Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1624 | giacomo | 1 | #include <math.h> |
2 | |||
3 | #include "tmwtypes.h" |
||
4 | #ifdef USE_RTMODEL |
||
5 | # include "simstruc_types.h" |
||
6 | #else |
||
7 | # include "simstruc.h" |
||
8 | #endif |
||
9 | #include "rt_sim.h" |
||
10 | |||
11 | #include "kernel/kern.h" |
||
12 | |||
13 | #ifndef RT_MALLOC /* statically declare data */ |
||
14 | |||
15 | /*==========* |
||
16 | * Struct's * |
||
17 | *==========*/ |
||
18 | |||
19 | /* |
||
20 | * TimingData |
||
21 | */ |
||
22 | typedef struct TimingData_Tag { |
||
23 | real_T period[NUMST]; /* Task periods in seconds */ |
||
24 | real_T offset[NUMST]; /* Task offsets in seconds */ |
||
25 | real_T clockTick[NUMST]; /* Flint task time tick counter */ |
||
26 | int_T taskTick[NUMST]; /* Counter for determining task hits */ |
||
27 | int_T nTaskTicks[NUMST]; /* Number base rate ticks for a task hit */ |
||
28 | int_T firstDiscIdx; /* First discrete task index */ |
||
29 | } TimingData; |
||
30 | |||
31 | /*=========================* |
||
32 | * Data local to this file * |
||
33 | *=========================*/ |
||
34 | |||
35 | static TimingData td; |
||
36 | |||
37 | /*==================* |
||
38 | * Visible routines * |
||
39 | *==================*/ |
||
40 | |||
41 | /* Function: rt_SimInitTimingEngine ============================================ |
||
42 | * Abstract: |
||
43 | * This function is for use with single tasking or multitasking |
||
44 | * real-time systems. |
||
45 | * |
||
46 | * Initializes the timing engine for a fixed-step real-time system. |
||
47 | * It is assumed that start time is 0.0. |
||
48 | * |
||
49 | * Returns: |
||
50 | * NULL - success |
||
51 | * non-NULL - error string |
||
52 | */ |
||
53 | const char *rt_SimInitTimingEngine(int_T rtmNumSampTimes, |
||
54 | real_T rtmStepSize, |
||
55 | real_T *rtmSampleTimePtr, |
||
56 | real_T *rtmOffsetTimePtr, |
||
57 | int_T *rtmSampleHitPtr, |
||
58 | int_T *rtmSampleTimeTaskIDPtr, |
||
59 | real_T rtmTStart, |
||
60 | SimTimeStep *rtmSimTimeStepPtr, |
||
61 | void **rtmTimingDataPtr) |
||
62 | { |
||
63 | int_T i; |
||
64 | int *tsMap = rtmSampleTimeTaskIDPtr; |
||
65 | real_T *period = rtmSampleTimePtr; |
||
66 | real_T *offset = rtmOffsetTimePtr; |
||
67 | int_T *sampleHit = rtmSampleHitPtr; |
||
68 | real_T stepSize = rtmStepSize; |
||
69 | |||
70 | if (rtmTStart != 0.0) { |
||
71 | return("Start time must be zero for real-time systems"); |
||
72 | } |
||
73 | |||
74 | *rtmSimTimeStepPtr = MAJOR_TIME_STEP; |
||
75 | |||
76 | *rtmTimingDataPtr = (void*)&td; |
||
77 | |||
78 | for (i = 0; i < NUMST; i++) { |
||
79 | tsMap[i] = i; |
||
80 | td.period[i] = period[i]; |
||
81 | td.offset[i] = offset[i]; |
||
82 | td.nTaskTicks[i] = (int_T)floor(period[i]/stepSize + 0.5); |
||
83 | if (td.period[i] == CONTINUOUS_SAMPLE_TIME || |
||
84 | td.offset[i] == 0.0) { |
||
85 | td.taskTick[i] = 0; |
||
86 | td.clockTick[i] = 0.0; |
||
87 | sampleHit[i] = 1; |
||
88 | } else { |
||
89 | td.taskTick[i] = (int_T)floor((td.period[i]-td.offset[i]) / |
||
90 | stepSize+0.5); |
||
91 | td.clockTick[i] = -1.0; |
||
92 | sampleHit[i] = 0; |
||
93 | } |
||
94 | } |
||
95 | |||
96 | /* Correct first sample time if continuous task */ |
||
97 | td.period[0] = stepSize; |
||
98 | td.nTaskTicks[0] = 1; |
||
99 | |||
100 | /* Set first discrete task index */ |
||
