FIRST

Flexible Integrated Real-Time Systems Technology

FIRST FRAMEWORK ON
SHaRK OS

Malardalen

University ﬁmmmm Giuseppe Lipari, Michael
1 % > Trimarchi
Univs‘r::(ty of RETIS Lab
Scuola Superiore Sant’Anna
Scuola
The Superiore,S.

University of pAnha of Pisa
Cantabria

FIRST

Flexible Integrated Real-Time Systems Technology

Summary

Software Framework
Status of implementation in Shark
Examples of usage of the API

Creating a contract for
periodic, sporadic hard real-time tasks
soft real-time task
imprecise computation
applications (set of tasks)

FIRST

Flexible Integrated Real-Time Systems Technology

Software Framework

« Application = set of tasks/threads (+ scheduler)
Synonyms: Component, Subsystem
It can be reduced to one single task

« Hierarchical scheduling structure

System = set of applications
Each application may have its own local scheduler

 Service Contract

Each application specifies its requirements by requiring a service
contract

Flexible Integrated Real-Time Systems Technology

/appl A A 4 appl B A
@ O
[scheduler AJ [scheduler B}
\Z —/ Na —/
T _—
service service
contract contract
v v
. N
[global scheduler]
RTOS
_)

FIRST

Flexible Integrated Real-Time Systems Technology

Server based scheduling

« Server-based scheduling
Each application is assigned one or more servers
Each server has a budget and a period
Provides temporal isolation
Provides independent analysis

« Server algorithm
No specific global scheduling strategy
No specific server algorithm
Systems can be based on
 Fixed Priority and Sporadic Server
« EDF and Constant Bandwidth Server
« Table Driven and Slot Shifting

FIRST

Flexible Integrated Real-Time Systems Technology

Status of implementation in Shark

Core First Implementation J
L J Scheduling [Specific

| Framework

schedulers

LShared resources Hierarchical J

| L Dynamic

reclamation
Spare capacity
sharing

FIRST

Flexible Integrated Real-Time Systems Technology

Service contract parameters

Basic attributes Shared resources
Budget_min, max list of prot. operations
period_min, max resource id
workload_type operation id

Timing Attributes Implementation spec.
d_equals_t, dline, server preempt. lev.
budget_overrun resource preempt. lev.
dline_overrun

: _ Spare cap. sharing
Hierarchical sched. granulanty, util. set
type quality & importance

FIRST

Flexible Integrated Real-Time Systems Technology

Core service contract

Basic attributes
Budget_min, max
period_min, max
workload_type

Timing Attributes Implementation spec.

d_equals_t, dline,
budget_overrun
dline_overrun

Basic server mechanism: Constant Bandwidth Server (CBS)
Basic scheduling mechanism: EDF
Negotiation mechanism: polynomial schedulability test

FIRST

Flexible Integrated Real-Time Systems Technology

Global scheduler

Local Scheduler
EDF, FPS, RR,
Table Driven

o

Application é/ [

Local
Scheduler

Global Scheduler ——

f ol o W el

cur

Application B

@ @

‘ Local

Scheduler

]

')

Tzl

Server
CBS*

Application C

)

l

A

L

Loc
Schedluler
|

|

Global Scheduler

No implementation-specific data is needed

2
4

no preemption level for servers (automatically assigned by EDF)
preemption level for resources is not needed either

FIRST

Flexible Integrated Real-Time Systems Technology

Contract Negotiation

User fsf_negotiate contract() MSg queue Service

Thread g Thread
<_|_msg queue |

Client/server structure:
the service thread is assigned a contract

response time: G
= Service thread contract params: (C,,,, T, D) R=|_"I\T +D
= Computation time for negotiation: G C max

min

FIRST

Flexible Integrated Real-Time Systems Technology

Synchronization

Synchronization between servers

When two threads in two different
servers use the same mutex

Synchronization mechanism

we are using a mechanism called
BWI (Bandwidth inheritance)

Similar to Priority Inheritance

Shared resources

list of prot. operations
resource id
operation id

FIRST

Flexible Integrated Real-Time Systems Technology

Hierarchical scheduling

Hierarchical sched.

type

Current support for
* Fixed Priority (POSIX std)
 Round Robin (POSIX std)
 EDF
« Table Driven (with deadline

transformation)

Easy to introduce new schedulers
« thanks to Shark modularity
« not part of the API

FIRST

Flexible Integrated Real-Time Systems Technology

Capacity sharing

The contract is flexible
« possibility of re-negotiation
* possibility of obtaining more
than the minimum

In Shark

« Use elastic task (Buttazzo et
al.) to assign spare capacity

« Among those with equal
importance, the quality
parameter is used as the
elastic constant

Not completed:

this feature is to be used only when D=T

Capacity sharing

granularity, util. set
quality & importance

planning extension to general model in next phase

FIRST

Flexible Integrated Real-Time Systems Technology

Dynamic reclaimation

If some thread execute less than expected, the spare capacity
is dynamically reassigned
Current implementation

the GRUB (greedy reclaimation of unused bandwidth) has been
implemented in Shark

it is not possible to specify which thread gets the extra capacity
no parameter in the interface

To be done
the algorithm is valid if D=T
to be extended to the general model

FIRST

Flexible Integrated Real-Time Systems Technology

Examples of usage of the API

Example 1: Initialize a contract for singyreaek Define a contract
fsf contract parameters t contract;

Isf server 1d t server;
pthread t j;

