Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1085 | pj | 1 | /* |
2 | * Project: S.Ha.R.K. |
||
3 | * |
||
4 | * Coordinators: |
||
5 | * Giorgio Buttazzo <giorgio@sssup.it> |
||
6 | * Paolo Gai <pj@gandalf.sssup.it> |
||
7 | * |
||
8 | * Authors : |
||
9 | * Paolo Gai <pj@gandalf.sssup.it> |
||
10 | * (see the web pages for full authors list) |
||
11 | * |
||
12 | * ReTiS Lab (Scuola Superiore S.Anna - Pisa - Italy) |
||
13 | * |
||
14 | * http://www.sssup.it |
||
15 | * http://retis.sssup.it |
||
16 | * http://shark.sssup.it |
||
17 | */ |
||
18 | |||
19 | /** |
||
20 | ------------ |
||
21 | CVS : $Id: edfact.c,v 1.1.1.1 2002-09-02 09:37:42 pj Exp $ |
||
22 | |||
23 | File: $File$ |
||
24 | Revision: $Revision: 1.1.1.1 $ |
||
25 | Last update: $Date: 2002-09-02 09:37:42 $ |
||
26 | ------------ |
||
27 | **/ |
||
28 | |||
29 | /* |
||
30 | * Copyright (C) 2001 Paolo Gai |
||
31 | * |
||
32 | * This program is free software; you can redistribute it and/or modify |
||
33 | * it under the terms of the GNU General Public License as published by |
||
34 | * the Free Software Foundation; either version 2 of the License, or |
||
35 | * (at your option) any later version. |
||
36 | * |
||
37 | * This program is distributed in the hope that it will be useful, |
||
38 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
39 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
40 | * GNU General Public License for more details. |
||
41 | * |
||
42 | * You should have received a copy of the GNU General Public License |
||
43 | * along with this program; if not, write to the Free Software |
||
44 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
||
45 | * |
||
46 | */ |
||
47 | |||
48 | #include "edfact.h" |
||
49 | #include <ll/stdio.h> |
||
50 | #include <ll/string.h> |
||
51 | #include <kernel/model.h> |
||
52 | #include <kernel/descr.h> |
||
53 | #include <kernel/var.h> |
||
54 | #include <kernel/func.h> |
||
55 | #include <kernel/trace.h> |
||
56 | |||
57 | //#define edfact_printf kern_printf |
||
58 | #define edfact_printf printk |
||
59 | |||
60 | /*+ Status used in the level +*/ |
||
61 | #define EDFACT_READY MODULE_STATUS_BASE /*+ - Ready status +*/ |
||
62 | #define EDFACT_IDLE MODULE_STATUS_BASE+4 /*+ to wait the deadline +*/ |
||
63 | |||
64 | /*+ flags +*/ |
||
65 | #define EDFACT_FLAG_NORAISEEXC 2 |
||
66 | |||
67 | /*+ the level redefinition for the Earliest Deadline First level +*/ |
||
68 | typedef struct { |
||
69 | level_des l; /*+ the standard level descriptor +*/ |
||
70 | |||
71 | TIME period[MAX_PROC]; /*+ The task periods; the deadlines are |
||
72 | stored in the priority field +*/ |
||
73 | int deadline_timer[MAX_PROC]; |
||
74 | /*+ The task deadline timers +*/ |
||
75 | |||
76 | struct timespec deadline_timespec[MAX_PROC]; |
||
77 | |||
78 | int dline_miss[MAX_PROC]; /*+ Deadline miss counter +*/ |
||
79 | int wcet_miss[MAX_PROC]; /*+ Wcet miss counter +*/ |
||
80 | |||
81 | int nact[MAX_PROC]; /*+ Wcet miss counter +*/ |
||
82 | |||
83 | int flag[MAX_PROC]; |
||
84 | /*+ used to manage the JOB_TASK_MODEL and the |
||
85 | periodicity +*/ |
||
86 | |||
87 | QUEUE ready; /*+ the ready queue +*/ |
||
88 | |||
89 | int flags; /*+ the init flags... +*/ |
||
90 | |||
91 | bandwidth_t U; /*+ the used bandwidth +*/ |
||
92 | |||