101 | #if NUMST == 1 |
||
102 | td.firstDiscIdx = (int_T)(period[0] == CONTINUOUS_SAMPLE_TIME); |
||
103 | #else |
||
104 | td.firstDiscIdx = ((int_T)(period[0] == CONTINUOUS_SAMPLE_TIME) + |
||
105 | (int_T)(period[1] == CONTINUOUS_SAMPLE_TIME)); |
||
106 | #endif |
||
107 | |||
108 | return(NULL); /* success */ |
||
109 | |||
110 | } /* end rt_SimInitTimingEngine */ |
||
111 | |||
112 | |||
113 | #if !defined(MULTITASKING) |
||
114 | |||
115 | /*###########################################################################*/ |
||
116 | /*########################### SINGLE TASKING ################################*/ |
||
117 | /*###########################################################################*/ |
||
118 | |||
119 | /* Function: rt_SimGetNextSampleHit ============================================ |
||
120 | * Abstract: |
||
121 | * For a single tasking real-time system, return time of next sample hit. |
||
122 | */ |
||
123 | time_T rt_SimGetNextSampleHit(void) |
||
124 | { |
||
125 | time_T timeOfNextHit; |
||
126 | td.clockTick[0] += 1; |
||
127 | timeOfNextHit = td.clockTick[0] * td.period[0]; |
||
128 | |||
129 | # if NUMST > 1 |
||
130 | { |
||
131 | int i; |
||
132 | for (i = 1; i < NUMST; i++) { |
||
133 | if (++td.taskTick[i] == td.nTaskTicks[i]) { |
||
134 | td.taskTick[i] = 0; |
||
135 | td.clockTick[i]++; |
||
136 | } |
||
137 | } |
||
138 | } |
||
139 | # endif |
||
140 | |||
141 | return(timeOfNextHit); |
||
142 | |||
143 | } /* end rt_SimGetNextSampleHit */ |
||
144 | |||
145 | |||
146 | |||
147 | /* Function: rt_SimUpdateDiscreteTaskSampleHits ================================ |
||
148 | * Abstract: |
||
149 | * This function is for use with single tasking real-time systems. |
||
150 | * |
||
151 | * If the number of sample times is greater than one, then we need to |
||
152 | * update the discrete task sample hits for the next time step. Note, |
||
153 | * task 0 always has a hit since it's sample time is the fundamental |
||
154 | * sample time. |
||
155 | */ |
||
156 | void rt_SimUpdateDiscreteTaskSampleHits(int_T rtmNumSampTimes, |
||
157 | void *rtmTimingData, |
||
158 | int_T *rtmSampleHitPtr, |
||
159 | real_T *rtmTPtr) |
||
160 | { |
||
161 | int_T *sampleHit = rtmSampleHitPtr; |
||
162 | int i; |
||
163 | |||
164 | UNUSED_PARAMETER(rtmTimingData); |
||
165 | UNUSED_PARAMETER(rtmNumSampTimes); |
||
166 | |||
167 | for (i = td.firstDiscIdx; i < NUMST; i++) { |
||
168 | int_T hit = (td.taskTick[i] == 0); |
||
169 | if (hit) { |
||
170 | rttiSetTaskTime(rtmTPtr, i, |
||
171 | td.clockTick[i]*td.period[i] + td.offset[i]); |
||
172 | } |
||
173 | sampleHit[i] = hit; |
||
174 | } |
||
175 | } /* rt_SimUpdateDiscreteTaskSampleHits */ |
||
176 | |||
177 | |||
178 | |||
179 | #else /* defined(MULTITASKING) */ |
||
180 | |||
181 | /*###########################################################################*/ |
||
182 | /*############################## MULTITASKING ###############################*/ |
||
183 | /*###########################################################################*/ |
||
184 | |||
185 | |||
186 | /* Function: rt_SimUpdateDiscreteEvents ======================================== |
||
187 | * Abstract: |
||
188 | * This function is for use with multitasking real-time systems. |
||
189 | * |
||
190 | * This function updates the status of the RT_MODEL sampleHits |
||
