ReTiIS Lab

Scuola Superiore S. Anna
Pisa

Flexibility in Real-Time
Operating Systems

Paolo Gai
PhD Student, ReTiS Lab
Scuola Superiore S. Anna - Pisa

Summary

Introduction
OS services

Walking through
the S.Ha.R.K. architecture

The Resource Modules
Implementation details
Related work
Conclusion

Introduction
(What | want to explain during this talk?)

The problem

Different applications in general requires

different QoS
Hard Real-Time _
Soft Real-Time (5\\
Best effort /_% >
7\
=)
(G /},)\l [Trecroe-)

The problem (2)

A general purpose OS shbuld provide
support for different policies

Currently the most part of the systems

provide only a fixed set of scheduling
algorithms

Fixed Priority
Round Robin / FIFO

Objective

Implement flexible scheduling on a Real-
Time Operating system
The RTOS should provide a modular way
to specify

Scheduling algorithms

Aperiodic servers

Resource handling policies

The implementation of a Module should
not rely on that of the other modules

 ———
e — — — = = T e e —
—— = =
S e
» = _— -~
= —
L e — e e
- R —— — ———
= ==
=

OS services
(...what is really needed...)

What i1s needed?

Which are the tools that have to be
provided by the OS?

Time handling

Temporal isolation

Modular specification of policies

Time Handling

Many scheduling algorithms relies on a
precise time reference
The Kernel must provide a reliable time

reference

Possibility to get the current time value with a
granularity of 2/3 orders lower than typical
time values in the system

Possibility to handle some kind of accounting
for the time spent in every thread/process

Temporal iIsolation

Some scheduling algorithms
are based on a precise accounting of the
execution times

guarantees some kind of protection from
ill-behaved processes/threads

Temporal isolation
Possibility to stop a thread when a temporal
event arrives
That event enforces a limit on a process’
execution time

Task Lifecycle

A task is a C function thaf -
IS created

IS activated

executes one or more instances
a task can block on a synchronization primitive
a task can end an instance (not in POSIX)
a task can be preempted by another task

finishes at the last }

Cr Act Sc+Disp Pre Sc+Disp Blk UnBlk Ecy Act Sc+Disp E

Modular specification of
policies

The Operating system should provide a
way to specify the behavior of each event
creation,
end,
scheduling,
dispatching,
preemption,
quantum exhaustion (temporal isolation),
synchronization,
other primitives (end instance, yield)

Walking through the

S.Ha.R.K. architecture
(...and what | did! ... Part 1...)

Objectives for the S.Ha.R.K.
Kernel

Simplicity of developmen;cof new
algorithms

Flexibility in the modification of the
scheduling policy

Predictability
Adherence to the POSIX (PSE52) Standard

Backward Compatibility with the Hartik
Kernel

Architecture

el W AT T s

Applié;ign
Libraries

Resource Modules
Aperiodic Servers
Scheduling Modules
Generic Kernel
OSLib

Hardware

|

f

18
'|||i.l
|

Wl

—
o

.. [N

Application

(global data)

Hardware

System Initialization

e

The Modules are registered during the
system initialization

the main() function is called into an

oo NRT task
M i Tn(that call main) PCP>
TBS —

55 CPIPD
P (SRE>
NRT OSLib - Hardware -

Modules Organization

The Modules are organized [Lev.0
Lev.1

by Levels, Lev. 2
Lev. 3
one Module for each Level

A task that belongs to a level is
scheduled in background with respect to
task of higher priority Modules

Task Models are used to say that a Task
is scheduled by a Module

Modules Organizatior_) (2)

A lot of configurations can be arranged
using a small set of standard modules

1 - Fixed Priority

Liv. O0: Rate Monotonic
Liv. 1. Sporadic Server

Liv. 2: Non-RealTime

Modules Organizatior_) (3)

2 - Dual Priority Scheme

Liv. 0: Rate Monotonic
Liv. 1;: Deferrable Server
Liv. 2: Earliest Deadline First

Liv. 3: Non-RealTime
Liv. 4;: Total Bandwidth Server

Modules Organizatior_] (4)

