
ReTiS Lab
Scuola Superiore S. Anna

Pisa

Flexibility in Real-Time
Operating Systems

Paolo Gai
PhD Student, ReTiS Lab

Scuola Superiore S. Anna - Pisa

Summary

❚ Introduction
❚ OS services
❚ Walking through

the S.Ha.R.K. architecture
❚ The Resource Modules
❚ Implementation details
❚ Related work
❚ Conclusion

I

Introduction
(What I want to explain during this talk?)

The problem

❚ Different applications in general requires
different QoS
❙ Hard Real-Time
❙ Soft Real-Time
❙ Best effort

The problem (2)

❚ A general purpose OS should provide
support for different policies

❚ Currently the most part of the systems
provide only a fixed set of scheduling
algorithms
❙ Fixed Priority
❙ Round Robin / FIFO

Objective

❚ Implement flexible scheduling on a Real-
Time Operating system

❚ The RTOS should provide a modular way
to specify
❙ Scheduling algorithms
❙ Aperiodic servers
❙ Resource handling policies

❚ The implementation of a Module should
not rely on that of the other modules

II

OS services
(…what is really needed…)

What is needed?

❚ Which are the tools that have to be
provided by the OS?
❙ Time handling
❙ Temporal isolation
❙ Modular specification of policies

Time Handling

❚ Many scheduling algorithms relies on a
precise time reference

❚ The Kernel must provide a reliable time
reference
❙ Possibility to get the current time value with a

granularity of 2/3 orders lower than typical
time values in the system

❙ Possibility to handle some kind of accounting
for the time spent in every thread/process

Temporal isolation

❚ Some scheduling algorithms
❙ are based on a precise accounting of the

execution times
❙ guarantees some kind of protection from

ill-behaved processes/threads

❚ Temporal isolation
❙ Possibility to stop a thread when a temporal

event arrives
❙ That event enforces a limit on a process’

execution time

Task Lifecycle

❚ A task is a C function that
❙ is created
❙ is activated
❙ executes one or more instances

❘ a task can block on a synchronization primitive
❘ a task can end an instance (not in POSIX)
❘ a task can be preempted by another task

❙ finishes at the last }
Cr Act Sc+Disp Pre Sc+Disp Blk UnBlk Ecy Sc+Disp EndAct

Modular specification of
policies

❚ The Operating system should provide a
way to specify the behavior of each event
❙ creation,
❙ end,
❙ scheduling,
❙ dispatching,
❙ preemption,
❙ quantum exhaustion (temporal isolation),
❙ synchronization,
❙ other primitives (end instance, yield)

III

Walking through the
S.Ha.R.K. architecture
(…and what I did! … Part 1…)

Objectives for the S.Ha.R.K.
Kernel

❚ Simplicity of development of new
algorithms

❚ Flexibility in the modification of the
scheduling policy

❚ Predictability
❚ Adherence to the POSIX (PSE52) Standard
❚ Backward Compatibility with the Hartik

Kernel

Architecture

Application

Hardware

OSLib

Generic
Kernel

Libraries

Libraries

Scheduling Modules

Resource Modules

OSLib

Hardware

Generic Kernel

M1

M3
M4

M2

M5 R3

R1
R2

Application
(global data)

τ0 ... τn

Aperiodic Servers

❚ The Modules are registered during the
system initialization

System Initialization

the main() function is called into an
NRT task

__init__ (that call main)
τ0 ... τn

Generic
Kernel

Libraries
PCP

SRP

PIP

HLP

EDF

TBS
RM

NRT

DS
PS

OSLib - Hardware

RM
NRT PCP

Modules Organization

Lev. 3

Lev. 0
Lev. 1
Lev. 2

❚ A task that belongs to a level is
scheduled in background with respect to
task of higher priority Modules

❚ Task Models are used to say that a Task
is scheduled by a Module

❚ The Modules are organized
by Levels,
one Module for each Level

Modules Organization (2)

❚ A lot of configurations can be arranged
using a small set of standard modules

❚ 1 - Fixed Priority

Liv. 2: Non-RealTime

Liv. 1: Sporadic Server

Liv. 0: Rate Monotonic

Modules Organization (3)