191 | * flags and the perTaskSampleHits matrix which is used to determine |
||
192 | * when special sample hits occur. |
||
193 | * |
||
194 | * The RT_MODEL contains a matrix, called perTaskSampleHits. |
||
195 | * This matrix is used by the ssIsSpecialSampleHit macro. The row and |
||
196 | * column indices are both task id's (equivalent to the root RT_MODEL |
||
197 | * sample time indices). This is a upper triangle matrix. This routine |
||
198 | * only updates the slower task hits (kept in column j) for row |
||
199 | * i if we have a sample hit in row i. |
||
200 | * |
||
201 | * column j |
||
202 | * tid 0 1 2 3 4 5 |
||
203 | * ------------------------- |
||
204 | * 0 | | X | X | X | X | X | |
||
205 | * r ------------------------- |
||
206 | * o 1 | | | X | X | X | X | This matrix(i,j) answers: |
||
207 | * w ------------------------- If we are in task i, does |
||
208 | * 2 | | | | X | X | X | slower task j have a hit now? |
||
209 | * i ------------------------- |
||
210 | * 3 | | | | | X | X | |
||
211 | * ------------------------- |
||
212 | * 4 | | | | | | X | X = 0 or 1 |
||
213 | * ------------------------- |
||
214 | * 5 | | | | | | | |
||
215 | * ------------------------- |
||
216 | * |
||
217 | * How macros index this matrix: |
||
218 | * |
||
219 | * ssSetSampleHitInTask(S, j, i, X) => matrix(i,j) = X |
||
220 | * |
||
221 | * ssIsSpecialSampleHit(S, my_sti, promoted_sti, tid) => |
||
222 | * (tid_for(promoted_sti) == tid && !minor_time_step && |
||
223 | * matrix(tid,tid_for(my_sti)) |
||
224 | * ) |
||
225 | * |
||
226 | * my_sti = My (the block's) original sample time index. |
||
227 | * promoted_sti = The block's promoted sample time index resulting |
||
228 | * from a transition via a ZOH from a fast to a |
||
229 | * slow block or a transition via a unit delay from |
||
230 | * a slow to a fast block. |
||
231 | * |
||
232 | * The perTaskSampleHits array, of dimension n*n, is accessed using |
||
233 | * perTaskSampleHits[j + i*n] where n is the total number of sample |
||
234 | * times, 0 <= i < n, and 0 <= j < n. The C language stores arrays in |
||
235 | * row-major order, that is, row 0 followed by row 1, etc. |
||
236 | * |
||
237 | */ |
||
238 | time_T rt_SimUpdateDiscreteEvents(int_T rtmNumSampTimes, |
||
239 | void *rtmTimingData, |
||
240 | int_T *rtmSampleHitPtr, |
||
241 | int_T *rtmPerTaskSampleHits) |
||
242 | { |
||
243 | int i, j; |
||
244 | int_T *sampleHit = rtmSampleHitPtr; |
||
245 | |||
246 | UNUSED_PARAMETER(rtmTimingData); |
||
247 | |||
248 | /* |
||
249 | * Run this loop in reverse so that we do lower priority events first. |
||
250 | */ |
||
251 | i = NUMST; |
||
252 | while (--i >= 0) { |
||
253 | if (td.taskTick[i] == 0) { |
||
254 | /* |
||
255 | * Got a sample hit, reset the counter, and update the clock |
||
256 | * tick counter. |
||
257 | */ |
||
258 | sampleHit[i] = 1; |
||
259 | td.clockTick[i]++; |
||
260 | |||
261 | /* |
||
262 | * Record the state of all "slower" events |
||
263 | */ |
||
264 | for (j = i + 1; j < NUMST; j++) { |
||
265 | rttiSetSampleHitInTask(rtmPerTaskSampleHits, rtmNumSampTimes, |
||
266 | j, i, sampleHit[j]); |
||
267 | } |
||
268 | } else { |
||
269 | /* |
||
270 | * no sample hit, increment the counter |
||
271 | */ |
||
272 | sampleHit[i] = 0; |
||
273 | } |
||
274 | |||
275 | if (++td.taskTick[i] == td.nTaskTicks[i]) { /* update for next time */ |
||