3 - Default Configuration used in the
following slides

Liv. 1: Earliest Deadline First
Liv. 2: Round Robin

Liv. 3; Constant Bandwidth Server

Modules Organizatior_) (5)

The Initialization file

TIME __kernel _register levels (void *arg)

{

struct nultiboot Iinfo *nb =
(struct multiboot_info *)arg;
EDF regi ster | evel (EDF_ENABLE ALL);
RR regi ster_|level (RRTI CK, RR_MAI N_YES, nb);
CBS register_| evel (CBS_ENABLE _ALL, 0);
dummy _regi ster _level ();
SEM regi ster _nodul e();
CABS regi ster _nodul e();
return Tl CK;

The Init Task

An user application start with the main()
function, usually understanding a set of
default initialized services

Keyboard, File System, semaphores

The __init__ task is created at startup into
the Round Robin Module

it initializes a set of devices
it calls the main function

The Init Task (2)

An example
TASK _init__ (void *arqQ)
{

struct nultiboot Iinfo *nb =
(struct nultiboot info *)arg;

HARTPORT init();
KEYB i nit (NULL);

_call _min_ (nb);

return (void *)O0;

Tasks and Models

Each task is composed by:

A Model
A Body voi d *nybody(void *arg)

The Model encapsulates the QoS
requirements of the task to the system

period, deadline, wcet
There are a predefined set of Task Models
The user can create his/her own models

Models

The Hard Task Model

HARD TASK MODEL np;

hard _task default nodel (np);
hard task def ctrl _jet(np);
hard task def arg(np, arg);
hard task def wcet (np, nywcet);
hard task def _mt(np, nyperiod);
hard task def usenmath(np);

Models (2)

The Soft Task Model

SOFT_TASK MODEL np;

soft _task default nodel (np);

soft task def arg(np, arg);

soft task def group(np, nygroup),;
soft _task def net(np, nynet);
soft task def period(np, nyperi od);
soft task def usemat h(np);

Models (3)

Each Task use Models to give its
QoS requirements to the Kernel

{ Generic J<ij

Kernel
QDC:::::§E>;

Modules

The Generic Kernel tries to
find a Module that can handle the Model

A Model is not interpreted by the Generic Kernel

Module interface

The Module interface exported is derived
from the operations that have to be done
on it, that are:

Global Operations (Level calls)
eX. Initialization, Scheduling, Guarantee
Called by the Generic Kernel

|_evel calls <_ Generic

Module Kernel

Module Interface (2)

N

Local Task Functions (Task calls)

e.g. Creation, Dispatch, Task end
Called by the Generic Kernel

to implement the primitives
called by the Application

Application

Module

Generic

Primitives
Task calls <K

Generic
Kernel

Module Interface (3)

Remote Operations (Guest calls)
Similar to the Task Calls
Called by an Aperiodic Server to implement its Level

and Task calls for a task T
inserted into the Master Module & Application

Master
Module Task calls

uest calls

Generic
Primitives

Generic

Aperiodic
Server Task callsh Kernel

Guest calls

The Resource Modules

(...and Part 2
Don’t worry, just a few slides!)

=— —
== - ok —
==
= —
=
e — S

Objectives for the
Resource Policlies

The Algorithms that implements Resource
Sharing:

should be Modular

can cohesist at the same time

The Algorithms should, if possible, be
independent from the Module that owns
the task that use the protocols

Priority Inversion

A medium priority readyutask IS
exchanged with a low priority ready task

. I Critical section
Example (P1): 1 Normal execution

Exchange

____________________ (Push-Through
J3 h——"’ Blocking)

Problem

o)
In a system organized in levels ‘_
that solution can not be
implemented because

There is not a global
concept of priority

To be modular the implementation of each
level have to prescind from the

implementation of the resource sharing
algorithms

Solution

The Solution

The inheritance mechanisms are supported
directly by the Generic Kernel in a way
independent from the Module
implementation

Traditional Implementations

The low priority ready té :c,k Tbis moved
into the high priority position of the
blocked task

% --------------- - Theidea is that...

