIC

void sys_panic(const char * fmt, ...);
Description: This function call print a message then call sys abort(333).

See also: sys_abort(), sys_end(), sys_atrunlevel().

SYS SHUTDOWN MESSAGE

int sys_shutdown_message(char *fmt,...);

Description: This function call saves a message in a reserved area, that will be printed at
system shutdown. It does not end the system.

See also: sys_panic().

SYS ABORT SHUTDOWN

int sys_abort_shutdown(int err);

Description: This function will force the system to end the SHUTDOWN runlevel if there are sys-
tem tasks which cannot be stopped. If called when the system is still in the RUNLEVEL_RUNNING
runlevel, the function behaves like exit (). If called inside an OSLib event or inside an
TRQ,it does return to the caller. The system shutdown will start when all the current inter-
rupts have been serviced, and the system has been rescheduled. Otherwise, this function
does not return.

SYS SET REBOOT

int sys_set_reboot(int mode) ;

Description: This function sets the reboot mode, which specifies what will happen after the
system end. mode options are:
EXIT MODE_ HALT: the system will call the halt (HLT) instruction.
EXIT MODE_COLD: the system will perform the cold reboot (slow reboot).
EXIT_MODE_WARM: the system will perform the warm reboot (fast reboot).
EXIT MODE_ REAL: the system will return to the real mode (default selection).

14

Chapter 3

Task Management

3.1 Task Model

S.Ha.R.K. tasks are defined using standard C functions which return a void * type' and can
have one void * argument, which is passed when the task is created. A task is identified by a
system-wide unique process identifier (PID) and a consecutive number?.

A task has tipically a set of Quality of Service requirements that need to be fullfilled by
the Kernel. The kernel uses its registered Scheduling Modules to meet the QoS required by a
specified task. The QoS reuired is specified at creation time through a Task Model, that is passed
to the task creation primitives.

A Task, can be Periodic or Aperiodic. Periodic tasks are automatically activated by the kernel
with a desired period, whereas aperiodic tasks can either be activated by an explicit system call
or upon the occurrence of a desired event.

The typical task code consists of an optional initialization of local variables and resources,
followed by a (finite or infinite) loop, representing the task’s body. The last instruction of such a
loop must be the primitive task_endcycle() or the primitive task_sleep() which signals the
end of a generic job.

The task can access a local and a global context by following the C scoping rules; the local
context is defined by the local variables and the single optional input argument. The following
example shows a typical task code fragment:

void *my _task(void *par)
{

/* Local Context*/

int a, b, ¢;

/* Initialization\> */
b = ¢ = (int)par + 1;
a = (int)par / 2;

while (1) {
/* Body here!*/

Ifor readability, that type has been called TASK.
2a task with PID p has a consecutive number that is proc_ table[p].task _ID .

15

ga‘msk_endcycle();
}
}

my_task() has just one integer input argument (passed through the void * parameter) and three
local variables. The life-cycle of the local variables is the same as the task one, since they are
allocated on the task’s stack. Obviously they retain their values between two consecutive jobs.
One of the most important parameters for a real-time task 7; is the deadline, defined as the
maximum time allowed for a task job to terminate. More precisely, we distinguish between the
absolute deadline (denoted by d;) specified with respect to time 0, and the Relative Deadline
(denoted by D;) specified with respect to the activation time r; ;, of the k-th job of task 7,. We
have that:
d; =73k + D;.

Tasks can also have different level of criticality, for example:

e HARD tasks are the most critical in the system. For this reason, they are subjected to
a guarantee algorithm at creation time. The system enforces a strict compliance to the
deadline constraint for this kind of tasks®. If a hard deadline is missed, the system raises
an exception which, by default, results in the program termination. Recovery actions can
be programmed for this kind of exception (as shown below).

e SOFT tasks can miss some deadline, and are scheduled in order not to jeopardize HARD
tasks’ schedulability. This is done through a service mechanism (see 3.2) which guaran-
tees each soft task a predefined bandwidth (i.e., a fraction of processor utilization) while
preserving the guarantee performed on hard tasks.

e NRT (Non Real-Time) tasks are scheduled in background according to their relative fixed
priority. Typically, they are used for monitoring or debugging purposes.

The Task criticality, periodicity and the deadlines are coded into the Task Model that is passed
to the creation primitive. Each new Scheduling Module can use its own Task Model to include
the specific task QoS requirements.

Each task can be in one of a set of states; the states that a task can be in depend on each
particular Module. For example, typical Task states can be:

e EXE: at any time, in the system there is only one task in the EXE state, and it is the task
actually executing.

e READY: it includes all active tasks ready to execute, except for the currently running task.

e SLEEP: it includes all aperiodic tasks which terminated a job and are waiting for the next
activation. Moreover, each created task (periodic or aperiodic) that has not been activated
is put in the SLEEP state.

e IDLE: is the state of those periodic tasks which terminated a job and are waiting for the
next activation.

e BLOCKED: it includes all the tasks blocked on a semaphore.

3The guarantee algorithm tries to verify that both the newly activated hard task and the previously existing
ones will finish within their deadlines

16

3.2 The scheduling policy*

The S.Ha.R.K. scheduling architecture is based on a Generic Kernel, which does not implement
any particular scheduling algorithm, but postpones scheduling decisions to external entities, the
scheduling modules. External modules can implement periodic scheduling algorithms, soft task
management through real-time servers, semaphore protocols, and resource management policies.

The Generic Kernel provides the mechanisms used by the modules to perform scheduling
and resource management thus allowing the system to abstract from the specific algorithms that
can be implemented. The Generic Kernel simply provides the primitives without specifying any
algorithm, whose implementation resides in external modules, configured at run-time with the
Initialization function.

Scheduling Modules are used by the Generic Kernel to schedule tasks, or serve aperiodic
requests using an aperiodic server. The Scheduling Modules are organized into levels, one Module
for each level. These levels can be thought as priority scheduling levels (their priority correspond
to the order which they appear in the Initialization function). When the Generic Kernel has
to perform a scheduling decision, it asks the modules for the task to schedule, according to
fixed priorities: first, it invokes a scheduling decision to the highest priority module, then (if
the module does not manage any task ready to run), it asks the next high priority module, and
so on. The Generic Kernel schedules the first task of the highest priority non empty module’s
queue.

In this way, the Scheduling policy can be tuned simply modifying the Initialization function.
The standard distribution of the S.Ha.R.K. Kernel includes a set of predefined Initialization
functions that can be used when developing a new application. For more informations see the
S.Ha.R.K. Module Manual, where each Scheduling Modules and each predefined initialization
functioon are described in detail.

3.3 Task Creation

In order to run a S.Ha.R.K. task, three steps have to be performed: parameters definition,
creation, and activation. To improve the system flexibility, each task can be characterized by
a large number of parameters, most of which are optional. For this reason, a set of structures
derived from TASK_MODEL structure have been introduced to simplify the parameters’ definition
phase. The first thing to do in order to define a task is to declare a Model variable and initialize
it using the pmacro provided (see the S.Ha.R.K. Module Manual for more informations).

Once the task’s parameters have been set, the task can be created using the task_create or the
task_createn system call.

TASK CREATEN and TASK CREATE

PID task_createn(char *name, TASK (*body) (), TASK_MODEL *m, ...);
PID task_create(char *name, TASK (*body) (), TASK_MODEL *m, RES_MODEL *r);

Description: task_createn creates a new task. name is a pointer to a string representing the
task name; body () is a pointer to the task body (i.e. the name of the C function containing
the task code); m specifies the Model that contain the QoS specification of the task (the
value can not be equal to NULL). Then, follow a list of Resource Models terminated with
NULL (see the S.Ha.R.K. Module Manual for the available Task Models and Resource

4This section is derived from the Kernel overview chapter of the S.Ha.R.K. Architecture Manual.

17

Models). task_create is a redefinition of task_createn that can be used when there is
at least one Resource Model to be passed to the creation primitive.

Return value: The function returns the identifier of the newly created task, or -1 if the task
creation fails (in this case the errno() system call can be used to determine the error’s
cause).

See also: task_activate(), task_kill().
Example

int main(int argc, char **argv)
{

HARD_TASK_MODEL m;
hard_task_default_model(m);
hard_task_def_wcet (m,ASTER_WCET) ;
hard_task_def_mit(m,10000) ;
hard_task_def_group(m,1);
hard_task_def_ctrl_jet(m);

pl = task_create(’’Aster”,aster,&m,NULL);
if (p1 == -1) {
perror ("Error: Could not create task <aster> ...");
sys_end () ;
exit(-1);
}
}

3.4 Group Creation

Group creation is a feature provided by S.Ha.R.K. that allows a user to create a set of tasks. The
group creation differs from the creation made by the task create and task createn primitives
because in group creation the acceptance test is done for the whole set of task (and not for every
task in sequence) only when every task which belong to the set has been initialized in the system.
After the acceptance test, the user have to inquire the Scheduling Module to see the tasks that
have been accepted and successfully created in the system.