93 | } EDFACT_level_des; |
||
94 | |||
95 | |||
96 | static void EDFACT_timer_deadline(void *par); |
||
97 | |||
98 | static void EDFACT_internal_activate(EDFACT_level_des *lev, PID p) |
||
99 | { |
||
100 | TIMESPEC_ASSIGN(&proc_table[p].timespec_priority, |
||
101 | &proc_table[p].request_time); |
||
102 | ADDUSEC2TIMESPEC(lev->period[p], &proc_table[p].timespec_priority); |
||
103 | |||
104 | TIMESPEC_ASSIGN(&lev->deadline_timespec[p], |
||
105 | &proc_table[p].timespec_priority); |
||
106 | |||
107 | /* Insert task in the correct position */ |
||
108 | proc_table[p].status = EDFACT_READY; |
||
109 | q_timespec_insert(p,&lev->ready); |
||
110 | |||
111 | /* needed because when there is a wcet miss I disable CONTROL_CAP */ |
||
112 | proc_table[p].control |= CONTROL_CAP; |
||
113 | } |
||
114 | |||
115 | static char *EDFACT_status_to_a(WORD status) |
||
116 | { |
||
117 | if (status < MODULE_STATUS_BASE) |
||
118 | return status_to_a(status); |
||
119 | |||
120 | switch (status) { |
||
121 | case EDFACT_READY : return "EDFACT_Ready"; |
||
122 | case EDFACT_IDLE : return "EDFACT_Idle"; |
||
123 | default : return "EDFACT_Unknown"; |
||
124 | } |
||
125 | } |
||
126 | |||
127 | static void EDFACT_timer_deadline(void *par) |
||
128 | { |
||
129 | PID p = (PID) par; |
||
130 | EDFACT_level_des *lev; |
||
131 | |||
132 | lev = (EDFACT_level_des *)level_table[proc_table[p].task_level]; |
||
133 | |||
134 | switch (proc_table[p].status) { |
||
135 | case EDFACT_IDLE: |
||
136 | edfact_printf("I%d",p); |
||
137 | TIMESPEC_ASSIGN(&proc_table[p].request_time, |
||
138 | &proc_table[p].timespec_priority); |
||
139 | |||
140 | EDFACT_internal_activate(lev,p); |
||
141 | |||
142 | event_need_reschedule(); |
||
143 | break; |
||
144 | |||
145 | default: |
||
146 | edfact_printf("D%d",p); |
||
147 | /* else, a deadline miss occurred!!! */ |
||
148 | lev->dline_miss[p]++; |
||
149 | |||
150 | /* the task is into another state */ |
||
151 | lev->nact[p]++; |
||
152 | |||
153 | /* Set the deadline timer */ |
||
154 | ADDUSEC2TIMESPEC(lev->period[p], &lev->deadline_timespec[p]); |
||
155 | } |
||
156 | |||
157 | /* Set the deadline timer */ |
||
158 | lev->deadline_timer[p] = kern_event_post(&lev->deadline_timespec[p], |
||
159 | EDFACT_timer_deadline, |
||
160 | (void *)p); |
||
161 | |||
162 | } |
||
163 | |||
164 | static void EDFACT_timer_guest_deadline(void *par) |
||
165 | { |
||
166 | PID p = (PID) par; |
||
167 | |||
168 | edfact_printf("AAARRRGGGHHH!!!"); |
||
169 | kern_raise(XDEADLINE_MISS,p); |
||
170 | } |
||
171 | |||
172 | static int EDFACT_level_accept_task_model(LEVEL l, TASK_MODEL *m) |
||
173 | { |
||
174 | if (m->pclass == HARD_PCLASS || m->pclass == (HARD_PCLASS | l)) { |
||
175 | HARD_TASK_MODEL *h = (HARD_TASK_MODEL *)m; |
||
176 | |||
177 | if (h->wcet && h->mit && h->periodicity == PERIODIC) |
||
178 | return 0; |
||
179 | } |
||
180 | |||
181 | return -1; |
||
182 | } |
||
183 | |||
184 | static int EDFACT_level_accept_guest_model(LEVEL l, TASK_MODEL *m) |
||
185 | { |
||
186 | if (m->pclass == JOB_PCLASS || m->pclass == (JOB_PCLASS | l)) |
||
187 | return 0; |
||
188 | else |
||
189 | return -1; |
||
190 | } |
||
191 | |||
192 | |||
193 | static char *onoff(int i) |
||
194 | { |
||
195 | if (i) |
||
196 | return "On "; |
||
197 | else |
||
198 | return "Off"; |
||