❚ 2 - Dual Priority Scheme

Liv. 3: Non-RealTime

Liv. 4: Total Bandwidth Server

Liv. 2: Earliest Deadline First

Liv. 0: Rate Monotonic

Liv. 1: Deferrable Server

Modules Organization (4)

❚ 3 - Default Configuration used in the
following slides

Liv. 1: Earliest Deadline First

Liv. 3: Constant Bandwidth Server

Liv. 2: Round Robin

Modules Organization (5)

❚ The Initialization file
TIME __kernel_register_levels__(void *arg)

{

 struct multiboot_info *mb =

(struct multiboot_info *)arg;

 EDF_register_level(EDF_ENABLE_ALL);

 RR_register_level(RRTICK, RR_MAIN_YES, mb);

 CBS_register_level(CBS_ENABLE_ALL, 0);

 dummy_register_level();

 SEM_register_module();

 CABS_register_module();

 return TICK;

}

The __init__ Task

❚ An user application start with the main()
function, usually understanding a set of
default initialized services
❙ Keyboard, File System, semaphores

❚ The __init__ task is created at startup into
the Round Robin Module
❙ it initializes a set of devices
❙ it calls the main function

The __init__ Task (2)

❚ An example
TASK __init__(void *arg)

{

 struct multiboot_info *mb =

(struct multiboot_info *)arg;

 HARTPORT_init();

 KEYB_init(NULL);

 __call_main__(mb);

 return (void *)0;

}

Tasks and Models

❚ Each task is composed by:
❙ A Model
❙ A Body void *mybody(void *arg)

❚ The Model encapsulates the QoS
requirements of the task to the system
❙ period, deadline, wcet

❚ There are a predefined set of Task Models
❚ The user can create his/her own models

Models

❚ The Hard Task Model

HARD_TASK_MODEL mp;

hard_task_default_model(mp);

hard_task_def_ctrl_jet(mp);

hard_task_def_arg(mp, arg);

hard_task_def_wcet(mp, mywcet);

hard_task_def_mit(mp,myperiod);

hard_task_def_usemath(mp);

Models (2)

❚ The Soft Task Model

SOFT_TASK_MODEL mp;

soft_task_default_model(mp);

soft_task_def_arg(mp, arg);

soft_task_def_group(mp, mygroup);

soft_task_def_met(mp, mymet);

soft_task_def_period(mp,myperiod);

soft_task_def_usemath(mp);

Models (3)

❚ Each Task use Models to give its
QoS requirements to the Kernel

❚ The Generic Kernel tries to
find a Module that can handle the Model

❙ A Model is not interpreted by the Generic Kernel

Task τ

Model

A Module
Another Module

Modules

Generic
Kernel

Module interface

The Module interface exported is derived
from the operations that have to be done
on it, that are:

❚ Global Operations (Level calls)
❙ ex. Initialization, Scheduling, Guarantee
❙ Called by the Generic Kernel

Generic
KernelModule

Level calls

❚ Local Task Functions (Task calls)
❙ e.g. Creation, Dispatch, Task end
❙ Called by the Generic Kernel

to implement the primitives
called by the Application Application

Module Interface (2)

Generic
 Kernel

Generic
Primitives

Module
Task calls

❚ Remote Operations (Guest calls)
❙ Similar to the Task Calls
❙ Called by an Aperiodic Server to implement its Level

and Task calls for a task
inserted into the Master Module Application

Module Interface (3)

Generic
Kernel

Generic
Primitives

Master
Module Task calls

Guest calls

Aperiodic
Server Task calls
Guest calls

IV

The Resource Modules
(…and Part 2 ….

Don’t worry, just a few slides!)