The primitives provided by S.Ha.R.K. to support group creation are:

e group _ create
e group create accept

e group create reject

The documentation about group creation can be found in the Group creation HOWTO available
on the S.Ha.R.K. website.

18

3.5 Task Activation and Termination

When a task is created, it is put in the SLEEP state, where it is kept until activation, which can
be triggered by an external interrupt or by an explicit task_activate() primitive). Periodic
jobs that complete execution are handled by the registered Scheduling Modules (usually they
are put in an IDLE state or similar), from which they will be automatically re-activated by the
system timer. Aperiodic jobs that complete execution return to the SLEEP state, where they wait
for an explicit re-activation.

Some scheduling models (such as the EDF and RM modules) support release offsets. In
an offset is given in the task model, the task_activate() will put the task in the IDLE state,
waiting for the first release to occur.

A task can be destroyed using the task_kill() system call, that frees its descriptor. A task
can kill itself using the task_abort() system call.

In S.Ha.R.K., tasks can be members of groups to allow simultaneous activation or termination.
A task can be put in a group through a macro that works on the task model passed at task
creation. The name of the macro depends on the name of the Task Model used; usually its name
is like XXX_task_def_group (group_number), where XXX is the name of the task Model; the
group number 0 indicates that a task belongs to no groups.

Task cancellation, join, the cleanup handlers and the task specific data works as the POSIX
standard; only the name of the primitives are changed from pthread_XXX to task_XXX. In any
case, the pthread_XXX versions are available for POSIX compatibility.

Warning: task_kill() kills a task only if the cancellation type of the task is set to asyn-
chronous. If the cancellation type is set to deferred, the task will terminate only when it reach
a cancellation point.

TASK ACTIVATE

int task_activate(PID p);

Description: It activates task p. Usually the activation will insert the task into the ready queue.
(If the task has an offset, the task will be put in the ready queue after the offset.) Returns
0 in case of success or -1 in case of error; the errno variable is set to EUNVALID_TASK_ID.

See also: task_create(), task_kill(), group_activate().

TASK KILL

int task_kill(PID p);

Description: It asks for a cancellation of the task p. It returns -1 in case of error, 0 otherwise.
If an error occurred, the errno variable is set to EINVALID_KILL. A task which has the
NO_KILL flag set can not be killed. If the task has already been killed but it is not died
yet, the primitive does nothing. A task that has the cancellation type set to asynchronous
will die just when it will be scheduled again by the system; instead, if the cancellation
type is set to deferred, the task will die only at the reaching of a cancellation point. This
function is the correspondent of the pthread_cancel() primitive.

See also: task_create(), task_activate(), group_kill().

19

TASK ABORT

void task_abort(void *returnvalue);

Description: It aborts the calling task, removing it from the system. If the task is joinable,
the return value will be stored by the kernel and given to any task that calls a task join
primitive on the died task.

See also: task_create(), task_activate(), task_kill().

TASK BLOCK ACTIVATION

int task_block_activation(PID p);

Description: It blocks all explicit activation of a task made with task_activate and group_activate.
The activations made after this call are buffered (counted) in an internal counter. It
returns 0 in case of success or -1 in case of error. In the latter case, errno is set to
EUNVALID_TASK_ID. If the activations were already blocked, it does nothing.

See also: task_unblock_activation(), task_activate().

TASK UNBLOCK ACTIVATION

int task_unblock_activation(PID p);

Description: It unblocks the activations of a task after a call to task block activation. After
this call, the task can be explicitly activated. It returns the number of buffered activa-
tions, or -1 if an error occurred. If an error occurred, the errno variable is set to EUN-
VALID TASK ID. If the activations were not blocked, it simply returns 0. Note that the
primitive simply returns the number of buffered activations, without activating the task.

See also: task_block_activation(), task_activate().

GROUP_ ACTIVATE

int group_activate(WORD g);

Description: It activates all tasks belonging to group g. Returns 0 in case of success or -1 in
case of error; the errno variable is set to EUNVALID_GROUP.

See also: task_create(), task_activate(), group_kill().

GROUP_KILL

void group_kill(WORD g);

Descrizione: It kills all tasks belonging to group g. It returns -1 in case of error, 0 otherwise.
If an error occurred, the errno variable is set to EUNVALID_GROUP. The kill request to a
single task that belong to a group is done in a way similar to that done in the primitive
task_kill().

See also: task_create(), task_activate(), group_activate(), task_kill().

20

3.6 Task Instances

S.Ha.R.K. supports the concept of instance for its task. A typical task function is composed
by an initialization part and a body part that does the work for that the task was created; for
example:
void *mytask(void *arg)
{
<initialization part>
for (5;) {
<body>

task_endcycle();
}
}

In the example, the task will never terminate, and it also calls the task_endcycle primitive
to say to the Kernel that the current instance is terminated?®.

TASK ENDCYCLE

void task_endcycle(void);

Description: It terminates the currently executing job of the calling task. The behaviour of
this primitive may sligtly change depending on the Scheduling Module registered at initial-
ization time. Tipically, the task_endcycle primitive suspends the task until an automatic
reactivation that is made internally by the Kernel. Moreover, the task_endcycle() prim-
itive usually keeps track of pending activations®. Previous versions of the kernel supported
a task_sleep() primitive with similar behavior. That function is currently unsupported.
The primitive is a cancellation point.

Implementation: This primitive is implemented as task message(NULL, 1);”

See also: task_activate.

3.7 Task (thread) specific data

These functions works in a way equal to their POSIX counterparts. These primitives are used
for managing task specific data, that are a few data variables that can be referred in a common
way independently from the task that asks for it. The system also ensures a proper cleanup when
the task is killed. As an example, the errno variable can be thought as a task specific data. In
this manual only their interfaces are described; for more informations, see the POSIX standard.

TASK KEY CREATE

int task_key_create(task_key_t *key, void (*destructor) (void *));

5The concept of instance is introduced into S.Ha.R.K. because in that way the Kernel can directly support task
Quality Of Service parameters like deadlines, periods and so on in a native way. Note that the concept of instance
is not covered by the POSIX standard, that only support a fixed priority scheduler. In POSIX, a periodic task
can only be implemented using the Real-Time extensions and in particular using the Timer feature. S.Ha.R.K.
implements also that approach, however the native primitives are better in terms of efficiency.

6There is a pending activation when a task is activated before the current instance has finished. In this case,
if the task_endcycle() primitive is called and there is a pending activation, it simply does nothing.

"Note on the implementation: this primitive is implemented as task_message (NULL, 1);

21

Description: It creates a task key that can be used to refer a task specific data. The name of
the POSIX counterpart is pthread_key_create.

22

TASK GETSPECIFIC

void *task_getspecific(task_key_t key);

Description: It gets the current value for the key (note that the value of the key vary from
task to task). The name of the POSIX counterpart is pthread_getspecific.

TASK SETSPECIFIC

int task_setspecific(task_key_t key, const void *value);

Description: It sets the current value for the key. The name of the POSIX counterpart is
pthread_setspecific.

TASK KEY DELETE

int task_key_delete(task_key_t key);

Description: It deletes the current key. The name of the POSIX counterpart is pthread_key_delete.

3.8 Task cancellation

These primitives are used when managing task cancellation. They are directly derived from the
POSIX standard. Nothe that the POSIX interface is also available.
TASK CLEANUP_ PUSH

void task_cleanup_push(void (*routine) (void *), void *arg);

Description: It pushes the specified cancellation cleanup handler routine onto the cancellation
cleanup stack. The name of the POSIX counterpart is pthread_cleanup_push.

TASK CLEANUP_ POP

void task_cleanup_pop(int execute);

Description: It removes the routine at the top of the cancellation cleanup stack of the calling
thread. If execute is not equal 0, the routine previously pushed is called. The name of
the POSIX counterpart is pthread_cleanup_pop.

TASK TESTCANCEL

void task_testcancel (void);

Description: creates a cancellation point in the calling task. The primitive has no effect if
cancelability is disabled. The name of the POSIX counterpart is pthread_testcancel.

23

TASK SETCANCELSTATE

int task_setcancelstate(int state, int *oldstate);

Description: This primitive sets the cancelability state of the calling thread to the indicate state
and returns the previous cancelability state at the location referenced by oldstate. Legal val-
ues for state are TASK_CANCEL_ENABLE and TASK_CANCEL_DISABLE. pthread_setcancelstate
is the name of the POSIX counterpart.

TASK SETCANCELTYPE

int task setcanceltype(int type, int *oldtype);

Description: This primitive sets the cancelability type of the calling thread to the indicate type
and returns the previous cancelability type at the location referenced by oldtype. Legal
values for state are TASK_CANCEL_DEFERRED and TASK_CANCEL_ASINCHRONQUS. The name
of the POSIX counterpart is pthread_setcanceltype.