199 | } |
||
200 | |||
201 | static void EDFACT_level_status(LEVEL l) |
||
202 | { |
||
203 | EDFACT_level_des *lev = (EDFACT_level_des *)(level_table[l]); |
||
204 | PID p = lev->ready; |
||
205 | |||
206 | kern_printf("On-line guarantee : %s\n", |
||
207 | onoff(lev->flags & EDFACT_ENABLE_GUARANTEE)); |
||
208 | kern_printf("Used Bandwidth : %u/%u\n", |
||
209 | lev->U, MAX_BANDWIDTH); |
||
210 | |||
211 | while (p != NIL) { |
||
212 | if ((proc_table[p].pclass) == JOB_PCLASS) |
||
213 | kern_printf("Pid: %2d (GUEST)\n", p); |
||
214 | else |
||
215 | kern_printf("Pid: %2d Name: %10s %s: %9d Dline: %9d.%6d Stat: %s\n", |
||
216 | p, |
||
217 | proc_table[p].name, |
||
218 | "Period ", |
||
219 | lev->period[p], |
||
220 | proc_table[p].timespec_priority.tv_sec, |
||
221 | proc_table[p].timespec_priority.tv_nsec/1000, |
||
222 | EDFACT_status_to_a(proc_table[p].status)); |
||
223 | p = proc_table[p].next; |
||
224 | } |
||
225 | |||
226 | for (p=0; p<MAX_PROC; p++) |
||
227 | if (proc_table[p].task_level == l && proc_table[p].status != EDFACT_READY |
||
228 | && proc_table[p].status != FREE ) |
||
229 | kern_printf("Pid: %2d Name: %10s %s: %9d Dline: %9d.%6d Stat: %s\n", |
||
230 | p, |
||
231 | proc_table[p].name, |
||
232 | "Period ", |
||
233 | lev->period[p], |
||
234 | proc_table[p].timespec_priority.tv_sec, |
||
235 | proc_table[p].timespec_priority.tv_nsec/1000, |
||
236 | EDFACT_status_to_a(proc_table[p].status)); |
||
237 | } |
||
238 | |||
239 | /* The scheduler only gets the first task in the queue */ |
||
240 | static PID EDFACT_level_scheduler(LEVEL l) |
||
241 | { |
||
242 | EDFACT_level_des *lev = (EDFACT_level_des *)(level_table[l]); |
||
243 | |||
244 | /* { // print 4 dbg the ready queue |
||
245 | PID p= lev->ready; |
||
246 | kern_printf("(s"); |
||
247 | while (p != NIL) { |
||
248 | kern_printf("%d ",p); |
||
249 | p = proc_table[p].next; |
||
250 | } |
||
251 | kern_printf(") "); |
||
252 | } |
||
253 | */ |
||
254 | return (PID)lev->ready; |
||
255 | } |
||
256 | |||
257 | /* The on-line guarantee is enabled only if the appropriate flag is set... */ |
||
258 | static int EDFACT_level_guarantee(LEVEL l, bandwidth_t *freebandwidth) |
||
259 | { |
||
260 | EDFACT_level_des *lev = (EDFACT_level_des *)(level_table[l]); |
||
261 | |||
262 | if (lev->flags & EDFACT_FAILED_GUARANTEE) { |
||
263 | *freebandwidth = 0; |
||
264 | return 0; |
||
265 | } |
||
266 | else |
||
267 | if (*freebandwidth >= lev->U) { |
||
268 | *freebandwidth -= lev->U; |
||
269 | return 1; |
||
270 | } |
||
271 | else |
||
272 | return 0; |
||
273 | |||
274 | } |
||
275 | |||
276 | static int EDFACT_task_create(LEVEL l, PID p, TASK_MODEL *m) |
||
277 | { |
||
278 | EDFACT_level_des *lev = (EDFACT_level_des *)(level_table[l]); |
||
279 | |||
280 | /* if the EDFACT_task_create is called, then the pclass must be a |
||
281 | valid pclass. */ |
||
282 | |||
283 | HARD_TASK_MODEL *h = (HARD_TASK_MODEL *)m; |
||
284 | |||
285 | lev->period[p] = h->mit; |
||
286 | |||
287 | lev->flag[p] = 0; |
||
288 | lev->deadline_timer[p] = -1; |
||
289 | lev->dline_miss[p] = 0; |
||
290 | lev->wcet_miss[p] = 0; |
||
291 | lev->nact[p] = 0; |
||
292 | |||
293 | /* Enable wcet check */ |
||
294 | proc_table[p].avail_time = h->wcet; |
||
295 | proc_table[p].wcet = h->wcet; |
||