\ \ Th goes into the position of the

"\ Tablocks high priority task
accessing«the resource

Ta goes into the Bloeked queue

The Idea

It is the high priority blocked task that,
while remaining into the ready queue,
points to another shadow task that have to
be executed in substitution at dispatch time

............. - This left
unchanged

Ta index a shadow task

\ remaining into the ready queue
Ta blocks accessing a

resource

.
T

i

(I

Implementation
running task (exec)

e R

|
|
|
|
1
f

The pointer to the
Is divided in two:
Task given by the scheduler

exec
exec_shadow Task really executed

-

i

= S — —

A shadow field is added to the task
descriptor

The shadow field points to the task
that has to be executed in substitution

Shadow
Task

shadow

Implementation (3)

[

——

The shadow field is set
when a task blocks

Implementation (4)

S e e

A wait DAG can grow

Implementation (5)

The scheduler of each Module index a
task to be executed (prescinding from
the shadows)

The function schedule store that task
into the exec variable

The dispatch function follows the shadow
chain until shadow = PID

exec_shadow is set to the last task of
the shadow chain

T
| 0 H'w‘“
i ‘“ H |‘

il

Implementation (6)

Deadlock

Using the shadow field, deadlocks can be
easily detected

To detect if a deadloc occurred, the
system should check if a cycle is inserted
into the graph when a shadow field is
modified

Overhead

The dispatch overhead is quite low (a
list with integer indexes have to be
examined, and usually that list is formed
by 1-2 elements)

The blocking overhead can be high
since to block a task more than one
shadow field have to be modified (it
depends from the protocol used)

a—

Implementation
detalls

www.drawshop.com

A (Blocking) Primitive

w“ﬂr

A typical structure is like that: _

Is a typical C function!

void a blocking primtive(...)

di sable_interrupts();
capacity control ();
record JET data();

{

Simply a CLI without changing stack!

now

= 2

The Module implements
its behavior here, AFTER
the kernel accounted for
its computation time

Account the time spent
since the last execution

e

Modul e internal Task Call (...);

A tracer can be attached
to every primitive. Some functions
are used to record task events

tracer_hook(.(f);

schedul er ();
change_cont ext (exec_shadow) ;
enabl e_interrupts();

Now all is ready to choose the next task to be executed.
Note that this function will call other 2 Module functions:
level scheduler(): to choose the next task
task_dispatch(): to tell the Module that
the task is really executed

Scheduling Level Descriptor

t ypedef struct {
char | evel nane[MAX LEVELNAME] ;
WORD | evel code;

BYTE | evel version;

Int (*level accept task nodel) (LEVEL |, TASK MODEL *m);
PID (*level scheduler)(LEVEL |);

int (*level guarantee)(LEVEL |, bandwdth t *freeba);
/[* other level calls */

int (*task create)(LEVEL |, PID p, TASK MODEL *m);
void (*task activate)(LEVEL |, PID p);

[* other task and guest calls */

} level des;

Event handling

OSLib events creation and deletion

| nt kern_event post(const struct tinespec *tine,
void (*handler)(void *p), void *par),;
| nt event _del ete(int Index);

-1 is the invalid Event index

If You need to reschedule the system

For example you activated a task in an event
voi d event need reschedul e(void);

The user can create its own events

The EDF module

Provides:

Hard Periodic and Aperiodic scheduling
using the EDF algorithm proposed by Liu
and Layland, 1973

On-line guarantee based on the Utilization
factor

Support for Aperiodic Servers through
Guest Calls

Deadline miss and wcet violation detection

Implementation of the EDF
Module

The level _des descriptor Jhave to be
redefined like a C++ class

Since C is used, an extension to the
descriptor is needed
struct {

| evel des | ev;
[* my data structures */
} EDF | evel des;

The Generic Kernel is NOT modified

Implementation of the EDF
Module (2)

EDF level des contains éll the data
structures private to the EDF Module

To allow the registration of more than one
module of the same type at the same
time, the data structures a Module use
have to be allocated ONLY INTO

EDF level des

Unless a behavior similar to C++ class static
data member is needed

Implementation of the EDF
Module (3)

The registration function (like a C++
Constructor) simply initialize the Module
and put a pointer to EDF_level_des into
the first free available pointer into the
level_table

There is not a standard level destructor
if needed, sys_atrunlevel should be used