Initizalize

fsf initialize contract (&contract); _— the contract

fsf set contract basic parameters (&contract, dcminy&tmax;
&cmax, &tmin,workload) ;
fsf set contract timing requirements (&contract, FALSE, &deadline, O,
no sigval,0,no sigval);
if (!fsf negotiate contract (&contract, &server))
// ERROR

}
else fsf create thread(serveg, &j,NULL, task, NULL, NULL) ;

Create the thread :
and bind it to the Negotiate

server

FIRST

Flexible Integrated Real-Time Systems Technology

Example: typical thread structure

Periodic thread

void task body(void *arg) {

struct timespec acttime;

struct timespec budget;

struct timespec period;

bool deadline missed;
bool budget overrun;
int uperiod;

[...]

sys gettime (&acttime);

while (1) {
ADDUSEC2TIMESPEC (uperiod, &acttime) ;
fsf schedule next timed job (&acttime, &budget, &period,
&budget overrun, &deadline missed);

/* Body */

FIRST

Flexible Integrated Real-Time Systems Technology

Example: typical thread structure (2)

Aperiodic thread

void task body(void *arg) {

Synchronization

fsf synch object handle t synch handle; -~ object

struct timespec budget;
struct timespec period;
bool deadline missed;
bool budget overrun;

[...]

while (1) {
fsf schedule next event triggered jobA&syng

Wait for
next synch.

h Ygggle,&budge'

speriod, &budget overrun,&deadline missed);

/* Body */
}

FIRST

Flexible Integrated Real-Time Systems Technology

Example: hard real-time periodic threads

What is needed

Core service (+ Shared resource synchronization)
Contract Parameters

C...=C..= WCET of the thread

T,..=T,.= thread’s period

D = thread’s deadline

workload = bounded

budget overrun exception handling
Advantages

The thread is protected from the other non-RT and soft RT threads
in the system (temporal isolation)

if dynamic reclaimation, the spare capacity of this thread can be
given to others

FIRST

Flexible Integrated Real-Time Systems Technology

Example: soft real-time periodic threads

What is needed

Core + (capacity sharing) + (dynamic recl.) + (shared res. synch.)
Contract Parameters

C...— C... = variation of the execution time

T,..=T,.= thread’s period

D = thread’s deadline

workload = indeterminate
Advantages

Does not impact on other threads (temporal isolation)

minimum service is guaranteed

Takes advantage of capacity sharing and dynamic reclamation (to
minimize deadline misses)

can re-negotiate if it needs more

FIRST

Flexible Integrated Real-Time Systems Technology

Example: imprecise computation

Thread consists of a mandatory part and N optional parts
WCET of mandatory part =M
WCET of i-th optional part = O,

What is needed

Core + (capacity sharing) + (dynamic recl.) + (shared res.
synch.)

Contract Parameters
C..=M
C..=M+0O, +..+0,
T..=T,...= thread’s period
D = thread’s deadline
workload = bounded

FIRST

Flexible Integrated Real-Time Systems Technology

Example: thread structure of an imprecise
computation thread

void task body(void *arg) {

ﬁﬁﬁread_t my pid = (pthread t) (arg);

int 1i;

sys gettime (&acttime); . Get remaining
fsf get server (&server, my pid); capacity
while (1) {

/* Mandatory Body */

for (i=0; i<N; i++) {
fsf get available capacity(server,
if (capacity > O[1i]) {
/* Optional Code */

&capagtity) ;

else break; If enough capacity

execute optional
part

L, &period,

}
ADDUSEC2TIMESPEC (uperiod, &acttime) ;
fsf schedule next timed job (&acttime, &budgef

&budget missed, &deadline missed)

4

FIRST

Flexible Integrated Real-Time Systems Technology

Example: imprecise computation

Advantage:
mandatory part is guaranteed

If capacity sharing and dynamic reclamation services are
available, some optional part may be completed as well

More reclaiming c0 @ more optional parts

c » . i T
:FIRST | GFme | [| S

Flexible Integrated Real-Time Systems Technology

Example: creating a contract for an
application
What is needed
Core + Hierarchical
Contract Parameters

Cmin - cmax
Tmin - Tmax
D

workload = indeterminate
Scheduler type = EDF or FPS or RRor TD
Advantages

re-using an existing code base without re-designing and re-
implementing it
need minimal modifications to the original code

FIRST

Flexible Integrated Real-Time Systems Technology

Example: contract for hierarchical

fsf contract parameters t contract;
fsf server id t server;
pthread t 3, k;

HARD_TASK_MODEL ht;
fsf initialize contract (&contract);

fsf set contract basic parameters (&contract, &cmin, &tmax,
&cmax, &tmin, workload) ;

Set scheduler

fsf set contract timing requirements (&contract, FALSE, &deadline, O,

no sigval,0,no sigval);

fsf set local scheduler parameter (&contract,FSEF SCHEDULER EDF) ;

fsf negotiate contract (&contract, &server);

/* S.Ha.R.K. hard task parameters */
hard task default model (ht) ;

hard task def mit (ht, TIMESPEC2USEC (&deadline));
hard task def wcet (ht, TIMESPEC2USEC (&wcet)) ;

Create a local thread

ﬁ
/* Create EDF task */

fsf create local thread(server, &j,NULL, task,NULL, &ht) ;

/* Create EDF task */
fsf create local thread(server, &k,NULL, task,NULL, &ht) ;

oGO
009
000
Flexible Integrated Real-Time Systems Technology