296 | proc_table[p].control |= CONTROL_CAP; |
||
297 | |||
298 | /* update the bandwidth... */ |
||
299 | if (lev->flags & EDFACT_ENABLE_GUARANTEE) { |
||
300 | bandwidth_t b; |
||
301 | b = (MAX_BANDWIDTH / h->mit) * h->wcet; |
||
302 | |||
303 | /* really update lev->U, checking an overflow... */ |
||
304 | if (MAX_BANDWIDTH - lev->U > b) |
||
305 | lev->U += b; |
||
306 | else |
||
307 | /* The task can NOT be guaranteed (U>MAX_BANDWIDTH)... |
||
308 | in this case, we don't raise an exception... in fact, after the |
||
309 | EDFACT_task_create the task_create will call level_guarantee that return |
||
310 | -1... return -1 in EDFACT_task_create isn't correct, because: |
||
311 | . generally, the guarantee must be done when also the resources |
||
312 | are registered |
||
313 | . returning -1 will cause the task_create to return with an errno |
||
314 | ETASK_CREATE instead of ENO_GUARANTEE!!! |
||
315 | |||
316 | Why I use the flag??? because if the lev->U overflows, if i.e. I set |
||
317 | it to MAX_BANDWIDTH, I lose the correct allocated bandwidth... |
||
318 | */ |
||
319 | lev->flags |= EDFACT_FAILED_GUARANTEE; |
||
320 | } |
||
321 | |||
322 | return 0; /* OK, also if the task cannot be guaranteed... */ |
||
323 | } |
||
324 | |||
325 | static void EDFACT_task_detach(LEVEL l, PID p) |
||
326 | { |
||
327 | /* the EDFACT level doesn't introduce any dinamic allocated new field. |
||
328 | we have only to reset the NO_GUARANTEE FIELD and decrement the allocated |
||
329 | bandwidth */ |
||
330 | |||
331 | EDFACT_level_des *lev = (EDFACT_level_des *)(level_table[l]); |
||
332 | |||
333 | if (lev->flags & EDFACT_FAILED_GUARANTEE) |
||
334 | lev->flags &= ~EDFACT_FAILED_GUARANTEE; |
||
335 | else |
||
336 | lev->U -= (MAX_BANDWIDTH / lev->period[p]) * proc_table[p].wcet; |
||
337 | } |
||
338 | |||
339 | static int EDFACT_task_eligible(LEVEL l, PID p) |
||
340 | { |
||
341 | return 0; /* if the task p is chosen, it is always eligible */ |
||
342 | } |
||
343 | |||
344 | static void EDFACT_task_dispatch(LEVEL l, PID p, int nostop) |
||
345 | { |
||
346 | EDFACT_level_des *lev = (EDFACT_level_des *)(level_table[l]); |
||
347 | |||
348 | /* the task state is set EXE by the scheduler() |
||
349 | we extract the task from the ready queue |
||
350 | NB: we can't assume that p is the first task in the queue!!! */ |
||
351 | q_extract(p, &lev->ready); |
||
352 | } |
||
353 | |||
354 | static void EDFACT_task_epilogue(LEVEL l, PID p) |
||
355 | { |
||
356 | EDFACT_level_des *lev = (EDFACT_level_des *)(level_table[l]); |
||
357 | |||
358 | /* check if the wcet is finished... */ |
||
359 | if (proc_table[p].avail_time <= 0 && proc_table[p].control&CONTROL_CAP) { |
||
360 | /* wcet finished: disable wcet event and count wcet miss */ |
||
361 | edfact_printf("W%d",p); |
||
362 | proc_table[p].control &= ~CONTROL_CAP; |
||
363 | lev->wcet_miss[p]++; |
||
364 | } |
||
365 | |||
366 | /* the task it returns into the ready queue... */ |
||
367 | q_timespec_insert(p,&lev->ready); |
||
368 | proc_table[p].status = EDFACT_READY; |
||
369 | } |
||
370 | |||
371 | static void EDFACT_task_activate(LEVEL l, PID p) |
||
372 | { |
||
373 | EDFACT_level_des *lev = (EDFACT_level_des *)(level_table[l]); |
||
374 | |||
375 | /* Test if we are trying to activate a non sleeping task */ |
||