EDF Task States

The level descriptor _

t ypedef struct {
| evel des |;
TI ME peri od[MAX PROC] ;
| nt deadline_timer[MAX PROC];
int flag[MAX PRCOC] ;
QUEUE r eady;
I nt flags,;
bandw dth_t U;
} EDF_I evel _des;

EDF Ready Queue
Management

The EDF Module use a ready queue to
store its tasks

The ready queue is ordered by deadline,
stored into the field
proc_table[p].timespec_priority

The running task (pointed also by the
exec_shadow field) is extracted from the
ready queue

Scheduler

w“ﬂr

static PID EDF_IéVeI_scheduIér(LEVEL |)

{
EDF | evel _des *lev =
(EDF | evel _des *)(level _table[l]);
return (PID)Iev->ready;
}

Using the level number |
the module get the correct
pointer to its data structures.
Lev can be thougth as
the field “this” in C++ classes...

An EDF scheduler returns
the first task in the ready queue!
The QUEUE type stores the PID
of the first task in a queue

Dispatch

static void EDF_fésk_dispatcH(LEVEL |, PIDp, int

{

nost op)

EDF | evel des *lev

(EDF | evel _des*)(level _table[l]);

g extract(p, & ev->ready),;

AN

The running task is extracted from the ready queue

Model Checking

static int EDF_I evel _accept _f ask nodel (LEVEL I,
TASK_M:I)EL * IT) Model Type Identification

{ (A Model can be handled if it is of the right pclass
and it has the right level number)

| f (m>pcl ass == HARD PCLASS | |
m >pclass == (HARD PCLASS | |)) {
HARD TASK MODEL *h = (HARD TASK MODEL *)m

| f (h->wcet && h->mt) Cast to the right type
return O (only after checking the real type!)
Check if all the data inthe Model is filled in the right way
return -1;

Task Creation

static int EDF_tésk_create(LEVEL |, PIDp,

{

TASK_MODEL *m)

EDF_| evel _des *lev = (EDF_I evel _des/— Type Conversions

*Y(level _table[l]);

HARD TASK MODEL *h = (HARD TASK_MODEL *)m

| ev->period[p] = h->mt;

| f (h->periodicity ==

APERI ODI C)

| ev->flag[p] = EDF_FLAG SPCRADI C,

el se
| ev->fl ag[p] = O;
| ev->deadl| i ne_ti mer[p]

N

_1’

Fill Module private data

Task Creation (2)

/ * Enabl e mcét_check * [
I f (lev->flags & EDF ENABLE WCET CHECK) {

proc_table
proc_table
proc_table

[P]
[P]
[P]

.avail _time = h->wcet;
. weet = h->wcet ;
.control | = CONTRCL_CAP;

Enable the monitoring of the execution time
of the task. The CONTROL_CAP features
are provided by the Generic Kernel. A Module can
also implement its own temporal isolation,
as for example the Polling Server (kernel/modules/ps.c)

Task Creation (3)

/* update the bandwidth... */
I f (lev->flags & EDF_ENABLE GUARANTEE) {
bandwi dth_t b;
b = (MAX BANDWDTH / h->nit) * h->wcet;
| f (MAX_BANDW DTH - | ev->U > b)
| ev->U += D;
el se
| ev->fl ags | = EDF_FAI LED GUARANTEE;

return O;

} A check is done to see if
the tasks allocated to EDF
uses a bandwidth >1

Guarantee

—a—

static int EDF_I evel guarantee(LEVEL |, bandw dth_t
*freebandw dt h)
{
EDF | evel _des *lev =
(EDF | evel _des *)(level table[l]);
I f (lev->flags & EDF_FAlI LED GUARANTEE) {
*freebandw dth = 0; return 0; }
el se
I f (*freebandw dth >= |l ev->U) {
*freebandw dth -= lev->U; return 1; }

The guarantee failed
because the Utot of the EDF tasks >1

el se T

There is enough bandwidth
to schedule all the EDF tasks

return O;
} ~

There is not enough bandwidth

Task Activation

T

static void EDF task activate(LEVEL |, PID p)
{

EDF | evel _des *lev =
(EDF | evel _des *)(level _table[l]);