Objectives for the
Resource Policies

❚ The Algorithms that implements Resource
Sharing:
❙ should be Modular
❙ can cohesist at the same time

❚ The Algorithms should, if possible, be
independent from the Module that owns
the task that use the protocols

Priority Inversion

❚ A medium priority ready task is
exchanged with a low priority ready task

Exchange
(Push-Through
Blocking)

J1

J2

J3

Normal execution
Critical sectionExample (PI):

Problem

❚ In a system organized in levels
that solution can not be
implemented because
❙ There is not a global

concept of priority
❙ To be modular the implementation of each

level have to prescind from the
implementation of the resource sharing
algorithms

Solution

❚ The Solution
❙ The inheritance mechanisms are supported

directly by the Generic Kernel in a way
independent from the Module
implementation

Traditional Implementations

❚ The low priority ready task Tb is moved
into the high priority position of the
blocked task

Ta Tb

Ta blocks
accessing the resource

Tb goes into the position of the
high priority task

The idea is that...

Ta goes into the Blocked queue

The Idea

❚ It is the high priority blocked task that,
while remaining into the ready queue,
points to another shadow task that have to
be executed in substitution at dispatch time

Ta Tb

Ta blocks accessing a
resource

Ta index a shadow task
remaining into the ready queue

Tb is left
unchanged

❚ The pointer to the running task (exec)

Implementation

❙ exec_shadow Task really executed

EXEC

EXEC_SHADOW

EXEC

❙ exec Task given by the scheduler
Is divided in two:

Implementation (2)

❚ A shadow field is added to the task
descriptor

Task i

shadow

❚ The shadow field points to the task
that has to be executed in substitution

Shadow
Task

shadow

Implementation (3)

❚ At the start, proc_table[p].shadow = p
(no substitution)

Task i

shadow
❚ The shadow field is set

when a task blocks

Blocked Task

shadow

Blocking Task

shadow

Implementation (4)

❚ A wait DAG can grow

Blocked Task

shadow

Blocked Task

shadow

Blocked Task

shadow

Blocking Task

shadow

Implementation (5)

❚ The scheduler of each Module index a
task to be executed (prescinding from
the shadows)

❚ The function schedule store that task
into the exec variable

❚ The dispatch function follows the shadow
chain until shadow = PID

❚ exec_shadow is set to the last task of
the shadow chain

Implementation (6)

EXEC

EXEC_SHADOW

Blocked Task

shadow

Blocked Task

shadow

Blocked Task

shadow

Blocking Task

shadow

Deadlock

❚ Using the shadow field, deadlocks can be
easily detected

❚ To detect if a deadloc occurred, the
system should check if a cycle is inserted
into the graph when a shadow field is
modified

Overhead

❚ The dispatch overhead is quite low (a
list with integer indexes have to be
examined, and usually that list is formed
by 1-2 elements)

❚ The blocking overhead can be high
since to block a task more than one
shadow field have to be modified (it
depends from the protocol used)

V

Implementation
details

A (Blocking) Primitive

❚ A typical structure is like that:
void a_blocking_primitive(...) {

 disable_interrupts();

 capacity_control();

 record_JET_data();

 Module_internal_Task_Call(...);

 tracer_hook(...);

 scheduler();

 change_context(exec_shadow);

 enable_interrupts();

}

Is a typical C function!

The Module implements
its behavior here, AFTER
the kernel accounted for

its computation time
A tracer can be attached

to every primitive. Some functions
are used to record task events

Simply a CLI without changing stack!

Account the time spent
since the last execution

now

Now all is ready to choose the next task to be executed.
Note that this function will call other 2 Module functions:

level_scheduler(): to choose the next task
task_dispatch(): to tell the Module that

the task is really executed

Scheduling Level Descriptor

typedef struct {

 char level_name[MAX_LEVELNAME];

 WORD level_code;

 BYTE level_version;

 int (*level_accept_task_model)(LEVEL l, TASK_MODEL *m);

 PID (*level_scheduler)(LEVEL l);

 int (*level_guarantee)(LEVEL l, bandwidth_t *freeba);

 /* other level calls */

 int (*task_create)(LEVEL l, PID p, TASK_MODEL *m);

 void (*task_activate)(LEVEL l, PID p);

 /* other task and guest calls */

} level_des;

Event handling

❚ OSLib events creation and deletion
❙ int kern_event_post(const struct timespec *time,
 void (*handler)(void *p), void *par);

❙ int event_delete(int index);