3.9 Join

The join primitives allow a task to wait for the termination of another task®. The return value
of the terminated task is passed to the join primitive and the caller can use the value. These
primitives are directly derived from the POSIX standard. It means that a join can be done only
on a joinable task. But note that when a task created with the creation primitives? starts it
is not in the joinable state'®. This behaviour differs from the standard behavior of the POSIX
standard, which specifies that every new task shall be in the joinable state. However, S.Ha.R.K.
provides also the pthread_create primitive that is fully compliant with the standard. Finally,
a S.Ha.R.K. task can switch between the jonable and non-joinable state using the primitives
task_joinable and task_unjoinablell.

TASK JOIN

int task_join(PID p, void **value);

Description: The primitive suspends the execution of the calling task until the task p termi-
nates, unless the task p has already terminated. On return from a successful task_join call
with a non-NULL wvalue argument, the value returned by the thread through a task abort
shall be made available in the location referenced by wvalue. When the primitive returns
successfully the target task has been terminated. The primitive returns 0 in case of success,
otherwise it returns EINVAL if the value p does not refer to a task that can be joined, ESRCH
if the value p does not refer to a valid task, and EDEADLK if a deadlock was detected. The
name of the POSIX counterpart is pthread_join.

TASK JOINABLE

int task_joinable(PID p);

Description: This function set the detach state of a task p to joinable. This function is not
present in Posix standard. It returns ESRCH if p is non a valid task.

8not of an instance of a task!

9task_create, task_createn, group_create

10this is done to remain similar to the previous versions of the Hartik Kernel...
11n the POSIX standard, only the pthread_detach primitive is available.

24

TASK UNJOINABLE

int task_unjoinable(PID p);

Description: This function sets the detach state of a task to detached. The name of the POSIX
counterpart is pthread_detach. The function returns EINVAL if p can not be joined (or
currently a task has done a join on it), or ESRCH if p is not correct.

3.10 Preemption control

S.Ha.R.K. provides two primitives that set the preemptability of a task. A non-preemptive task
can not be preempted by another task; interrupts are handled in the usual way. These primitives
can be used to implement short critical sections. Note the difference between this kind of non
-preemption and the interrupt disabling done using kern cli and kern_sti: in the latter case,
interrupt can not preempt the critical sections. A new task usually starts in a preemptive state.

TASK NOPREEMPT

void task nopreempt(void);

Description: After the call of this primitive, the task is non-preemptive.

TASK PREEMPT

void task nopreempt(void);

Description: After the call of this primitive, the task become again preemptive.

3.11 Suspending a task

The following system calls can be used by a task to suspend itself for a known or unknown time.
(Note: it is dangerous to use these system calls in a hard real-time task.)

TASK DELAY

void task_delay(DWORD t);

Description: It causes the calling task to be blocked for at least t microseconds. Note that t
is the minimum delay time. In facts, after t microseconds the task is inserted in the ready
queue and can be delayed by higher priority tasks. This function was inherited from the
previous versions of Hartik. Please, use the POSIX counterpart nanosleep instead!

3.12 Job ExecutionTime (JET) estimation

S.Ha.R.K. provides a set of primitives that allows to precisely estimate the system load. These
primitives can be used to tune the parameters that are given at task creation, and to get statistics
about the system load.

The execution time estimation is done on a task basis. That is, S.Ha.R.K. provides three
primitives that allows the user to estimate the JET of every task. For every task, it is possible to
know the mean execution time, the maximum execution time, the time consumed by the current
instance and the time consumed by the last JET_TABLE_DIM instances.

25

The user have to explicitly enable the Kernel to record the JET informations for a specific
task. This is done at task creation time; usually a macro that enable the JET is provided in the
definition of every task model (see the S.Ha.R.K. Module Manual).

Here is an example of the use of the JET functions:

/* The Goofy Task */
void *goofy(void *arg)

{
int i;
for (;;) {
for (i=0; i<100; i++)
kern_printf ("Yuk!\t");
task_endcycle();
}
}

PID goofy_PID;

/* a NRT task that never finish x/
void *jetcontrol(void *arg)

{
TIME sum, max, curr, last[5];
int nact;
for (;;) {
if (jet_getstat(p, &sum, &max, &nact, &curr) == -1)
continue;
for (j=0; j<b; j++) last[j] = 0;
jet_gettable(p, &last[0], 5);
printf_xy(1,20,WHITE,"goofy_PID=Yd mean=%d max=%d nact=%d",
goofy_PID,sum/(nact==0 ? 1 : nact), max, nact);
printf_xy(1,21,WHITE,"L1=Yd L2=%d L3=%d L4=)d L5=}d",
last[0], last[1], last[2], last[3], last[4]);
}
}

int main(int argc, char **argv)

{

/* The task goofy is created, specifying that the Kernel
should take care of the JET data */

HARD_TASK_MODEL m;

hard_task_default_model (m) ;

/* ... other hard_task_XXX macros */

hard_task_def_ctrl_jet(m); /* JET enabling */

goofy_PID = task_create("Goofy", goofy, &m, NULL);

/* ... creation of the JET control task, and so on */

26

JET GETSTAT

int jet_getstat(PID p, TIME *sum, TIME *max, int *n, TIME *curr);

Description: This primitive returns some JET informations about the task p. The informations
retrieved are stored into the following parameters:

sum is the task total execution time since it was created or since the last call to the
jet_delstat function;

max is the maximum time used by a task instance since it was created or since the last call
to the jet_delstat function;

n is the number of terminated instances which sum and max refers to;
curr is the total execution time of the current instance.
If a parameter is passed as NULL the information is not returned. The function returns 0 if

the PID passed is correct, -1 if the PID passed does not correspond to a valid PID or the
task does not have the JET_ENABLE bit set.

JET DELSTAT

int jet delstat(PID p);

Description: The primitive voids the actual task execution time data mantained by the Generic
Kernel. The function returns 0 if the PID passed is correct, -1 if the PID passed does not
correspond to a valid PID or the task does not have the JET_ENABLE bit set.

JET GETTABLE

int jet gettable(PID p, TIME *table, int n);

Description: The primitive returns the last n execution times of the task p. If the parameter
n is less than 0, it returns only the last values stored since the last call to jet_gettable
(up to a maximum of JET_TABLE_DIM values). If the value is greater than 0, the function
returns the last min(n, JET_TABLE_DIM) values registered. The return value is -1 if the
task passed as parameter does not exist or the task does not have the JET_ENABLE bit
set, otherwise the number of values stored into the array is returned. The table passed as
parameter should store at least JET_TABLE_DIM elements.

27

Chapter 4

Synchronization and communication

This chapter describes the tasks’ interaction capabilities provided by the S.Ha.R.K. kernel. In
order to improve the programming flexibility without jeopardizing the hard tasks’ a priori guar-
antee, the kernel implements different mechanisms.

In general, hard tasks should not use system calls that can cause an unbounded (or un-
known) blocking time, since they can jeopardize the system schedulability. For example, con-
sider Figure 4.1: in this case there are two periodic tasks, 71 (execution time C; = 5 and period
T) = 15) and 7» (execution time Cy = 2 and period T = 4). Since the total utilization factor is
U=1/2+4+1/3=5/6 < 1, the system is schedulable by EDF, but if 7; blocks for 8 time units at
time ¢ = 4, 75 misses a deadline at time ¢ = 16.

For efficiency reasons, the system does not perform any check to avoid the use of blocking
primitives in hard tasks; so this aspect is left to the programmer responsibility.

4.1 POSIX Semaphores

The primitives described in this Section covers the semaphore mechanism interface that can
be used by the S.Ha.R.K. applications. The semaphore interface directly follows the POSIX
semaphore interface; the S.Ha.R.K. Kernel add also some other primitives that allows to incre-
ment /decrement the semaphore counter by more than one unit at a time.

| | l | [,__|

Figure 4.1: EDF Scheduling - Overload due to a task delay().

28

These primitives can be used both for synchronization and mutual exclusion. It is worth
noting that the traditional semaphore mechanism can cause unbounded priority inversion, so it is
not suitable for hard real-time tasks. Concerning the synchronization, we note that the guarantee
mechanism does not take synchronization into account; therefore the programmer should avoid
to explicitly synchronize hard tasks by means of blocking primitives. It is instead possible to use
a weak synchronization between hard real-time tasks, realized through non-blocking semaphores.

Only SEM_NSEMS_MAX semaphores can be created in the system. If an application needs to
use the POSIX semaphores, it have to add the call to the function

void SEM_register_module(void) ;

into the __kernel_register_levels__ function of the initialization file (see Volume IIT -
S.Ha.R.K. Modules).

