Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1085 | pj | 1 | /* |
2 | * Project: S.Ha.R.K. |
||
3 | * |
||
4 | * Coordinators: |
||
5 | * Giorgio Buttazzo <giorgio@sssup.it> |
||
6 | * Paolo Gai <pj@gandalf.sssup.it> |
||
7 | * |
||
8 | * Authors : |
||
9 | * Paolo Gai <pj@gandalf.sssup.it> |
||
10 | * Massimiliano Giorgi <massy@gandalf.sssup.it> |
||
11 | * Luca Abeni <luca@gandalf.sssup.it> |
||
12 | * (see the web pages for full authors list) |
||
13 | * |
||
14 | * ReTiS Lab (Scuola Superiore S.Anna - Pisa - Italy) |
||
15 | * |
||
16 | * http://www.sssup.it |
||
17 | * http://retis.sssup.it |
||
18 | * http://shark.sssup.it |
||
19 | */ |
||
20 | |||
21 | /** |
||
22 | ------------ |
||
23 | CVS : $Id: cash.c,v 1.1.1.1 2002-09-02 09:37:41 pj Exp $ |
||
24 | |||
25 | File: $File$ |
||
26 | Revision: $Revision: 1.1.1.1 $ |
||
27 | Last update: $Date: 2002-09-02 09:37:41 $ |
||
28 | ------------ |
||
29 | |||
30 | This file contains the aperiodic server CBS (Total Bandwidth Server) |
||
31 | |||
32 | Read CBS.h for further details. |
||
33 | |||
34 | **/ |
||
35 | |||
36 | /* |
||
37 | * Copyright (C) 2000 Paolo Gai |
||
38 | * |
||
39 | * This program is free software; you can redistribute it and/or modify |
||
40 | * it under the terms of the GNU General Public License as published by |
||
41 | * the Free Software Foundation; either version 2 of the License, or |
||
42 | * (at your option) any later version. |
||
43 | * |
||
44 | * This program is distributed in the hope that it will be useful, |
||
45 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
46 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
47 | * GNU General Public License for more details. |
||
48 | * |
||
49 | * You should have received a copy of the GNU General Public License |
||
50 | * along with this program; if not, write to the Free Software |
||
51 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
||
52 | * |
||
53 | */ |
||
54 | |||
55 | |||
56 | #include "cash.h" |
||
57 | #include <ll/stdio.h> |
||
58 | #include <ll/string.h> |
||
59 | #include <kernel/model.h> |
||
60 | #include <kernel/descr.h> |
||
61 | #include <kernel/var.h> |
||
62 | #include <kernel/func.h> |
||
63 | |||
64 | /*+ 4 debug purposes +*/ |
||
65 | #undef CBS_TEST |
||
66 | |||
67 | #ifdef TESTG |
||
68 | #include "drivers/glib.h" |
||
69 | TIME x,oldx; |
||
70 | extern TIME starttime; |
||
71 | #endif |
||
72 | |||
73 | |||
74 | |||
75 | |||
76 | |||
77 | |||
78 | /*+ Status used in the level +*/ |
||
79 | #define CBSGHD_IDLE APER_STATUS_BASE /*+ waiting the activation +*/ |
||
80 | #define CBSGHD_ZOMBIE APER_STATUS_BASE+1 /*+ waiting the period end +*/ |
||
81 | #define CBSGHD_DELAY APER_STATUS_BASE+2 /*+ waiting the delay end +*/ |
||
82 | |||
83 | /* structure of an element of the capacity queue */ |
||
84 | struct cap_queue { |
||
85 | int cap; |
||
86 | struct timespec dead; |
||
87 | struct cap_queue *next; |
||
88 | }; |
||
89 | |||
90 | /*+ the level redefinition for the CBS_HD level +*/ |
||
91 | typedef struct { |
||
92 | level_des l; /*+ the standard level descriptor +*/ |
||
93 | |||
94 | /* The wcet are stored in the task descriptor, but we need |