376 | /* save activation (only if needed... */ |
||
377 | if (proc_table[p].status != SLEEP) { |
||
378 | /* a periodic task cannot be activated when it is already active */ |
||
379 | kern_raise(XACTIVATION,p); |
||
380 | return; |
||
381 | } |
||
382 | |||
383 | ll_gettime(TIME_EXACT, &proc_table[p].request_time); |
||
384 | |||
385 | EDFACT_internal_activate(lev,p); |
||
386 | |||
387 | /* Set the deadline timer */ |
||
388 | lev->deadline_timer[p] = kern_event_post(&lev->deadline_timespec[p], |
||
389 | EDFACT_timer_deadline, |
||
390 | (void *)p); |
||
391 | |||
392 | } |
||
393 | |||
394 | static void EDFACT_task_insert(LEVEL l, PID p) |
||
395 | { |
||
396 | EDFACT_level_des *lev = (EDFACT_level_des *)(level_table[l]); |
||
397 | |||
398 | /* Insert task in the coEDFect position */ |
||
399 | proc_table[p].status = EDFACT_READY; |
||
400 | q_timespec_insert(p,&lev->ready); |
||
401 | } |
||
402 | |||
403 | static void EDFACT_task_extract(LEVEL l, PID p) |
||
404 | { |
||
405 | } |
||
406 | |||
407 | static void EDFACT_task_endcycle(LEVEL l, PID p) |
||
408 | { |
||
409 | EDFACT_level_des *lev = (EDFACT_level_des *)(level_table[l]); |
||
410 | |||
411 | |||
412 | /* we reset the capacity counters... */ |
||
413 | proc_table[p].avail_time = proc_table[p].wcet; |
||
414 | |||
415 | if (lev->nact[p] > 0) { |
||
416 | edfact_printf("E%d",p); |
||
417 | |||
418 | /* Pending activation: reactivate the thread!!! */ |
||
419 | lev->nact[p]--; |
||
420 | |||
421 | /* see also EDFACT_timer_deadline */ |
||
422 | ll_gettime(TIME_EXACT, &proc_table[p].request_time); |
||
423 | |||
424 | EDFACT_internal_activate(lev,p); |
||
425 | |||
426 | /* check if the deadline has already expired */ |
||
427 | if (TIMESPEC_A_LT_B(&proc_table[p].timespec_priority, &schedule_time)) { |
||
428 | /* count the deadline miss */ |
||
429 | lev->dline_miss[p]++; |
||
430 | event_delete(lev->deadline_timer[p]); |
||
431 | } |
||
432 | |||
433 | } |
||
434 | else { |
||
435 | edfact_printf("e%d",p); |
||
436 | |||
437 | /* the task has terminated his job before it consume the wcet. All OK! */ |
||
438 | proc_table[p].status = EDFACT_IDLE; |
||
439 | |||
440 | /* when the deadline timer fire, it recognize the situation and set |
||
441 | correctly all the stuffs (like reactivation, request_time, etc... ) */ |
||
442 | } |
||
443 | } |
||
444 | |||
445 | static void EDFACT_task_end(LEVEL l, PID p) |
||
446 | { |
||
447 | EDFACT_level_des *lev = (EDFACT_level_des *)(level_table[l]); |
||
448 | |||
449 | edfact_printf("Û%d",p); |
||
450 | |||
451 | /* we finally put the task in the ready queue */ |
||
452 | proc_table[p].status = FREE; |
||
453 | q_insertfirst(p,&freedesc); |
||
454 | /* and free the allocated bandwidth */ |
||
455 | lev->U -= (MAX_BANDWIDTH/lev->period[p]) * proc_table[p].wcet; |
||
456 | |||
457 | if (lev->deadline_timer[p] != -1) { |
||
458 | edfact_printf("²%d",p); |
||
459 | event_delete(lev->deadline_timer[p]); |
||
460 | } |
||
461 | } |
||
462 | |||
463 | static void EDFACT_task_sleep(LEVEL l, PID p) |
||
464 | { kern_raise(XUNVALID_TASK,exec_shadow); } |
||
465 | |||
466 | static void EDFACT_task_delay(LEVEL l, PID p, TIME usdelay) |
||
467 | { kern_raise(XUNVALID_TASK,exec_shadow); } |
||
468 | |||
469 | /* Guest Functions |
||
470 | These functions manages a JOB_TASK_MODEL, that is used to put |