In this section will be briefly described the POSIX semaphore interface!. For a complete
reference see the POSIX standard (the Linux manpage also works well).

SEM _INIT

int sem_init(sem_t *sem, int pshared, unsigned int value);

Description: It is used to initialize a semaphore referred by sem. The value of the initialized
semaphore is value. The pshared argument is ignored. After the call to the primitive, the
sem value can bve used to refer the semaphore.

Return value: on successful completion, the function initializes the semaphore in sem and
returns 0. Otherwise, it returns -1 and errno is set according to the POSIX standard.

See also: sem_wait(), sem_ trywait, sem_post(), sem_destroy().

Example

sem_t mutex;
TASK demo(void *arg)
{

/* The task enters a critical section protected by a mutex semaphore */
sem_wait (§mutex) ;
<critical section>

sem_post (&mutex) ;

}
int main(int argc, charx*argv)

{
's;m_init (&mutex,0,1);
=
SEM_DESTROY

IThis section only described unnamed semaphores. The interface for named semaphores is also provided,
althoutgh it does not use a file system but resolve the names internally (as allowed by the POSIX 1003.13 PSE51
profile).

29

int sem_destroy(sem_t *sem);

Description: It is used to destroy the semaphore indicated by sem. Only a semaphore that
was created using sem_init() may be destroyed using sem destroy(). Warning: This
system call does not check if the semaphore queue is empty or not, and does not awake
tasks blocked on the semaphore. The programmer has to make sure that s is free before
destroying it.

Return value: on successful completion, the function destroys the sem semaphore and returns
0. Otherwise, it returns -1 and errno is set according to the POSIX standard.

See also: sem _ init().

30

SEM _WAIT and SEM_TRYWAIT

int sem_wait(sem_t *sem);
int sem_trywait(sem_t *sem);

Description: sem_wait is used to lock the semaphore referenced by sem. If the semaphore value
is currently zero, then the calling task shall not return from the call to sem_wait() until
it either locks the semaphore. sem_trywait locks the semaphore referenced by sem only if
the semaphore is currently not locked; that is, if the semaphore value is currently positive.
Otherwise, it does not lock the semaphore. sem_wait is a cancellation point.

Return value: on successful completion the functions return 0. Otherwise, they return -1 and
errno is set according to the POSIX standard.

See also: sem_ post().

SEM_XWAIT

BYTE sem_xwait(sem_t *s, int n, int wait);

Description: sem_xwait () is a non-portable extension to the POSIX semaphores that decreases
the semaphore counter by n. If the counter is greater than or equal to n and there are no
tasks blocked on semaphore s, the counter is decreased by n and sem_xwait returns 0,
otherwise the system call’s behavior depends on the b parameter. If wait is BLOCK, the
calling task blocks on the semaphore, if wait is NON_BLOCK sem_xwait returns -1, errno
is set to EAGAIN and the calling task does not block. The semaphore queue is ordered
using a FIFO strategy, in order to avoid starvation. Hard tasks should not use blocking
system calls, so it is suggested to use sem_trywait () /xwait () (only with b = NON_BLOCK).
sem_xwait is a cancellation point.

Return value: on successful completion, the function returns 0. Otherwise, it returns -1 and
errno is set according to the POSIX standard.

See also: sem_wait(), sem_trywait(), sem _post().

Example

sem_t sync;
TASK demo (void *arg)
{

/* The demo task synchronizes itself */
/* with the wake task, waiting */

/* for 5 signals on the sync semaphore */
sem_xwait(&sync, 5, BLOCK);

}
TASK wake(void *arg)

{
while (1)

31

sem_xsignal(sync, 1);
task_endcycle();
}
}

void main(void)

{
ééﬁ_init(&sync,o,o);
L
SEM_POST

int sem_post(sem_t *sem);

Description: It unlocks the semaphore referenced by sem by performing the semaphore unlock
operation on that semaphore. If the semaphore queue is not empty and the first task in
the queue requests a feasible counter decrement, it can be awaken. The task is put in
the ready queue and the scheduler is invoked: for this reason this system call can cause
a preemption. The semaphore queue is a FIFO queue: tasks are awoken in a FIFO order
according to resource availability.

Return value: on successful completion, the function destroys the sem semaphore and returns
0. Otherwise, it returns -1 and errno is set according to the POSIX standard.

See also: sem_ wait(), sem_ trywait().

SEM XPOST

int sem_xpost(sem_t *s, int n);

Description: sem_xpost () is a non-portable extension to the POSIX semaphores that imple-
ments the classical signal primitive on semaphore s, increasing the counter by n. If the
semaphore queue is not empty and the first task in the queue requests a feasible counter
decrement, it can be awaken. The task is put in the READY queue and the scheduler is
invoked: for this reason this system call can cause a preemption. The semaphore queue is
a FIFO queue: tasks are awoken in a FIFO order according to resource availability.

Return value: on successful completion, the function destroys the sem semaphore and returns
0. Otherwise, it returns -1 and errno is set according to the POSIX standard.

See also: sem_init(), sem_wait(), sem_destroy().

Example: see sem_wait ().

SEM GETVALUE

int sem_getvalue(sem_t *sem, int *sval);

32

Description: sem_getvalue() updates the location referenced by the sval argument to have
the value of the semaphore referenced by sem without affecting the state of the semaphore.
If sem is locked the value returned by sem getvalue is a negative number whose absolute
value represents the number of processes waiting for the semaphore at some unspecified
time during the call.

Return value: on successful completion, the function destroys the sem semaphore and returns
0. Otherwise, it returns -1 and errno is set according to the POSIX standard.

See also: sem_init(), sem_wait(), sem_destroy().

4.2 Internal Semaphores

When developing a complex driver of the kernel, a designer usually needs to manage a lot of shared
resources that have to be accessed in mutual exclusion, and needs also a lot of synchronization
points that are not cancellation points. For these pourposes the POSIX semaphores are not good
because they are limited in number and they are cancellation points.

For this pourpose the S.Ha.R.K. Kernel provides a sort of lightweight semaphores called
internal semaphores, that fulfill the designer needs?: they are not cancellation points and there
is no limit on the number of semaphores that can be created in a system®. The interface of the
Internal semaphores is very similar to POSIX semaphore interface.

To use the Internal Semaphores, you don’t need to call any registration function at kernel
startup time.

INTERNAL SEM INIT

void internal_sem_init(internal_sem_t *s, int value);

Description: It initializes the internal semaphore s with a specified value.

INTERNAL SEM WAIT

void internal_sem_wait(internal_sem_t *s);

Description: It implements a blocking wait. the semaphore counter is decremented by one.

INTERNAL SEM TRYWAIT

int internal_sem_trywait(internal_sem_t *s);

Description: It implements a non-blocking wait. It returns 0 if the counter is decremented, -1
if not.

INTERNAL SEM POST

void internal_sem_post(internal_sem_t *s);

Description: It implements a post operation.

2The existence of two type of semaphores is not new in Kernel development; For example, the Linux Kernel
differentiate the semaphores used by the applications and the semaphors used by the Kernel.

30nly 8 bytes are taken for each internal semaphore. In some sense the internal semaphores are similar to the
POSIX mutexes...

33

INTERNAL SEM GETVALUE

int internal sem getvalue(internal sem t *s);

Description: It returns a value greater or equal 0 if there are no tasks blocked on s, -1 otherwise.

4.3 Mutexes and Condition Variables

The primitives described in this section allows the user to define and use mutezres and condition
variables. A mutex can be thought as a binary semaphore initialized to 1. In that way, a critical
section can be specified using the muter lock and muter unlock primitives. Moreover, using
condition variables a task can block itself waiting for an event.

The provided implementation extends the POSIX standard mutex functions implementing
protocols like Stack Resource Policy and Non Preemptive Protocol, that are not part of the
standard. To do that, the mutex initialization interface is different from the standard to allow
the specification of the various policies. In any case, the standard interface is provided based on
the extended interface.

4.3.1 Mutex attributes

A mutex can be used to implement critical sections that uses different policies (for example, the
Priority Inheritance, Priority Ceiling or Stack Resource Policy protocol). The S.Ha.R.K. Kernel
provides a set of structures derived from the basic structure mutexattr _t* that allow to handle
the specification of different policies.

The mutex attributes are different foe every policy, that is implemented by a Resouce Module.
To see the the description of the mutex attributes for every policy, look at the S.Ha.R.K. Modules
Manual.

4.3.2 Functions

This subsection describes the functions that handle mutexes and condition variables.

MUTEX INIT

int mutex_init(mutex_t *mutex, const mutexattr_t *attr);

Description: The mutex init function inituializes the mutex referenced by muter with at-
tributes specified by attr. attr shall be not equal NULL. Upon successful initialization, the
state of the mutex becomes initialized and unlocked.

Return value: on successful completion the functions return 0. Otherwise, they return -1 and
errno is set according to the POSIX standard.