||
95 | an array for the deadlines. We can't use the timespec_priority |
||
96 | field because it is used by the master level!!!... |
||
97 | Notice that however the use of the timespec_priority field |
||
98 | does not cause any problem... */ |
||
99 | |||
100 | struct timespec cbsghd_dline[MAX_PROC]; /*+ CBSGHD deadlines +*/ |
||
101 | |||
102 | TIME period[MAX_PROC]; /*+ CBSGHD activation period +*/ |
||
103 | |||
104 | TIME maxperiod[MAX_PROC]; /*+ maximum period of each elastic task +*/ |
||
105 | |||
106 | int cremaining[MAX_PROC]; /*+ instance remaining computation time +*/ |
||
107 | |||
108 | TIME act_period[MAX_PROC]; /*+ actual period of each elastic task: it |
||
109 | must be less than maxperiod!!! +*/ |
||
110 | |||
111 | TIME last_response_time[MAX_PROC]; /* response time of the last instance */ |
||
112 | |||
113 | TIME cnormal[MAX_PROC]; /*+ CBSGHD normal computation time +*/ |
||
114 | |||
115 | struct timespec reactivation_time[MAX_PROC]; |
||
116 | /*+ the time at witch the reactivation timer is post +*/ |
||
117 | int reactivation_timer[MAX_PROC]; |
||
118 | /*+ the recativation timer +*/ |
||
119 | |||
120 | struct cap_queue *queue; /* pointer to the spare capacity queue */ |
||
121 | |||
122 | int flags; /*+ the init flags... +*/ |
||
123 | |||
124 | bandwidth_t U; /*+ the used bandwidth by the server +*/ |
||
125 | |||
126 | int idle; /* the idle flag... */ |
||
127 | |||
128 | struct timespec start_idle; /*gives the start time of the last idle period */ |
||
129 | |||
130 | LEVEL scheduling_level; |
||
131 | |||
132 | } CBSGHD_level_des; |
||
133 | |||
134 | |||
135 | /* insert a capacity in the queue capacity ordering by deadline */ |
||
136 | |||
137 | static int c_insert(struct timespec dead, int cap, struct cap_queue **que, |
||
138 | PID p) |
||
139 | { |
||
140 | struct cap_queue *prev, *n, *new; |
||
141 | |||
142 | prev = NULL; |
||
143 | n = *que; |
||
144 | |||
145 | while ((n != NULL) && |
||
146 | !TIMESPEC_A_LT_B(&dead, &n->dead)) { |
||
147 | prev = n; |
||
148 | n = n->next; |
||
149 | } |
||
150 | |||
151 | |||
152 | new = (struct cap_queue *)kern_alloc(sizeof(struct cap_queue)); |
||
153 | if (new == NULL) { |
||
154 | kern_printf("\nNew cash_queue element failed\n"); |
||
155 | kern_raise(XUNVALID_TASK, p); |
||
156 | return -1; |
||
157 | } |
||
158 | new->next = NULL; |
||
159 | new->cap = cap; |
||
160 | new->dead = dead; |
||
161 | |||
162 | if (prev != NULL) |
||
163 | prev->next = new; |
||
164 | else |
||
165 | *que = new; |
||
166 | |||
167 | if (n != NULL) |
||
168 | new->next = n; |
||
169 | return 0; |
||
170 | } |
||
171 | |||
172 | /* extract the first element from the capacity queue */ |
||
173 | |||
174 | static int c_extractfirst(struct cap_queue **que) |
||
175 | { |
||
176 | struct cap_queue *p = *que; |
||
177 | |||
178 | |||
179 | if (*que == NULL) return(-1); |
||
180 | |||
181 | *que = (*que)->next; |
||
182 | |||
183 | kern_free(p, sizeof(struct cap_queue)); |
||
184 | return(1); |
||
185 | } |
||
186 | |||
187 | /* read data of the first element from the capacity queue */ |
||
188 | |||
189 | static void c_readfirst(struct timespec *d, int *c, struct cap_queue *que) |