Task activated too early

| f (proc_table[p].status == EDF WAIT) {
kern_rai se(XACTI VATION, p); return; }

| f (proc_table[p].status != SLEEP &&

proc_table[p].status != EDF WCET_ VI CLATED)
return;

Task already activated

Task Activation (2)

—a—

II_geftine(TlNE;EXACT,&proé;table[p].request_tine);
TI MESPEC _ASSI GN(&proc_tabl e[p].tinmespec priority,
&proc_tabl e[p].request _tine),;

ADDUSEC2TI MESPEC(| ev- >peri od[p],
&proc_table[p].tinespec _priority);

\

/* Insert task in the correct position */
proc_tabl e[p].status = EDF_READY;
g _tinmespec_insert(p, & ev->ready);

N

Compute the deadline

Insert the activated task into the ready queue

Task Activation (3)

| ev->deadl ine_ tiner[p] =
kern_event post(&proc table[p].tinmespec priority,

EDF tiner _deadline, (void *)p);

-\

Set the Deadline Timer

Deadline Event

static void EDF_tiner_deadIine(void *par)
{
PIDp = (PID) par; EDF _|evel des *lev;
|l ev = (EDF | evel des *)
| evel table[proc _table[p].task |evel];

switch (proc_table[p].status) {

case EDF ZOMBI E: Free task info
— if the task ended

proc tabl e[p].status = FREE; correctly

q_i nsertfirst(p, & reedesc);

| ev->U -= (MAX BANDW DTH/ | ev->period[p]) *
proc_tabl e[p]. wcet;

br eak;

Deadline Event (2)

case EDF | DLE:
TI MESPEC ASSI GN\(&pr oc_t abl e[p] . request _ti ne,
&proc_table[p].tinespec _priority);
ADDUSEC2TI MESPEC(| ev- >peri od[p],
&proc_table[p].tinespec _priority);
proc_tabl e[p]. status = EDF_READY;
g _tinmespec_insert(p, & ev->ready);

| ev->deadline tiner[p] = Automatically activate
: _ the task at the start
S'nCeqSeeu;eady kern_event _post (of the new period
has changed, &proc_table[p].tinespec _priority,
the scheduler need . : : .
to be called EDF timer _deadline, (void *)p);
event _need reschedul e();
Create again the
br eak; deadline timer

Deadline Event (3)

case EDF_WAIT:

proc_tabl e[p].status = SLEEP;

br eak: \

def aul t:

The task was aperiodic

kern_rai se(XDEADLI NE_ M SS, p) ;

What ?!1?

Preemption or wcet exaustion

static void EDF;task_epiIogue(LEVEL |, PID p)
{
EDF | evel des *lev = (EDF_| evel _des *)(level table[l]);
1 f ((lev->flags & EDF ENABLE WCET CHECK) &&
proc table[p].avail time <= 0) { \
kern_rai se(XWCET_VI OLATI ON, p) ;
proc_table[p].status = EDF_ WCET_ VI CLATED;
}
el se {

g _tinmespec_insert(p, & ev->ready);
proc_tabl e[p]. status = EDF_READY;

Wocet check

} Ok, the task was preempted, the module reisert it into the ready queue

Synchronization Points

static void EDF_f _ask_ext ract_("LEVEL |, PID p)

{
}

The task has already been extracted from the ready queue
The blocked queue will be handled by the
Synchronization point function

Synchronization Poinﬂts (2)

static void EDF_fask_insert(LEVEL |, PID p)

{

EDF | evel des *lev = (EDF_| evel des
*Y(level _table[l]);

proc_tabl e[p]. status = EDF_READY;
g _tinmespec_insert(p, & ev->ready);

The task became ready again!!!

End of the current In§tance

static void EDF_task_endcycIe(LEVEL |, PID p)
{
EDF | evel _des *lev =
(EDF | evel _des *)(level _table[l]);
/— Set the correct state
1 f (lev->flag[p] & EDF_FLAG SPORADI C)
proc_table[p].status = EDF_ WAI T;
el se /* pclass = sporadic_pclass */
proc_tabl e[p].status = EDF_I DLE;

Recharge the wcet

1 f (lev->flags & EDF ENABLE WCET CHECK)
proc_table[p].avail _tine = proc_table[p].wet,;

Task End

static void EDF_f _ask_end(LEV_EL |, PID p)

{
proc_tabl e[p].status = EDF_ZOMBI E;

Simply set the state,
the deadline event will finish

Related work
(What the others did...)