||
471 | a guest task in the EDFACT ready queue. */ |
||
472 | |||
473 | static int EDFACT_guest_create(LEVEL l, PID p, TASK_MODEL *m) |
||
474 | { |
||
475 | EDFACT_level_des *lev = (EDFACT_level_des *)(level_table[l]); |
||
476 | JOB_TASK_MODEL *job = (JOB_TASK_MODEL *)m; |
||
477 | |||
478 | /* if the EDFACT_guest_create is called, then the pclass must be a |
||
479 | valid pclass. */ |
||
480 | |||
481 | TIMESPEC_ASSIGN(&proc_table[p].timespec_priority, &job->deadline); |
||
482 | |||
483 | lev->deadline_timer[p] = -1; |
||
484 | lev->dline_miss[p] = 0; |
||
485 | lev->wcet_miss[p] = 0; |
||
486 | lev->nact[p] = 0; |
||
487 | |||
488 | if (job->noraiseexc) |
||
489 | lev->flag[p] = EDFACT_FLAG_NORAISEEXC; |
||
490 | else |
||
491 | lev->flag[p] = 0; |
||
492 | |||
493 | lev->period[p] = job->period; |
||
494 | |||
495 | /* there is no bandwidth guarantee at this level, it is performed |
||
496 | by the level that inserts guest tasks... */ |
||
497 | |||
498 | return 0; /* OK, also if the task cannot be guaranteed... */ |
||
499 | } |
||
500 | |||
501 | static void EDFACT_guest_detach(LEVEL l, PID p) |
||
502 | { |
||
503 | /* the EDFACT level doesn't introduce any dinamic allocated new field. |
||
504 | No guarantee is performed on guest tasks... so we don't have to reset |
||
505 | the NO_GUARANTEE FIELD */ |
||
506 | } |
||
507 | |||
508 | static void EDFACT_guest_dispatch(LEVEL l, PID p, int nostop) |
||
509 | { |
||
510 | EDFACT_level_des *lev = (EDFACT_level_des *)(level_table[l]); |
||
511 | |||
512 | /* the task state is set to EXE by the scheduler() |
||
513 | we extract the task from the ready queue |
||
514 | NB: we can't assume that p is the first task in the queue!!! */ |
||
515 | q_extract(p, &lev->ready); |
||
516 | } |
||
517 | |||
518 | static void EDFACT_guest_epilogue(LEVEL l, PID p) |
||
519 | { |
||
520 | EDFACT_level_des *lev = (EDFACT_level_des *)(level_table[l]); |
||
521 | |||
522 | /* the task has been preempted. it returns into the ready queue... */ |
||
523 | q_timespec_insert(p,&lev->ready); |
||
524 | proc_table[p].status = EDFACT_READY; |
||
525 | } |
||
526 | |||
527 | static void EDFACT_guest_activate(LEVEL l, PID p) |
||
528 | { |
||
529 | EDFACT_level_des *lev = (EDFACT_level_des *)(level_table[l]); |
||
530 | |||
531 | /* Insert task in the correct position */ |
||
532 | q_timespec_insert(p,&lev->ready); |
||
533 | proc_table[p].status = EDFACT_READY; |
||
534 | |||
535 | /* Set the deadline timer */ |
||
536 | if (!(lev->flag[p] & EDFACT_FLAG_NORAISEEXC)) |
||
537 | lev->deadline_timer[p] = kern_event_post(&proc_table[p].timespec_priority, |
||
538 | EDFACT_timer_guest_deadline, |
||
539 | (void *)p); |
||
540 | |||
541 | } |
||
542 | |||
543 | static void EDFACT_guest_insert(LEVEL l, PID p) |
||
544 | { |
||
545 | EDFACT_level_des *lev = (EDFACT_level_des *)(level_table[l]); |
||
546 | |||
547 | /* Insert task in the correct position */ |
||
548 | q_timespec_insert(p,&lev->ready); |
||
549 | proc_table[p].status = EDFACT_READY; |
||
550 | } |
||
551 | |||
552 | static void EDFACT_guest_extract(LEVEL l, PID p) |
||
553 | { |
||
554 | } |
||
555 | |||
556 | static void EDFACT_guest_endcycle(LEVEL l, PID p) |
||
557 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
558 | |||
559 | static void EDFACT_guest_end(LEVEL l, PID p) |