||
190 | { |
||
191 | *d = que->dead; |
||
192 | *c = que->cap; |
||
193 | } |
||
194 | |||
195 | /* write data of the first element from the capacity queue */ |
||
196 | |||
197 | static void c_writefirst(struct timespec dead, int cap, struct cap_queue *que) |
||
198 | { |
||
199 | que->dead = dead; |
||
200 | que->cap = cap; |
||
201 | } |
||
202 | |||
203 | |||
204 | static void CBSGHD_activation(CBSGHD_level_des *lev, |
||
205 | PID p, |
||
206 | struct timespec *acttime) |
||
207 | { |
||
208 | JOB_TASK_MODEL job; |
||
209 | |||
210 | |||
211 | /* This rule is used when we recharge the budget at initial task activation |
||
212 | and each time a new task instance must be activated */ |
||
213 | |||
214 | if (TIMESPEC_A_GT_B(acttime, &lev->cbsghd_dline[p])) { |
||
215 | /* we modify the deadline ... */ |
||
216 | TIMESPEC_ASSIGN(&lev->cbsghd_dline[p], acttime); |
||
217 | } |
||
218 | |||
219 | lev->act_period[p] = 0; |
||
220 | |||
221 | if (proc_table[p].avail_time > 0) |
||
222 | proc_table[p].avail_time = 0; |
||
223 | |||
224 | |||
225 | |||
226 | |||
227 | /* there is a while because if the wcet is << than the system tick |
||
228 | we need to postpone the deadline many times */ |
||
229 | while (proc_table[p].avail_time <= 0) { |
||
230 | |||
231 | /* A spare capacity is inserted in the capacity queue!! */ |
||
232 | ADDUSEC2TIMESPEC(lev->period[p], &lev->cbsghd_dline[p]); |
||
233 | lev->act_period[p] += lev->period[p]; |
||
234 | c_insert(lev->cbsghd_dline[p], lev->cnormal[p], &lev->queue, p); |
||
235 | |||
236 | |||
237 | /* it exploits available capacities from the capacity queue */ |
||
238 | while (proc_table[p].avail_time < (int)lev->cnormal[p] && |
||
239 | lev->queue != NULL) { |
||
240 | struct timespec dead; |
||
241 | int cap, delta; |
||
242 | delta = lev->cnormal[p] - proc_table[p].avail_time; |
||
243 | c_readfirst(&dead, &cap, lev->queue); |
||
244 | if (!TIMESPEC_A_GT_B(&dead, &lev->cbsghd_dline[p])) { |
||
245 | if (cap > delta) { |
||
246 | proc_table[p].avail_time += delta; |
||
247 | c_writefirst(dead, cap - delta, lev->queue); |
||
248 | } |
||
249 | else { |
||
250 | proc_table[p].avail_time += cap; |
||
251 | c_extractfirst(&lev->queue); |
||
252 | } |
||
253 | } |
||
254 | else |
||
255 | break; |
||
256 | } |
||
257 | } |
||
258 | |||
259 | lev->cremaining[p] = proc_table[p].wcet - proc_table[p].avail_time; |
||
260 | |||
261 | |||
262 | #ifdef TESTG |
||
263 | if (starttime && p == 3) { |
||
264 | oldx = x; |
||
265 | x = ((lev->cbsghd_dline[p].tv_sec*1000000+lev->cbsghd_dline[p].tv_nsec/1000)/5000 - starttime) + 20; |
||
266 | // kern_printf("(a%d)",lev->cbsghd_dline[p].tv_sec*1000000+lev->cbsghd_dline[p].tv_nsec/1000); |
||
267 | if (oldx > x) sys_end(); |
||
268 | if (x<640) |
||
269 | grx_plot(x, 15, 8); |
||
270 | } |
||
271 | #endif |
||
272 | |||
273 | /* and, finally, we reinsert the task in the master level */ |
||
274 | job_task_default_model(job, lev->cbsghd_dline[p]); |
||
275 | job_task_def_yesexc(job); |
||
276 | level_table[ lev->scheduling_level ]-> |
||
277 | guest_create(lev->scheduling_level, p, (TASK_MODEL *)&job); |
||