See also: mutex_destroy().

MUTEX DESTROY

int mutex_destroy(mutex_t *mutex);

4Similar to the pthread mutexattr _t structures of the POSIX standard.

34

Description: The mutex_destroy function destroys the mutex object referenced by mutex. It
is safe to destroy an initialize mutex that is unlocked.

Return value: on successful completion the functions return 0. Otherwise, they return -1 and
errno is set according to the POSIX standard.

See also: mutex_init().

MUTEX LOCK

int mutex_lock(mutex_t *mutex);

Description: The mutex lock function locks an unlocked mutex. If the mutex is already locked
, the calling thread waits until the mutex becomes available. the behaviour of the function
may change depending on the particular policy passed with the mutexattr t parameter at
mutex initialization. The function is not a cancellation point.

Return value: on successful completion the functions return 0. Otherwise, they return -1 and
errno is set according to the POSIX standard.

35

MUTEX TRYLOCK

int mutex_lock(mutex_t *mutex) ;

Description: The mutex trylock function is identycal to mutex lock except that if the mutex
us locked when the function is called, the calling task does not block but returns -1 and an
errno value of EBUSY, as specified by the POSIX standard.

Return value: on successful completion the functions return 0. Otherwise, they return -1 and
errno is set according to the POSIX standard.

MUTEX UNLOCK

int mutex_unlock(mutex_t *mutex);

Description: The mutex unlock function is called by the owner of the mutex object to release
it. If there are thread blocked on the mutex object referenced by mutex when mutex lock
is called, the mutex becomes available, and the task that will acquire the mutex depends
on the policy with that the mutex was initialized.

Return value: on successful completion the functions return 0. Otherwise, they return -1 and
errno is set according to the POSIX standard.

COND _INIT

int cond_init(cond_t *cond);
Description: The function initializes the condition variable referenced by cond.

Return value: on successful completion the functions return 0. Otherwise, they return -1 and
errno is set according to the POSIX standard.

COND DESTROY

int cond_destroy(cond_t *cond);
Description: The function destroys the given condition variable specified by cond.

Return value: on successful completion the functions return 0. Otherwise, they return -1 and
errno is set according to the POSIX standard.

COND _ SIGNAL and COND BROADCAST

int cond_signal(cond_t *cond) ;
int cond_broadcast(cond_t *cond) ;

Description: The function cond signal unblocks at least one of the threads that are blocked on
the specified condition variable cond. The function cond broadcast unblocks all threads
currently blocked on the specified condition variable cond. These functions have no effect
if there are no threads currently blocked on cond.

Return value: on successful completion the functions return 0. Otherwise, they return -1 and
errno is set according to the POSIX standard.

36

COND _ WAIT and COND TIMEDWAIT

int cond_wait(cond_t *cond, mutex_t *mutex);
int cond_timedwait(cond_t *cond, mutex_t *mutex, const struct timespec *abstime);

Description: These functions are used to block on a condition variable. They shall be called
with mutex locked by the calling task. These functions release mutex and cause the calling
task to block on the condition variable cond. Upon successful return, the mutex is locked
and is owned by the calling task. When using condition variables, there is always a Boolean
predicate involving shared variables associated with each condition wait that is true if
the thread should proceed. Spurious wakeups from the cond_wait or cond_timedwait
functions may occur. Since the return from cond_wait or cond_timedwait does not imply
anything about the value of this predicate, the predicate should be re-evaluated upon each
return.

The cond_wait and cond timedwait functions are cancellation points. When the cancela-
bility enable state of a task is set to TASK_CANCEL_DEFERRED, a side effect of acting upon
a cancellation request while in a condition wait is that the mutex is (in effect) reaquired
before calling the first cancellation cleanup handler. To ensure a correct cancellation, a
cleanup function should be pushed before the cond_wait call (in case of cancellation it
simply unlock the mutex).

The cond_timedwait function is the same as the cond_wait function except that an error
is returned if the absolute time specified by abstime passes before the condition cond is
signaled or broadcasted, or if the absolute time specified by abstime has already been
passed at the time of the call.

Return value: on successful completion the functions return 0. Otherwise, they return -1 and
errno is set according to the POSIX standard.

4.4 Communication Ports®

S.Ha.R.K. communication ports allow tasks to exchange messages. Each port is uniquely iden-
tified by a symbolic name (i.e., a string of characters); a task willing to use this communication
facility has to open the channel using the port_create() call, thus becoming the owner of the
resource. Any other task that wants to use this communication end-point to send or receive data
needs to connect to it by using the port_connect () primitive.

S.Ha.R.K. offers three types of ports:

e STREAM: it is a one-to-one communication facility, which can be opened either by the reader
or by the writer task. The task executing the port_create () must specify the message size
and maximum number of messages in the queue. The task executing the port_connect ()
must only specify the size of the messages it wants to receive/send, which can be different
from the one specified by the owner. For example, a task may open a port for reading
messages of 4 bytes, while another task can connect to it to write one-byte messages. This
mechanism turns out to be useful for character oriented device drivers which need to fill a
given structure, before the message can be processed further by a higher-level task.

5The S.Ha.R.K. communication ports are directly derived from the previous varsions of the Hartik Kernel.

37

STREAM

Writer ———= = Reader
MAILBOX
Clients T Server
= (Owner)
STICK
/
Producers I . Consumers
(Owner) —

Figure 4.2: HARTIK ports.

e MATLBOX: it is a many-to-one communication facility, thought for being used in classical
client/server mechanisms. This kind of port can only be opened by the reader task (the
server) which wants to receive data from writer tasks (the clients). Message size is fixed
and defined by the reader.

e STICK: it is a one-to-many communication facility intended to be used for exchanging
periodic state-messages, for which the most recent information is relevant. It can be opened
only by the (unique) writer task and the reading tasks must connect to it. It contains just
one message and any new message posted by the writer will overwrite the previous one.
Messages are non-consumable: a reader task can perform many readings of a given message
until the writer posts a new one.

The first two kinds of port implement the synchronous communication paradigm, while STICK
ports implement an asynchronous (state-message) paradigm. It is worth noting that in order to
protect the internal data structures, STREAM ports use semaphores for synchronizing the accesses,
STICK ports just use a mutual exclusion semaphore, and the MAILBOX ports use both kinds of
semaphores.

For this reason, MAILBOX and STICK ports should not be used by critical tasks, whereas STREAM
ports can be used by any task requiring a state-message non-blocking semantics. Moreover, the
execution time of a transaction depends on the message size (the message is copied in/from the
buffer when a send/receive is performed). The semantics associated with each port is graphically
illustrated in Figure 4.2.

An application that uses the communication ports, must register the HARTPORT Module.
Please see Volume IIT - S.Ha.R.K. Modules for details.

PORT CREATE

PORT port_create(char *name, int dim, int num, int type, int mode);

Description: It opens the port identified by the string name. The argument dim specifies the
message size in bytes, num specifies the queue size, type the port type (STREAM, MAILBOX,
or STICK), and mode the access mode (READ or WRITE).

Return Value: The primitive returns the port identifier, which identifies the connection be-
tween the port and the task, and not the port itself, which is identified through its name.
A return value -1 indicates that an error is occurred.

38

See also: port_delete(), port_connect(), port_disconnect(), port_send(), port_receive()

Example:
TASK demo (void)
{
PORT p;
char msg[6];

/* Demo task, of NRT type, opens the "goofy" port */
/* and sends a message of 6 bytes. */

p = port_create("goofy", 6, 8, STREAM, WRITE);

port_send(p, msg, BLOCK);

TASK duro(void)
{
PORT q;
char msg[2];
/* Duro task (HARD) connects to the "goofy" */
/* port and receives messages of 2 bytes */
q = port_connect("goofy", 2, STREAM, READ);

while (condition) {

if (port_receive(q, msg, NON_BLOCK)

{
<action 1>; /* Ready Message! */
}
else
{
<action 2>; /* Message not Ready! */
}

task_endcycle();

}
PORT DELETE

39

void port_delete(PORT p);
Description: It destroys the port identified by p.
See also: port_create(), port_connect(), port_disconnect(), port_send(), port_receive().

Example: see the example at page 39.

PORT CONNECT

PORT port_connect(char *name, int dim, int type, int mode);

Description: It connects the calling task to the port identified by name. The argument dim
specifies the message size in bytes, type the port type (STREAM, MAILBOX, or STICK), and
mode the access mode (READ or WRITE). If the port has not been opened by port_create(),
the task is blocked, waiting for port creation. To avoid synchronization delays, connection
should be established only after opening the port.

Return value: The function returns the port identification number in the case of successful
operation; else -1 is returned.

See also: port_create(), port_delete(), port_disconnect(), port_send(), port_receive().

PORT_ DISCONNECT

void port_disconnect (PORT p);
Description: It closes the connection identified by p.