276 | td.taskTick[i] = 0; |
||
277 | } |
||
278 | } |
||
279 | |||
280 | return(td.clockTick[0]*td.period[0]); |
||
281 | |||
282 | } /* rt_SimUpdateDiscreteEvents */ |
||
283 | |||
284 | |||
285 | |||
286 | /* Function: rt_SimUpdateDiscreteTaskTime ====================================== |
||
287 | * Abstract: |
||
288 | * This function is for use with multitasking systems. |
||
289 | * |
||
290 | * After a discrete task output and update has been performed, this |
||
291 | * function must be called to update the discrete task time for next |
||
292 | * time around. |
||
293 | */ |
||
294 | void rt_SimUpdateDiscreteTaskTime(real_T *rtmTPtr, |
||
295 | void *rtmTimingData, |
||
296 | int tid) |
||
297 | { |
||
298 | UNUSED_PARAMETER(rtmTimingData); |
||
299 | rttiSetTaskTime(rtmTPtr, tid, |
||
300 | td.clockTick[tid]*td.period[tid] + td.offset[tid]); |
||
301 | } |
||
302 | |||
303 | #endif /* MULTITASKING */ |
||
304 | |||
305 | #else |
||
306 | |||
307 | #include "mrt_sim.c" /* dynamically allocate data */ |
||
308 | |||
309 | #endif /* RT_MALLOC */ |
||
310 | |||
311 | /* |
||
312 | ******************************************************************************* |
||
313 | * FUNCTIONS MAINTAINED FOR BACKWARDS COMPATIBILITY WITH THE SimStruct |
||
314 | ******************************************************************************* |
||
315 | */ |
||
316 | #ifndef USE_RTMODEL |
||
317 | const char *rt_InitTimingEngine(SimStruct *S) |
||
318 | { |
||
319 | const char_T *retVal = rt_SimInitTimingEngine( |
||
320 | ssGetNumSampleTimes(S), |
||
321 | ssGetStepSize(S), |
||
322 | ssGetSampleTimePtr(S), |
||
323 | ssGetOffsetTimePtr(S), |
||
324 | ssGetSampleHitPtr(S), |
||
325 | ssGetSampleTimeTaskIDPtr(S), |
||
326 | ssGetTStart(S), |
||
327 | &ssGetSimTimeStep(S), |
||
328 | &ssGetTimingData(S)); |
||
329 | return(retVal); |
||
330 | } |
||
331 | |||
332 | # ifdef RT_MALLOC |
||
333 | void rt_DestroyTimingEngine(SimStruct *S) |
||
334 | { |
||
335 | rt_SimDestroyTimingEngine(ssGetTimingData(S)); |
||
336 | } |
||
337 | # endif |
||
338 | |||
339 | # if !defined(MULTITASKING) |
||
340 | void rt_UpdateDiscreteTaskSampleHits(SimStruct *S) |
||
341 | { |
||
342 | rt_SimUpdateDiscreteTaskSampleHits( |
||
343 | ssGetNumSampleTimes(S), |
||
344 | ssGetTimingData(S), |
||
345 | ssGetSampleHitPtr(S), |
||
346 | ssGetTPtr(S)); |
||
347 | } |
||
348 | |||
349 | # ifndef RT_MALLOC |
||
350 | |||
351 | time_T rt_GetNextSampleHit(void) |
||
352 | { |
||
353 | return(rt_SimGetNextSampleHit()); |
||
354 | } |
||
355 | |||
356 | # else /* !RT_MALLOC */ |
||
357 | |||
358 | time_T rt_GetNextSampleHit(SimStruct *S) |
||
359 | { |
||
360 | return(rt_SimGetNextSampleHit(ssGetTimingData(S), |
||
361 | ssGetNumSampleTimes(S))); |
||
362 | } |
||
363 | |||
364 | # endif |
||
365 | |||
366 | # else /* MULTITASKING */ |
||
367 | |||
368 | time_T rt_UpdateDiscreteEvents(SimStruct *S) |
||
369 | { |
||
370 | return(rt_SimUpdateDiscreteEvents( |
||
371 | ssGetNumSampleTimes(S), |
||
372 | ssGetTimingData(S), |
||
373 | ssGetSampleHitPtr(S), |
||
374 | ssGetPerTaskSampleHitsPtr(S))); |
||
375 | } |
||
376 | |||
377 | void rt_UpdateDiscreteTaskTime(SimStruct *S, int tid) |
||
378 | { |
||
379 | rt_SimUpdateDiscreteTaskTime(ssGetTPtr(S), ssGetTimingData(S), tid); |
||
380 | } |
||
381 | |||
382 | #endif |
||
383 | #endif |
||
384 | |||
385 | /* EOF: rt_sim.c */ |