❚ -1 is the invalid Event index
❚ If You need to reschedule the system

❙ For example you activated a task in an event
❙ void event_need_reschedule(void);

❚ The user can create its own events

The EDF module

Provides:
❚ Hard Periodic and Aperiodic scheduling

using the EDF algorithm proposed by Liu
and Layland, 1973

❚ On-line guarantee based on the Utilization
factor

❚ Support for Aperiodic Servers through
Guest Calls

❚ Deadline miss and wcet violation detection

Implementation of the EDF
Module

❚ The level_des descriptor have to be
redefined like a C++ class

❚ Since C is used, an extension to the
descriptor is needed
struct {

 level_des lev;

 /* my data structures */

} EDF_level_des;

❚ The Generic Kernel is NOT modified

Implementation of the EDF
Module (2)

❚ EDF_level_des contains all the data
structures private to the EDF Module

❚ To allow the registration of more than one
module of the same type at the same
time, the data structures a Module use
have to be allocated ONLY INTO
EDF_level_des
❙ Unless a behavior similar to C++ class static

data member is needed

Implementation of the EDF
Module (3)

❚ The registration function (like a C++
Constructor) simply initialize the Module
and put a pointer to EDF_level_des into
the first free available pointer into the
level_table

❚ There is not a standard level destructor
❙ if needed, sys_atrunlevel should be used

EDF Task States

The level descriptor

typedef struct {

 level_des l;

 TIME period[MAX_PROC];

 int deadline_timer[MAX_PROC];

 int flag[MAX_PROC];

 QUEUE ready;

 int flags;

 bandwidth_t U;

} EDF_level_des;

EDF Ready Queue
Management

❚ The EDF Module use a ready queue to
store its tasks

❚ The ready queue is ordered by deadline,
stored into the field
proc_table[p].timespec_priority

❚ The running task (pointed also by the
exec_shadow field) is extracted from the
ready queue

Scheduler

static PID EDF_level_scheduler(LEVEL l)

{

 EDF_level_des *lev =

 (EDF_level_des *)(level_table[l]);

 return (PID)lev->ready;

}

Using the level number l
the module get the correct

pointer to its data structures.
Lev can be thougth as

the field “this” in C++ classes...
An EDF scheduler returns

the first task in the ready queue!
The QUEUE type stores the PID

of the first task in a queue

Dispatch

static void EDF_task_dispatch(LEVEL l, PID p, int
nostop)

{

 EDF_level_des *lev =

 (EDF_level_des*)(level_table[l]);

 q_extract(p, &lev->ready);

}

The running task is extracted from the ready queue

Model Checking

static int EDF_level_accept_task_model(LEVEL l,
TASK_MODEL *m)

{

 if (m->pclass == HARD_PCLASS ||

 m->pclass == (HARD_PCLASS | l)) {

 HARD_TASK_MODEL *h = (HARD_TASK_MODEL *)m;

 if (h->wcet && h->mit)

 return 0;

 }

 return -1;

}

Model Type Identification
(A Model can be handled if it is of the right pclass

and it has the right level number)

Cast to the right type
(only after checking the real type!)

Check if all the data inthe Model is filled in the right way

Task Creation

static int EDF_task_create(LEVEL l, PID p,
TASK_MODEL *m)

{

 EDF_level_des *lev = (EDF_level_des
*)(level_table[l]);

 HARD_TASK_MODEL *h = (HARD_TASK_MODEL *)m;

 lev->period[p] = h->mit;

 if (h->periodicity == APERIODIC)

 lev->flag[p] = EDF_FLAG_SPORADIC;

 else

 lev->flag[p] = 0;

 lev->deadline_timer[p] = -1;

Type Conversions

Fill Module private data

Task Creation (2)

 /* Enable wcet check */

 if (lev->flags & EDF_ENABLE_WCET_CHECK) {

 proc_table[p].avail_time = h->wcet;

 proc_table[p].wcet = h->wcet;

 proc_table[p].control |= CONTROL_CAP;

 }

}

Enable the monitoring of the execution time
of the task. The CONTROL_CAP features

are provided by the Generic Kernel. A Module can
also implement its own temporal isolation,

as for example the Polling Server (kernel/modules/ps.c)