278 | level_table[ lev->scheduling_level ]-> |
||
279 | guest_activate(lev->scheduling_level, p); |
||
280 | } |
||
281 | |||
282 | |||
283 | static char *CBSGHD_status_to_a(WORD status) |
||
284 | { |
||
285 | if (status < MODULE_STATUS_BASE) |
||
286 | return status_to_a(status); |
||
287 | |||
288 | switch (status) { |
||
289 | case CBSGHD_IDLE : return "CBSGHD_Idle"; |
||
290 | case CBSGHD_ZOMBIE : return "CBSGHD_Zombie"; |
||
291 | case CBSGHD_DELAY : return "CBSGHD_Delay"; |
||
292 | default : return "CBSGHD_Unknown"; |
||
293 | } |
||
294 | } |
||
295 | |||
296 | |||
297 | |||
298 | |||
299 | /* this is the periodic reactivation of the task... */ |
||
300 | static void CBSGHD_timer_reactivate(void *par) |
||
301 | { |
||
302 | PID p = (PID) par; |
||
303 | CBSGHD_level_des *lev; |
||
304 | |||
305 | lev = (CBSGHD_level_des *)level_table[proc_table[p].task_level]; |
||
306 | |||
307 | if (proc_table[p].status == CBSGHD_IDLE) { |
||
308 | /* the task has finished the current activation and must be |
||
309 | reactivated */ |
||
310 | |||
311 | /* request_time represents the time of the last instance release!! */ |
||
312 | TIMESPEC_ASSIGN(&proc_table[p].request_time, &lev->reactivation_time[p]); |
||
313 | |||
314 | /* If idle=1, then we have to discharge the capacities stored in |
||
315 | the capacity queue up to the length of the idle interval */ |
||
316 | if (lev->idle == 1) { |
||
317 | TIME interval; |
||
318 | struct timespec delta; |
||
319 | lev->idle = 0; |
||
320 | SUBTIMESPEC(&proc_table[p].request_time, &lev->start_idle, &delta); |
||
321 | /* length of the idle interval expressed in usec! */ |
||
322 | interval = TIMESPEC2NANOSEC(&delta) / 1000; |
||
323 | |||
324 | /* it discharge the available capacities from the capacity queue */ |
||
325 | while (interval > 0 && lev->queue != NULL) { |
||
326 | struct timespec dead; |
||
327 | int cap; |
||
328 | c_readfirst(&dead, &cap, lev->queue); |
||
329 | if (cap > interval) { |
||
330 | c_writefirst(dead, cap - interval, lev->queue); |
||
331 | interval = 0; |
||
332 | } |
||
333 | else { |
||
334 | interval -= cap; |
||
335 | c_extractfirst(&lev->queue); |
||
336 | } |
||
337 | } |
||
338 | } |
||
339 | |||
340 | CBSGHD_activation(lev,p,&lev->reactivation_time[p]); |
||
341 | |||
342 | /* check the constraint on the maximum period permitted... */ |
||
343 | if (lev->act_period[p] > lev->maxperiod[p]) { |
||
344 | kern_printf("Deadline miss(timer_react.! process:%d act_period:%lu maxperiod:%lu\n", |
||
345 | p, lev->act_period[p], lev->maxperiod[p]); |
||
346 | kern_raise(XDEADLINE_MISS,p); |
||
347 | } |
||
348 | |||
349 | |||
350 | /* Set the reactivation timer */ |
||
351 | TIMESPEC_ASSIGN(&lev->reactivation_time[p], &lev->cbsghd_dline[p]); |
||
352 | lev->reactivation_timer[p] = kern_event_post(&lev->reactivation_time[p], |
||
353 | CBSGHD_timer_reactivate, |
||
354 | (void *)p); |
||
355 | event_need_reschedule(); |
||
356 | } |
||
357 | else { |
||
358 | /* this situation cannot occur */ |
||
359 | kern_printf("Trying to reactivate a task which is not IDLE!!!/n"); |
||
360 | kern_raise(XUNVALID_TASK,p); |
||
361 | } |
||
362 | } |
||
363 | |||
364 | |||
365 | |||