||
560 | { |
||
561 | EDFACT_level_des *lev = (EDFACT_level_des *)(level_table[l]); |
||
562 | |||
563 | //kern_printf("EDFACT_guest_end: dline timer %d\n",lev->deadline_timer[p]); |
||
564 | if (proc_table[p].status == EDFACT_READY) |
||
565 | { |
||
566 | q_extract(p, &lev->ready); |
||
567 | //kern_printf("(g_end rdy extr)"); |
||
568 | } |
||
569 | |||
570 | /* we remove the deadline timer, because the slice is finished */ |
||
571 | if (lev->deadline_timer[p] != NIL) { |
||
572 | // kern_printf("EDFACT_guest_end: dline timer %d\n",lev->deadline_timer[p]); |
||
573 | event_delete(lev->deadline_timer[p]); |
||
574 | lev->deadline_timer[p] = NIL; |
||
575 | } |
||
576 | |||
577 | } |
||
578 | |||
579 | static void EDFACT_guest_sleep(LEVEL l, PID p) |
||
580 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
581 | |||
582 | static void EDFACT_guest_delay(LEVEL l, PID p, TIME usdelay) |
||
583 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
584 | |||
585 | /* Registration functions */ |
||
586 | |||
587 | /*+ Registration function: |
||
588 | int flags the init flags ... see EDFACT.h +*/ |
||
589 | void EDFACT_register_level(int flags) |
||
590 | { |
||
591 | LEVEL l; /* the level that we register */ |
||
592 | EDFACT_level_des *lev; /* for readableness only */ |
||
593 | PID i; /* a counter */ |
||
594 | |||
595 | printk("EDFACT_register_level\n"); |
||
596 | |||
597 | /* request an entry in the level_table */ |
||
598 | l = level_alloc_descriptor(); |
||
599 | |||
600 | printk(" alloco descrittore %d %d\n",l,(int)sizeof(EDFACT_level_des)); |
||
601 | |||
602 | /* alloc the space needed for the EDFACT_level_des */ |
||
603 | lev = (EDFACT_level_des *)kern_alloc(sizeof(EDFACT_level_des)); |
||
604 | |||
605 | printk(" lev=%d\n",(int)lev); |
||
606 | |||
607 | /* update the level_table with the new entry */ |
||
608 | level_table[l] = (level_des *)lev; |
||
609 | |||
610 | /* fill the standard descriptor */ |
||
611 | strncpy(lev->l.level_name, EDFACT_LEVELNAME, MAX_LEVELNAME); |
||
612 | lev->l.level_code = EDFACT_LEVEL_CODE; |
||
613 | lev->l.level_version = EDFACT_LEVEL_VERSION; |
||
614 | |||
615 | lev->l.level_accept_task_model = EDFACT_level_accept_task_model; |
||
616 | lev->l.level_accept_guest_model = EDFACT_level_accept_guest_model; |
||
617 | lev->l.level_status = EDFACT_level_status; |
||
618 | lev->l.level_scheduler = EDFACT_level_scheduler; |
||
619 | |||
620 | if (flags & EDFACT_ENABLE_GUARANTEE) |
||
621 | lev->l.level_guarantee = EDFACT_level_guarantee; |
||
622 | else |
||
623 | lev->l.level_guarantee = NULL; |
||
624 | |||
625 | lev->l.task_create = EDFACT_task_create; |
||
626 | lev->l.task_detach = EDFACT_task_detach; |
||
627 | lev->l.task_eligible = EDFACT_task_eligible; |
||
628 | lev->l.task_dispatch = EDFACT_task_dispatch; |
||
629 | lev->l.task_epilogue = EDFACT_task_epilogue; |
||
630 | lev->l.task_activate = EDFACT_task_activate; |
||
631 | lev->l.task_insert = EDFACT_task_insert; |
||
632 | lev->l.task_extract = EDFACT_task_extract; |
||
633 | lev->l.task_endcycle = EDFACT_task_endcycle; |
||
634 | lev->l.task_end = EDFACT_task_end; |
||
635 | lev->l.task_sleep = EDFACT_task_sleep; |
||
636 | lev->l.task_delay = EDFACT_task_delay; |
||
637 | |||
638 | lev->l.guest_create = EDFACT_guest_create; |
||