Task Creation (3)

/* update the bandwidth... */

 if (lev->flags & EDF_ENABLE_GUARANTEE) {

 bandwidth_t b;

 b = (MAX_BANDWIDTH / h->mit) * h->wcet;

 if (MAX_BANDWIDTH - lev->U > b)

 lev->U += b;

 else

 lev->flags |= EDF_FAILED_GUARANTEE;

 }

 return 0;

} A check is done to see if
the tasks allocated to EDF

uses a bandwidth >1

Guarantee

static int EDF_level_guarantee(LEVEL l, bandwidth_t
*freebandwidth)

{

 EDF_level_des *lev =

 (EDF_level_des *)(level_table[l]);

 if (lev->flags & EDF_FAILED_GUARANTEE) {

 *freebandwidth = 0; return 0; }

 else

 if (*freebandwidth >= lev->U) {

 *freebandwidth -= lev->U; return 1; }

 else

 return 0;

}

The guarantee failed
because the Utot of the EDF tasks >1

There is enough bandwidth
to schedule all the EDF tasks

There is not enough bandwidth

Task Activation

static void EDF_task_activate(LEVEL l, PID p)

{

 EDF_level_des *lev =

 (EDF_level_des *)(level_table[l]);

 if (proc_table[p].status == EDF_WAIT) {

 kern_raise(XACTIVATION,p); return; }

 if (proc_table[p].status != SLEEP &&

 proc_table[p].status != EDF_WCET_VIOLATED)

 return;

Task activated too early

Task already activated

Task Activation (2)

 ll_gettime(TIME_EXACT,&proc_table[p].request_time);

 TIMESPEC_ASSIGN(&proc_table[p].timespec_priority,

 &proc_table[p].request_time);

 ADDUSEC2TIMESPEC(lev->period[p],
&proc_table[p].timespec_priority);

 /* Insert task in the correct position */

 proc_table[p].status = EDF_READY;

 q_timespec_insert(p,&lev->ready);

Compute the deadline

Insert the activated task into the ready queue

Task Activation (3)

 lev->deadline_timer[p] =
kern_event_post(&proc_table[p].timespec_priority,

 EDF_timer_deadline, (void *)p);

}

Set the Deadline Timer

Deadline Event

static void EDF_timer_deadline(void *par)

{

 PID p = (PID) par; EDF_level_des *lev;

 lev = (EDF_level_des *)

 level_table[proc_table[p].task_level];

 switch (proc_table[p].status) {

 case EDF_ZOMBIE:

 proc_table[p].status = FREE;

 q_insertfirst(p,&freedesc);

 lev->U -= (MAX_BANDWIDTH/lev->period[p]) *

 proc_table[p].wcet;

 break;

Free task info
if the task ended

correctly

Deadline Event (2)

 case EDF_IDLE:

 TIMESPEC_ASSIGN(&proc_table[p].request_time,

 &proc_table[p].timespec_priority);

 ADDUSEC2TIMESPEC(lev->period[p],
 &proc_table[p].timespec_priority);

 proc_table[p].status = EDF_READY;

 q_timespec_insert(p,&lev->ready);

 lev->deadline_timer[p] =

 kern_event_post(

 &proc_table[p].timespec_priority,

 EDF_timer_deadline, (void *)p);

 event_need_reschedule();

 break;

Automatically activate
the task at the start
of the new period

Create again the
deadline timer

Since the ready
 queue

has changed,
the scheduler need

to be called

Deadline Event (3)

 case EDF_WAIT:

 proc_table[p].status = SLEEP;

 break;

 default:

 kern_raise(XDEADLINE_MISS,p);

 }

}

The task was aperiodic

What ?!?