366 | |||
367 | |||
368 | static void CBSGHD_avail_time_check(CBSGHD_level_des *lev, PID p) |
||
369 | { |
||
370 | |||
371 | /*+ if the capacity became negative the remaining computation time |
||
372 | is diminuished.... +*/ |
||
373 | /* if (p==4) |
||
374 | kern_printf("(old dead:%d av_time:%d crem:%d)\n", |
||
375 | lev->cbsghd_dline[p].tv_sec*1000000+ |
||
376 | lev->cbsghd_dline[p].tv_nsec/1000, proc_table[p].avail_time, |
||
377 | lev->cremaining[p]); */ |
||
378 | |||
379 | |||
380 | if (proc_table[p].avail_time < 0) |
||
381 | lev->cremaining[p] += proc_table[p].avail_time; |
||
382 | |||
383 | if (lev->cremaining[p] <= 0) { |
||
384 | kern_printf("Task:%d WCET violation \n", p); |
||
385 | kern_raise(XWCET_VIOLATION, p); |
||
386 | ll_abort(666); |
||
387 | } |
||
388 | |||
389 | |||
390 | /* there is a while because if the wcet is << than the system tick |
||
391 | we need to postpone the deadline many times */ |
||
392 | while (proc_table[p].avail_time <= 0) { |
||
393 | /* it exploits available capacities from the capacity queue */ |
||
394 | while (proc_table[p].avail_time < lev->cremaining[p] |
||
395 | && lev->queue != NULL) { |
||
396 | struct timespec dead; |
||
397 | int cap, delta; |
||
398 | delta = lev->cremaining[p] - proc_table[p].avail_time; |
||
399 | c_readfirst(&dead, &cap, lev->queue); |
||
400 | if (!TIMESPEC_A_GT_B(&dead, &lev->cbsghd_dline[p])) { |
||
401 | if (cap > delta) { |
||
402 | proc_table[p].avail_time += delta; |
||
403 | c_writefirst(dead, cap - delta, lev->queue); |
||
404 | } |
||
405 | else { |
||
406 | proc_table[p].avail_time += cap; |
||
407 | c_extractfirst(&lev->queue); |
||
408 | } |
||
409 | } |
||
410 | else |
||
411 | break; |
||
412 | } |
||
413 | |||
414 | /* if (p==5 && proc_table[p].avail_time <= 0 && |
||
415 | lev->cremaining[p] > lev->cnormal[p]) |
||
416 | kern_printf("(inter dead:%d av_time:%d crem:%d)\n", |
||
417 | lev->cbsghd_dline[p].tv_sec*1000000+ |
||
418 | lev->cbsghd_dline[p].tv_nsec/1000, proc_table[p].avail_time, |
||
419 | lev->cremaining[p]); */ |
||
420 | |||
421 | |||
422 | /* The remaining computation time is modified according |
||
423 | to the new budget! */ |
||
424 | if (proc_table[p].avail_time > 0) |
||
425 | lev->cremaining[p] -= proc_table[p].avail_time; |
||
426 | else { |
||
427 | /* the CBSGHD rule for recharging the capacity: */ |
||
428 | if (lev->cremaining[p] > lev->cnormal[p]) { |
||
429 | ADDUSEC2TIMESPEC(lev->period[p], &lev->cbsghd_dline[p]); |
||
430 | lev->act_period[p] += lev->period[p]; |
||
431 | /* A spare capacity is inserted in the capacity queue!! */ |
||
432 | c_insert(lev->cbsghd_dline[p], lev->cnormal[p], &lev->queue, p); |
||
433 | } |
||
434 | else { |
||
435 | TIME t; |
||
436 | t = (lev->cremaining[p] * lev->period[p]) / lev->cnormal[p]; |
||
437 | ADDUSEC2TIMESPEC(t, &lev->cbsghd_dline[p]); |
||
438 | lev->act_period[p] += t; |
||
439 | /* A spare capacity is inserted in the capacity queue!! */ |
||
440 | c_insert(lev->cbsghd_dline[p], lev->cremaining[p], &lev->queue, p); |
||
441 | } |
||
442 | } |
||
443 | } |
||
444 | |||
445 | /* if (p==4) |
||
446 | kern_printf("n dead:%d av_time:%d crem:%d)\n", |
||