A

Kernels and Middleware

Classifications:

Where the scheduling take place
Kernel scheduling
User Level scheduling
Internal implementation
Kernel supported
Middleware

RT-Linux and RK

RTLinux
Is a POSIX compliant RTOS that executes
Linux as a Non-RealTime thread

Interrupts are catched by RT-Linux
Linux interrupts handled as callbacks

o e
| L

»
o __.___—

=

o —

B —

el

—

Time Linux

Real

Resource Kernels

Resource Kernels

Modifies the Linux scheduler adding
reservations

A reservation is the possibility to consume a
resource for some time with a given period

Uses a feedback scheduler to adapt the
scheduling parameters to the application
needs

Implemented as a Linux Kernel Module

Resource Kernels

e 1

User Space

Resource Kernels (2)

|
r

R T TS

7]

[

g R C RO

DSRT

Flexible implementation 6f scheduling
algorithms in a Middleware

Basically, it uses 3 priorities
High: Scheduler
Medium: The task that has to run
Low: The other tasks

High overhead
Independent from the underlying Kernel

SRT Scheduler

Top-level Scheduler

Overrun Scheduler TS Scheduler
I

RT Scheduler
'y I
| |
RT Multiplexing | | TS
Partition Partition Partition

Comformance Test

Admission

Adaptation

RT Process

RED-LInux

Every task is composed by a set of chunks
Priority, start time, finish time, budget

2 Level Scheduling

Allocator
A process/thread that creates the chunks

Dispatcher
Schedules the chunks

Implemented as a Linux Kernel Module

RED-LINnux (2)

Y
_‘i
Task 1 Task2 ... Task N
Schedule Allocator
TR
priarity
start_time
fiinish_time
budget
Y
Schedule Dispatcher
-~ - I 1 N b
- | 1 . -
- | 1 .
start_time priority deadline othier attribute combinations
- I [e
ra g T Sy

Time Driven

Friority Driven
Scheduler

Scheduler

Share Driven

Scheduler Hew

Schedulers

CPU Inheritance

Based on the intuitive idéaof donation
A thread can give its time to other threads
Donation is transitive

Supports:
Hierarchical scheduling
Multiprocessor architectures
Cache affinity schedulers

User level scheduling

CPU Inheritance (2)

Root Sched uler
(rzal-time fined- priority .
RR/ELEC acheduler] Real -time threads
% Q
— =0 Scheduler
O
Timesharing class Scheduler Ready
(lottery scheduler) CFUQ threads H
- queues
] Web browser e H
Mike i —
\isn schechiler)] ﬁaﬁlﬂs CPU 1 H W
T O [sched Ehng
S 1
O CPU ;.r Lequestsl
Jay
ey mehecnier) Jay’ s threads
* —K_“\-—E_ —= () Running
thread
Background class O il oy
(gang scheduler) . .
& Background jobs é (i-j
Waiting thread App 2

MarteOS and others

MarteOS
Is a IEEE 1013.13 PSE51 RTOS written in Ada

Extends the POSIX standard

User Level scheduling compatible with POSIX

A scheduler is a thread that receives all the events
related to the life the threads it handles

The scheduler waits for events in a way similar to
the select() or to the sigwait() primitives

Other solutions can be found in
Vino, Spin, Rialto, ExoKernel

The ReTiS Lab

http://oslib.sssup.it

http://erika.sssup.it
http://metasim.sssup.it

Iy

—— 5 - e
o = = e T L R ————
g e e . e TN _— = wE ¥ 5 T e,
o PR G s A o — mm——— e = = E— T

Paolo Gai
PhD Student
ReTiS Lab
Scuola Superiore S. Anna
Via Carducci, 40

Pisa

e-mail:pj@sssup.it
home page:
http://feanor.sssup.it/~pj