See also: port_create(), port_connect(), port_delete(), port_send(), port_receive().

PORT SEND

int port_send(PORT p, char *msg, BYTE b);

Description: It sends a message pointed by msg to the port identified by p. Message dimension
is defined through port_create() or port_connect () and cannot be dynamically changed.
The argument b can be BLOCK or NON_BLOCK. If b = BLOCK and the port queue is full, then
the task is blocked until the buffer is freed. If b = NON_BLOCK and the port queue is full,
then the primitive returns 0 and the message is not sent.

Return value: 1 (TRUE) if the operation can be performed, 0 otherwise.
See also: port_create(), port_connect(), port_disconnect(), port_send(), port_receive().

Example: see the example at page 39.

PORT RECEIVE

int port_receive(PORT p, char *msg, BYTE b);

Description: It receives a message from the port identified by p and copies it in a memory buffer
pointed by msg. Message dimension is defined through port_create() or port_connect ()
and cannot be dynamically changed. The argument b can be BLOCK or NON_BLOCK. If b =
BLOCK and the port queue is empty, then the task is blocked until a message is available. If
b = NON_BLOCK and the port queue is empty, then the primitive returns 0 and no message
is received.

40

Return value: 1 (TRUE) if the operation can be performed, 0 otherwise.
See also: port_create(), port_connect(), port_disconnect(), port_send(), port_receive().

Example: see the example at page 39.

4.5 Cyclical Asynchronous Buffers

Cyclical Asynchronous Buffers (or CABs) represent a particular mechanism purposely de-
signed for the cooperation among periodic activities with different activation rates. See [But97]
for implementation details.

A CAB provides a one-to-many communication channel, which at any instant contains the
most recent message inserted into it. A message is not consumed (that is, extracted) by a
receiving process but is maintained into the CAB structure until a new message is overwritten.
As a consequence, once the first message is put in a CAB, a task can never be blocked during a
receive operation. Similarly, since a new message overwrites the old one, a sender can never be
blocked.

Notice that, using such a semantics, a message can be read more than once if the receiver
is faster than the sender, while messages can be lost if the sender is faster than the receiver.
However, this is not a problem in many control applications, where tasks are interested only in
fresh sensory data rather than in the complete message history produced by a sensory acquisition
task.

Notice that more tasks can simultaneously access the same buffer in a CAB for reading. Also,
if a task P reserves a CAB for writing while another task @ is using that CAB, a new buffer is
created, so that P can write its message without interfering with). As P finishes writing, its
message becomes the most recent one in that CAB. The maximum number of buffers that can
be created in a CAB is specified as a parameter in the cab_ create primitive. To avoid blocking,
this number must be equal to the number of tasks that use the CAB plus one.

CABs can be created and initialized by the cab create primitive, which requires the CAB
name, the dimension of the message, and the number of messages that the CAB may contain
simultaneously. The cab_delete primitive removes a CAB from the system and releases the
memory space used by its data structures.

To insert a message in a CAB, a task must first reserve a buffer from the CAB memory space,
then copy the message into the buffer, and finally put the buffer into the CAB structure, where
it becomes the most recent message. This is done according to the following scheme:

buf_pointer = cab_reserve(cab_id);
<copy message in *buf_pointer>
cab_putmes (cab_id, buf_pointer) ;

Similarly, to get a message from a CAB, a task has to get the pointer to the most recent message,
use the data, and release the pointer. This is done according to the following scheme:

mes_pointer = cab_getmes(cab_id);
<use message>
cab_unget(cab_id, mes_pointer);

41

A simple example of CABs’ usage is reported below.
CAB cc;

void main(void)

{
SYS_PARMS parms=BASE_SYS;
/* global declaration */
sys_def_tick(parms,1,mSec);
sys_init (&parms) ;
/* The CAB named cc contains a message of */
/* 5 floats and can be used by two tasks */
cc = cab_create("my_cab", b5*sizeof(float), 3);
task_activate(task_create("11l", read, HARD, APERIODIC, 100, NULL));
task_activate(task_create("ss", write, HARD, PERIODIC, 333, NULL));
}
T */

TASK write(void)

float msgl5]1;
char *pun;

while (1) {

/* send a message to the ‘cc’ cab */
pun = cab_reserve(cc); /* reserve a buffer */

memcpy (pun, msg, 5*sizeof(float));
cab_putmes(cc, pun); /* release the buffer */
task_endcycle();

TASK read(void)

float msg[5];
char *pun;

while (1) {

/* get a message from the ‘cc’ CAB */
pun = cab_getmes(cc); /* reserve a buffer */
memcpy (msg, pun, 5*sizeof(float));

cab_unget(cc, pun); /* release the buffer */

task_endcycle();

CAB_ CREATE

42

CAB cab_create(char *name, int dim_mes, BYTE num_mes)

Description: It initializes a CAB. name is a pointer to an identification string (used only for
debugging purposes); dim is the size of the messages contained in the CAB; numbuf is the
number of buffers the CAB is composed of. Notice that such a number must be greater
than or equal to the number of tasks that use the CAB plus one.

Return Value: It returns the index of the created CAB.

See also:: cab_delete(), cab_reserve(), cab_putmes(), cab_getmes(), cab_unget().

CAB DELETE

void cab_delete(CAB cc);

Description: It removes the cc CAB from the system, deallocating its buffers and data struc-
tures.

See also: cab_create(), cab_reserve(), cab_putmes(), cab_getmes(), cab_unget().

CAB_ RESERVE

char *cab_reserve(CAB cc);

Description: it reserves a buffer belonging to the cc CAB and returns a pointer to it. The
primitive has to be used only by writers and never by readers.

Return value: it returns a pointer to the reserved buffer.

See also: cab_delete(), cab_create(), cab_putmes(), cab_getmes(), cab_unget().

43

CAB_PUTMES

void cab_putmes(CAB id, char *pun)

Description: It inserts the message pointed by pun into the CAB identified by id. This prim-
itive must be used only by writing tasks.

See also: cab_delete(), cab_create(), cab_reserve(), cab_getmes(), cab_unget().

CAB_GETMES

char *cab_getmes(CAB cc);

Description: It returns a pointer to the latest message written into the cc CAB. This primitive
must be used only by reading tasks.

Returned value: It returns a pointer to the most recent message contained in the CAB.

See also: cab_delete(), cab_create(), cab_putmes(), cab_reserve(), cab_unget().

CAB_ UNGET

void cab_unget(CAB cc, char *pun);

Description: it notifies the system that the buffer pointed by pun belonging to the cc CAB is
no longer used by the calling task.

See also: cab_delete(), cab_create(), cab_reserve(), cab_getmes(), cab_putmes().

4.6 POSIX Message Queues

S.Ha.R.K. provides the message passing function defined in the POSIX standard. For more
information, see Section 15 of the POSIX standard, Message Passing.

44

Chapter 5

Utility functions

S.Ha.R.K. provides a set of utility functions aimed at getting information about the kernel state.
Mainly, they allow a user to get the actual system time and some information concerning the
tasks’ state. Moreover, it allows to set exception handlers and to manage interrupts.

5.1 Reading time

The S.Ha.R.K. Kernel does not have the concept of tick. Every time interval and every absolute
time in the system is measured usin the Real-Time Clock available on the PC. To read the
current time you can use the following function:

SYS GETTIME

TIME sys_gettime(struct timespec *t);

Description: It returns the number of microseconds elapsed from system’s initialization, that
is from the end of the __kernel_register_levels__ function. If the t value is not equal
NULL, the function fills also the timespec structure passed as parameter.

5.2 Getting information on tasks

Since all the tasks are handled by a Module, it is a responsibility of each Module to hide or not
hide informations about the tasks handled by the system. However, at the moment S.Ha.R.K.
provides a function that simply prints the tasks state on the console!.

101d versions of the kernel supported a void sys_status(DWORD cw); primitive. That primitive is currently
unsupported.

45

PERROR

void perror (const char *s);

Description: This is the POSIX perror () funcion, that prints on the console (using kern_printf)
a message that explain the meaning of the errno variable. Note that each task has its own
errno variable, as specified by the POSIX standard.

exec shadow

PID exec_shadow;

Description: This is the internal variable used by the Kernel to track the running task. You can
read its value to know the PID of the current task. You CAN NOT modify this variable.

5.3 Printing messages on the console

To print a simple message on the console, please use the c* functions (cprintf, cputs, ...) de-

scribed in Volume II. If tou are debugging the kernel, you can use kern printf to print very
simple messages without floating point arithmetic.