639 | lev->l.guest_detach = EDFACT_guest_detach; |
||
640 | lev->l.guest_dispatch = EDFACT_guest_dispatch; |
||
641 | lev->l.guest_epilogue = EDFACT_guest_epilogue; |
||
642 | lev->l.guest_activate = EDFACT_guest_activate; |
||
643 | lev->l.guest_insert = EDFACT_guest_insert; |
||
644 | lev->l.guest_extract = EDFACT_guest_extract; |
||
645 | lev->l.guest_endcycle = EDFACT_guest_endcycle; |
||
646 | lev->l.guest_end = EDFACT_guest_end; |
||
647 | lev->l.guest_sleep = EDFACT_guest_sleep; |
||
648 | lev->l.guest_delay = EDFACT_guest_delay; |
||
649 | |||
650 | /* fill the EDFACT descriptor part */ |
||
651 | for(i=0; i<MAX_PROC; i++) { |
||
652 | lev->period[i] = 0; |
||
653 | lev->deadline_timer[i] = -1; |
||
654 | lev->flag[i] = 0; |
||
655 | lev->dline_miss[i] = 0; |
||
656 | lev->wcet_miss[i] = 0; |
||
657 | lev->nact[i] = 0; |
||
658 | } |
||
659 | |||
660 | lev->ready = NIL; |
||
661 | lev->flags = flags & 0x07; |
||
662 | lev->U = 0; |
||
663 | } |
||
664 | |||
665 | bandwidth_t EDFACT_usedbandwidth(LEVEL l) |
||
666 | { |
||
667 | EDFACT_level_des *lev = (EDFACT_level_des *)(level_table[l]); |
||
668 | if (lev->l.level_code == EDFACT_LEVEL_CODE && |
||
669 | lev->l.level_version == EDFACT_LEVEL_VERSION) |
||
670 | return lev->U; |
||
671 | else |
||
672 | return 0; |
||
673 | } |
||
674 | |||
675 | int EDFACT_get_dline_miss(PID p) |
||
676 | { |
||
677 | LEVEL l = proc_table[p].task_level; |
||
678 | EDFACT_level_des *lev = (EDFACT_level_des *)(level_table[l]); |
||
679 | if (lev->l.level_code == EDFACT_LEVEL_CODE && |
||
680 | lev->l.level_version == EDFACT_LEVEL_VERSION) |
||
681 | return lev->dline_miss[p]; |
||
682 | else |
||
683 | return -1; |
||
684 | } |
||
685 | |||
686 | int EDFACT_get_wcet_miss(PID p) |
||
687 | { |
||
688 | LEVEL l = proc_table[p].task_level; |
||
689 | EDFACT_level_des *lev = (EDFACT_level_des *)(level_table[l]); |
||
690 | if (lev->l.level_code == EDFACT_LEVEL_CODE && |
||
691 | lev->l.level_version == EDFACT_LEVEL_VERSION) |
||
692 | return lev->wcet_miss[p]; |
||
693 | else |
||
694 | return -1; |
||
695 | } |
||
696 | |||
697 | int EDFACT_get_nact(PID p) |
||
698 | { |
||
699 | LEVEL l = proc_table[p].task_level; |
||
700 | EDFACT_level_des *lev = (EDFACT_level_des *)(level_table[l]); |
||
701 | if (lev->l.level_code == EDFACT_LEVEL_CODE && |
||
702 | lev->l.level_version == EDFACT_LEVEL_VERSION) |
||
703 | return lev->nact[p]; |
||
704 | else |
||
705 | return -1; |
||
706 | } |
||
707 | |||
708 | int EDFACT_reset_dline_miss(PID p) |
||
709 | { |
||
710 | LEVEL l = proc_table[p].task_level; |
||
711 | EDFACT_level_des *lev = (EDFACT_level_des *)(level_table[l]); |
||
712 | if (lev->l.level_code == EDFACT_LEVEL_CODE && |
||
713 | lev->l.level_version == EDFACT_LEVEL_VERSION) |
||
714 | { |
||
715 | lev->dline_miss[p] = 0; |
||
716 | return 0; |
||
717 | } |
||
718 | else |
||
719 | return -1; |
||
720 | } |
||
721 | |||
722 | int EDFACT_reset_wcet_miss(PID p) |
||
723 | { |
||
724 | LEVEL l = proc_table[p].task_level; |
||
725 | EDFACT_level_des *lev = (EDFACT_level_des *)(level_table[l]); |
||
726 | if (lev->l.level_code == EDFACT_LEVEL_CODE && |
||
727 | lev->l.level_version == EDFACT_LEVEL_VERSION) |
||
728 | { |
||
729 | lev->wcet_miss[p] = 0; |
||
730 | return 0; |
||
731 | } |
||
732 | else |
||
733 | return -1; |
||
734 | } |
||
735 |