Preemption or wcet exaustion

static void EDF_task_epilogue(LEVEL l, PID p)

{

 EDF_level_des *lev = (EDF_level_des *)(level_table[l]);

 if ((lev->flags & EDF_ENABLE_WCET_CHECK) &&

 proc_table[p].avail_time <= 0) {

 kern_raise(XWCET_VIOLATION,p);

 proc_table[p].status = EDF_WCET_VIOLATED;

 }

 else {

 q_timespec_insert(p,&lev->ready);

 proc_table[p].status = EDF_READY;

 }

}

Wcet check

Ok, the task was preempted, the module reisert it into the ready queue

Synchronization Points

static void EDF_task_extract(LEVEL l, PID p)

{

}

The task has already been extracted from the ready queue
The blocked queue will be handled by the

Synchronization point function

Synchronization Points (2)

static void EDF_task_insert(LEVEL l, PID p)

{

 EDF_level_des *lev = (EDF_level_des
*)(level_table[l]);

 proc_table[p].status = EDF_READY;

 q_timespec_insert(p,&lev->ready);

}

The task became ready again!!!

End of the current Instance

static void EDF_task_endcycle(LEVEL l, PID p)

{

 EDF_level_des *lev =

 (EDF_level_des *)(level_table[l]);

 if (lev->flag[p] & EDF_FLAG_SPORADIC)

 proc_table[p].status = EDF_WAIT;

 else /* pclass = sporadic_pclass */

 proc_table[p].status = EDF_IDLE;

 if (lev->flags & EDF_ENABLE_WCET_CHECK)

 proc_table[p].avail_time = proc_table[p].wcet;

}

Set the correct state

Recharge the wcet

Task End

static void EDF_task_end(LEVEL l, PID p)

{

 proc_table[p].status = EDF_ZOMBIE;

}

Simply set the state,
the deadline event will finish

IV

Related work
(What the others did…)

Kernels and Middleware

Classifications:
Where the scheduling take place

❙ Kernel scheduling
❙ User Level scheduling

❚ Internal implementation
❙ Kernel supported
❙ Middleware

RT-Linux and RK

❚ RTLinux
❙ Is a POSIX compliant RTOS that executes

Linux as a Non-RealTime thread
❙ Interrupts are catched by RT-Linux

❘ Linux interrupts handled as callbacks

Real Time Linux

Resource Kernels

❚ Resource Kernels
❙ Modifies the Linux scheduler adding

reservations
❘ A reservation is the possibility to consume a

resource for some time with a given period

❙ Uses a feedback scheduler to adapt the
scheduling parameters to the application
needs

❙ Implemented as a Linux Kernel Module

Resource Kernels

Resource Kernels (2)

DSRT

❚ Flexible implementation of scheduling
algorithms in a Middleware

❚ Basically, it uses 3 priorities
❙ High: Scheduler
❙ Medium: The task that has to run
❙ Low: The other tasks

❚ High overhead
❚ Independent from the underlying Kernel

DSRT (2)

RED-Linux

❚ Every task is composed by a set of chunks
❙ Priority, start time, finish time, budget

❚ 2 Level Scheduling
❙ Allocator

A process/thread that creates the chunks
❙ Dispatcher

Schedules the chunks

❚ Implemented as a Linux Kernel Module

RED-Linux (2)

CPU Inheritance

❚ Based on the intuitive idea of donation
❚ A thread can give its time to other threads
❚ Donation is transitive
❚ Supports:

❙ Hierarchical scheduling
❙ Multiprocessor architectures
❙ Cache affinity schedulers

❚ User level scheduling

CPU Inheritance (2)

MarteOS and others

❚ MarteOS
❙ Is a IEEE 1013.13 PSE51 RTOS written in Ada
❙ Extends the POSIX standard

❘ User Level scheduling compatible with POSIX
❘ A scheduler is a thread that receives all the events

related to the life the threads it handles
❘ The scheduler waits for events in a way similar to

the select() or to the sigwait() primitives

❚ Other solutions can be found in
❙ Vino, Spin, Rialto, ExoKernel

The ReTiS Lab

http://retis.sssup.ithttp://shark.sssup.it

http://erika.sssup.it

http://metasim.sssup.it

http://oslib.sssup.it

The Author

Paolo Gai
PhD Student
ReTiS Lab
Scuola Superiore S. Anna
Via Carducci, 40
Pisa

e-mail: pj@sssup.it
home page:
http://feanor.sssup.it/~pj