46

Chapter 6

Signals and Exception Handling

6.1 Signals

S.Ha.R.K. implements the specification of the signals and of the real-time signald provided by
the standard IEEE 1003.13 POSIX PSE51/PSE52. In particular, you can use all the functions
described into the IEEE 1003.1{a,b} standards, except that:

e all the pid_t parameters and in general all parameters related with processes should be
ignored;

e when in POSIX a signal cause the termination of the process, it causes in S.Ha.R.K. the
termination of the whole system (you can think S.Ha.R.K. as a single process multithread
kernel);

e The siginfo_t structure contains an additional parameter called si_task of type PID. It
contains the PID of the task that queued a particular real-time signal.

In particular, you can use these functions for signal handling: kill, sigemptyset, sigfillset,
sigaddset, sigdelset, sigismember, sigaction, pthread_sigmask!, sigprocmask, sigpending,
sigsuspend, sigwait, sigwaitinfo, sigtimedwait, sigqueue, pthread_kill2 alarm, pause,
sleep (note the difference between sleep, task_sleep and nanosleep!), raise, signal.

6.2 Exception handling

S.Ha.R.K. provides a flexible mechanism to handle the exceptions of the Kernel. The mechanism
is based on the POSIX signals. In fact, S.Ha.R.K. exceptions are remapped on the real-time signal
SIGHEXC? (9). Every time something goes wrong, the system calls the primitive kern_raise,
that simply queue a real-time signal of number SIGHEXC.

The user can define its own exception handler simply remapping the SIGHEXC signal using
the POSIX primitive sigaction. To fullfil the typical usage of an exception handler (exit the

11f you are not using the POSIX scheduling modules please use task_sigmask

21f you are not using the POSTX scheduling modules please use task_signal (Note that task_kill does not
send any signal, but issue a cancellation request on a task!)

3see include/signal.h .

47

system after printing a message), the default behavior of the signal handler has been redefined
to print a text message on system shutdown.*
Here is a sample code that explain how to redefine a signal handler:

#include <kernel/kern.h>

void thehandler(int signo, siginfo_t *info, void *extra) {
/* the signal handler:
info.sivalue.sival_int contains the exception number
(see include/bits/errno.h)
info.si_task is the task that raised the exception
extra is not used */

}

int myfunc(...) A
struct sigaction action;

action.sa_flags = SA_SIGINFO;
action.sa_sigaction = thehandler;
action.sa_handler = 0;

sigfillset (&action.sa_mask) ;
sigaction(SIGHEXC, &action, NULL);

}
KERN RAISE

void kern_raise(int n, PID p);

Description: This function uses the POSIX function sigqueue to put a signal SIGHEXC into
the signal queue. The parameter n is used as the exception number, and it is passed into
the siginfo t parameter (into the sivalue.sival int field). The signal appears to be queued
by the task p (the p value is stored into the si_task field of the siginfo t structure passed
as parameter).

40lder versions of the Kernel supported two functions to be used for standard redefinition of the kernel signal
handler. These functions, called SET EXCHANDLER TXT and SET EXCHANDLER GRX, are no more
supported, and can be removed from your code without problems.

48

Chapter 7

Interrupt and HW Ports handling

Generally speaking, I/O to and from an external peripheral device can be handled in three
different ways depending on the peripheral type and on the application:

e Polling: the program cyclically checks the status of the I/O port, waiting for a input data
to be ready or an output data to be transmittable;

e Interrupt: the program enables the I/O interface to send a hardware interrupt every time
an input data is available or an output data is transmittable;

e DMA: the program enables the interface to use DMA mechaninsm for directly transferring
data to/from memory.

In this chapter we will analyse the support that the S.Ha.R.K. kernel provides for using the
second method (interrupt).

When an interrupt arrives, a code for the hand-shake with the interface and for transferring
data has to be executed. This code can run in two different modes:

e it can be entirely encapsulated in a function to be executed immediately on the interrupt
arrival, in the context of the executing task (fast handler);

e it can be entirely encapsulated in a task (safe handler) which is activated on the interrupt
arrival and scheduled with its own priority together with the other tasks.

The first method is appropriate when the interrupt needs a fast response time. Its potential
drawback is that if its computation time is not low, the overall schedulabuility can be severly
affected. This is because the guarantee algorithm does not take into account the execution time
of the interrupt handlers. The second method, on the contrary, is perfectly integrated with the
kernel’s scheduling mechanism, but can cause considerable delays in transferring data.

S.Ha.R.K. provides great flexibility in interrupt handling, since it allows each interrupt to be
associated with a fast handler, a safe handler, or both.

On an interrupt’s arrival the following operations are performed by the kernel:

e The system checks whether a fast handler is associated with the interrupt. If so, the
interrupts are enabled and the handler is invoked. This method allows a handler to be
interrupted by a higher priority handler. As an example, the keyboard handler (interrupt
1) can be interrupted be the timer handler (interrupt 0).

49

e The system checks whether a sporadic task (safe handler) is associated with the interrupt.
If so, the task is activated and is eligible to run with enabled interrupts.

The system provides a set of functions for accessing the hardaware interfaces’ ports. In the
drivers directory you can find examples of a S.Ha.R.K. device driver.
7.1 Setting an interrupt handler

HANDLER SET

int handler_set(int no, void (*fast)(int), PID pi, BYTE lock);

Description: It installs function fast (fast handler) and the sporadic task p (safe handler) on
the interrupt identified by no. The no parameter must belong to the range 1. . .15 (interrupt
0 is associated to the timer and cannot be intercepted). On the interrupt’s arrival, function
fast is invoked and runs. Depending on the lock flag, the interrupts are disabled (lock
= TRUE) or enabled (lock = FALSE) during handler execution. Furthermore, on the
interrupt’s arrival, task p is activated.

HANDLER REMOVE

void handler_remove (int no);

Description: It removes the handler of the interrupt number intno; the interrupt is masked.

7.2 Reading and writing from I/O ports
INP, INPW, INPD

unsigned char inp(unsigned short _port);
unsigned short inpw (unsigned short _port);
unsigned long inpd(unsigned short _port);

Description: They return the data read on port _port.

OuUTP, OUTPW, OUTPD

void outp(unsigned short _port, unsigned char _data);
void outpw(unsigned short _port, unsigned short _data);
void outpd(unsigned short _port, unsigned long _data)

Description: It writes the data _data into the port _port.

50

7.3 Disabling/Enabling interrupts
KERN _ CLI

void kern_cli(void);
Description: It disables interrupts (as the x86 cli instruction).

KERN _STI

void kern_sti(void);

Description: It enables interrupts (as the x86 sti instruction).

7.4 Saving/Restoring interrupts
KERN _ FSAVE

SYS_FLAGS kern_fsave(void) ;

Description: It disables interrupts (as the x86 cli instruction). The CPU flags are returned
by the function; in that way they can be restored using kern frestore

KERN _ FRESTORE

void kern_frestore(SYS_FLAGS f);

Description: It restores the interrupt state as it was when the correspondent kern_fsave was
called.

7.5 Masking/Unmasking PIC interrupts
TRQ MASK

void irq_mask(WORD irgno) ;

Description: It mask the interrupt number irgno on the PC PIC. irqno must be in the interval
[1..15].

TRQ UNMASK

void irq_unmask(WORD irgno);

Description: It unmask the interrupt number irqno on the PC PIC. irgno must be in the
interval [1..15].

51

Chapter 8

Memory Management Functions

The S.Ha.R.K. Kernel provides the standard set of memory allocations functions provided by
the Standard C libraries. In particular, the functions listed in figure 8.1 can be used.
In particular!:

e calloc() allocates memory for an array of nmemb elements of size bytes each and returns
a pointer to the allocated memory. The memory is set to zero. The value returned is
a pointer to the allocated memory, which is suitably aligned for any kind of variable, or
NULL if the request fails.

e malloc() allocates size bytes and returns a pointer to the allocated memory. The memory
is not cleared. The value returned is a pointer to the allocated memory, which is suitably
aligned for any kind of variable, or NULL if the request fails.

o free() frees the memory space pointed to by ptr, which must have been returned by a
previous call to malloc(), calloc() or realloc(). Otherwise, or if free(ptr) has already been
called before, undefined behaviour occurs. If ptr is NULL, no operation is performed.

e realloc() changes the size of the memory block pointed to by ptr to size bytes. The contents
will be unchanged to the minimum of the old and new sizes; newly allocated memory will
be uninitialized. If ptr is NULL, the call is equivalent to malloc(size); if size is equal to
zero, the call is equivalent to free(ptr). Unless ptr is NULL, it must have been returned by
an earlier call to malloc(), calloc() or realloc(). It returns a pointer to the newly allocated
memory, which is suitably aligned for any kind of variable and may be different from ptr,

IThese descriptions came directly from the Linux man pages...

#include <stdlib.h>

void *calloc(size_t nmemb, size_t size);
void *malloc(size_t size);

void free(void *ptr);

void *realloc(void *ptr, size_t size);

Figure 8.1: Memory allocation functions.

52

or NULL if the request fails or if size was equal to 0. If realloc() fails the original block is
left untouched - it is not freed or moved.

The S.Ha.R.K. Kernel also provides a set of low-level memory management functions that can be
used to allocate memory with particular requirements (for example, they are useful for getting
memory blocks aligned to a page (4 Kb) boundary or with addresses under 1/16 Mb). Description
of these functions is given in Chapter 3 of the S.Ha.R.K. Architecture Manual.

53

Appendix A

Errors and Exceptions

This appendix describes the errors and exceptions codes that can be printed into the screen,
returned by a functions into the the errno variables or that the kernel can raise. These er-
ror constants are included from the errno.h standard include file, and are contained into the

bits/errno.h include file.

A.1 Abort codes

| Name | N. Description |
none 1 Generic OSLib abortASIG_DEFAULT _ACTION
ASIG_ DEFAULT ACTION | 2 The default handler of a signal has been executed
ASIGINIT 3 | Internal error in initializing signals (should never happens)
AHEXC 4 a set__exchandler XXX function has been executed.
AARPFULL 5 ARP table full.

A.2 [Exceptions posted with kern raise

| Name | N. | Description
XDOUBLE EXCEPTION 1 | Two exceptions has been raised. Currently not used
XUNVALID KILL SHADOW 2 | Called into the internal function task makefree be-
cause a task was killed while some other task shadow
points to that task.
XNOMORE CLEANUPS 3 | Too many cleanups handlers has been used. Cur-
rently not used.

XUNVALID TASK 4 | The Registered Modules does not implement a prim-
itive called by the task (usually happens when the
user calls task delay or task sleep)

XUNVALID GUEST 5 | The Registered Modules does not handle correctly
the guest tasks. Check the initfile.

54

XNOMORE _EVENTS 6 | Too many OSLib events posted. The num-
ber of OSLib events posted is declared in
include/11/sys/11/event.h into the constant
MAX_EVENT.

XDEADLINE MISS 7 | A Task missed its deadline.
XWCET_VIOLATION 8 | A Task consumed more tha its declared WCET.
XACTIVATION 9 | A Sporadic task has been activated more frequently
than declared.
XMUTEX OWNER KILLED 10 | A task is terminated while it owns a mutex.

XSRP UNVALID LOCK 11 | A task tried to lock a SRP mutex with a wrong pre-
emption level, or a task tries to lock a SRP mutex
already locked, or a task tries to lock a SRP mutex
without declaring its preemption level.

XUNVALID DUMMY _ OP 12 | Someone tried to execute an operation on the dummy
Scheduling Module.
XUNVALID SS REPLENISH 13 | Error in the Sporadic Server replenishments. Please
look at kernel/modules/ss.c.

XARP_TABLE_ FULL 14 | Arp table full. See drivers/net/arp.c.

XNETBUFF INIT EXC 15 | Network buffers €error. See
drivers/net/netbuff.*.

XNETBUFF GET_ EXC 16 | Network buffers €error. See
drivers/net/netbuff.*.

XNETBUFF ALREADYFREE EXC | 17 | Network buffers error. See
drivers/net/netbuff.*.
XNETBUFF_RELEASE_EXC 18 | Network buffers €error. See
drivers/net/netbuff.*.
XUDP BADCHK EXC 19 | UDP CRC check failed.

A.3 POSIX error codes

The POSIX error codes have numbers form 1 to 125 and are listed into include/errno.h.

A.4 S.Ha.R.K. error codes

| Name | N. | Description

EWRONG_INT_NO 126 | Wrong int number passed to handler-set or han-
dler remove.

EUSED INT NO 127 | Already used int number.

EUNUSED INT NO 128 | Int number not used.

ETOOMUCH_INITFUNC 129 | Too much init functions posted. (Currently not used)
ETOOMUCH EXITFUNC 130 | Too much exit functions posted.

ENO_AVAIL TASK 131 | Task limit reached. Up to TSSMax-1 tasks can
be created. See include/11/i386/tss-ctx.h and in-
clude/kernel/const.h

ENO_AVAIL_SCHEDLEVEL 132 | The Task Model passed with task create cannot be
accepted by any scheduling module.

55

ETASK CREATE 133 | Error during task create.
ENO_ AVAIL RESLEVEL 134 | A Resource Model passed with task create cannot
be accepted by any resource module.
ENO_GUARANTEE 135 | The new task cannot be accepted by the Scheduling
Modules
ENO_ AVAIL STACK MEM 136 | No space left to allocate the task stack.
ENO_AVAIL_TSS 137 | No TSS free. This error should never happen.
EUNVALID _KILL 138 | The PID you tried to kill is not a task or has the
NO_KILL flag set.
EUNVALID TASK ID 139 | The PID passed to task activate is not correct.
EUNVALID GROUP 140 | Group 0 is not a valid group.
EPORT NO_ MORE DESCR 141 | HARTPORT: No more port descriptors available.
EPORT NO_MORE INTERF 142 | HARTPORT: No more free port interfaces.
EPORT INCOMPAT MESSAGE 143 | HARTPORT: Incompatible message (Write on a
read port or viceversa)
EPORT ALREADY OPEN 144 | HARTPORT: The port is already open.
EPORT NO_ MORE HASHENTRY | 145 | HARTPORT: No more Hash entries to create a port.
EPORT 2 CONNECT 146 | HARTPORT: Error creating the port.
EPORT_UNSUPPORTED_ ACC 147 | HARTPORT: Error in port_ connect.
EPORT WRONG_ OP 148 | HARTPORT: Wrong operation.
EPORT WRONG TYPE 149 | HARTPORT: Operation not supported by the port
type.
EPORT UNVALID DESCR 150 | HARTPORT: Invalid port descriptor.
ECAB_UNVALID ID 151 | CABS: Invalid CAB ID.
ECAB_CLOSED 152 | CABS: CAB Closed.
ECAB_ UNVALID MSG_ NUM 153 | CABS: Invalid Message number.
ECAB NO MORE ENTRY 154 | CABS: No more entries.
ECAB_TOO_MUCH_MSG 155 | CABS: Too much messages.

56

Index

_exit, 13
BLOCKED, 16

cab_create(), 42
cab_delete(), 43
cab_getmes(), 44
cab_putmes(), 44
cab_reserve(), 43
cab_unget(), 44

cond _broadcast(), 36
cond _destroy(), 36
cond_ init(), 36
cond_signal(), 36
cond _timedwait(), 37
cond wait(), 37
cprintf, 46

cputs, 46

errno, 46

EXE, 16

exec _shadow, 46
exit, 13

group _activate(), 20
group_ kill(), 20

handler remove(), 50
handler set(), 50
HARD, 16

IDLE, 16

inp(), 50

inpd(), 50

inpw(), 50

internal sem_getvalue(), 34
internal sem _init(), 33
internal sem_post(), 33
internal sem trywait(), 33
internal _sem_ wait(), 33
irq_mask(), 51

57

irq_unmask(), 51

jet_delstat(), 27
jet_getstat(), 27
jet_gettable(), 27

kern_ cli(), 51
kern_frestore(), 51
kern_fsave(), 51
kern printf, 46
kern_raise(), 48
kern_ sti(), 51

local task context, 16

Make, 6

make, 7

makefile, 7

MODEL, 17

mutex_ destroy(), 34
mutex_ init(), 34
mutex_lock(), 35
mutex _trylock(), 36
mutex _unlock(), 36

NRT, 16

outp(), 50
outpd(), 50
outpw(), 50

perror(), 46
port_connect(), 40
port_create(), 38
port_delete(), 39
port_ disconnect(), 40
port_receive(), 40
port_send(), 40

READY, 16

sem__destroy(), 29

sem_getvalue(), 32

sem _init(), 29

sem_ post(), 32
sem_trywait(), 31
sem_wait(), 31

sem_ xpost(), 32
set_exchandler grx(), 48
set _exchandler txt(), 48
SLEEP, 16

SOFT, 16
sys__shutdown message, 14
sys_abort shutdown, 14
sys_ atexit(), 10

SYS ATRUNLEVEL, 13
sys_end, 14

SYS FLAGS, 51

sys_ gettime(), 45
sys_set_reboot, 14

sys_ status(), 45

system initialization, 10

task creation, 17

task abort(), 20

task activate(), 19

task block activation(), 20
task cleanup pop(), 23
task cleanup push(), 23
task_create(), 17

task _createn(), 17

task delay(), 25

task endcycle(), 15, 21
task getspecific(), 23
task join(), 24

task joinable(), 24

task key create(), 21
task key delete(), 23
task_ kill(), 19

task nopreempt(), 25
task preempt(), 25

task setcancelstate(), 24
task setcanceltype(), 24
task setspecific(), 23
task sleep(), 15, 21

task testcancel(), 23
task unblock activation(), 20
task unjoinable(), 25

Bibliography

[But97] G. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms
and Applications. Kluwer Academic Publishers, Boston, 1997.

59