447 | lev->cbsghd_dline[p].tv_sec*1000000+ |
||
448 | lev->cbsghd_dline[p].tv_nsec/1000, proc_table[p].avail_time, |
||
449 | lev->cremaining[p]); */ |
||
450 | |||
451 | /* check the constraint on the maximum period permitted... */ |
||
452 | if (lev->act_period[p] > lev->maxperiod[p]) { |
||
453 | /*kern_printf("n dead:%d av_time:%d crem:%d)\n", |
||
454 | lev->cbsghd_dline[p].tv_sec*1000000+ |
||
455 | lev->cbsghd_dline[p].tv_nsec/1000, proc_table[p].avail_time, |
||
456 | lev->cremaining[p]); */ |
||
457 | kern_printf("Deadline miss(av.time_check! process:%d act_period:%lu maxperiod:%lu\n", |
||
458 | p, lev->act_period[p], lev->maxperiod[p]); |
||
459 | kern_raise(XDEADLINE_MISS,p); |
||
460 | } |
||
461 | |||
462 | |||
463 | |||
464 | if (TIMESPEC_A_LT_B(&lev->reactivation_time[p], &lev->cbsghd_dline[p])) { |
||
465 | /* we delete the reactivation timer */ |
||
466 | event_delete(lev->reactivation_timer[p]); |
||
467 | /* repost the event at the next instance deadline... */ |
||
468 | lev->reactivation_time[p] = lev->cbsghd_dline[p]; |
||
469 | lev->reactivation_timer[p] = kern_event_post(&lev->reactivation_time[p], |
||
470 | CBSGHD_timer_reactivate, |
||
471 | (void *)p); |
||
472 | } |
||
473 | |||
474 | #ifdef TESTG |
||
475 | if (starttime && p == 3) { |
||
476 | oldx = x; |
||
477 | x = ((lev->cbsghd_dline[p].tv_sec*1000000+ |
||
478 | lev->cbsghd_dline[p].tv_nsec/1000)/5000 - starttime) + 20; |
||
479 | // kern_printf("(e%d avail%d)",lev->cbsghd_dline[p].tv_sec*1000000+ |
||
480 | lev->cbsghd_dline[p].tv_nsec/1000,proc_table[p].avail_time); |
||
481 | if (oldx > x) sys_end(); |
||
482 | if (x<640) |
||
483 | grx_plot(x, 15, 2); |
||
484 | } |
||
485 | #endif |
||
486 | |||
487 | } |
||
488 | |||
489 | |||
490 | /*+ this function is called when a killed or ended task reach the |
||
491 | period end +*/ |
||
492 | static void CBSGHD_timer_zombie(void *par) |
||
493 | { |
||
494 | PID p = (PID) par; |
||
495 | CBSGHD_level_des *lev; |
||
496 | |||
497 | lev = (CBSGHD_level_des *)level_table[proc_table[p].task_level]; |
||
498 | |||
499 | /* we finally put the task in the FREE status */ |
||
500 | proc_table[p].status = FREE; |
||
501 | q_insertfirst(p,&freedesc); |
||
502 | |||
503 | /* and free the allocated bandwidth */ |
||
504 | lev->U -= (MAX_BANDWIDTH/lev->period[p]) * lev->cnormal[p]; |
||
505 | |||
506 | } |
||
507 | |||
508 | |||
509 | static int CBSGHD_level_accept_task_model(LEVEL l, TASK_MODEL *m) |
||
510 | { |
||
511 | |||
512 | |||
513 | if (m->pclass == ELASTIC_HARD_PCLASS || m->pclass == |
||
514 | (ELASTIC_HARD_PCLASS | l)) { |
||
515 | ELASTIC_HARD_TASK_MODEL *s = (ELASTIC_HARD_TASK_MODEL *)m; |
||
516 | bandwidth_t b1, b2; |
||
517 | /* kern_printf("accept :ELASTIC TASK found!!!!!!\n"); */ |
||
518 | b1 = (MAX_BANDWIDTH / s->period) * s->cnormal; |
||
519 | b2 = (MAX_BANDWIDTH / s->maxperiod) * s->wcet; |
||
520 | if (s->wcet && s->cnormal && s->period && s->maxperiod && |
||
521 | s->wcet >= s->cnormal && b1 >= b2) |
||
522 | return 0; |
||
523 | /* kern_printf("period: %d maxperiod: %d cnormal: %d wcet: %d, b1: %d b2: |
||
524 | %d\n", s->period, s->maxperiod, s->cnormal, s->wcet, b1, b2); */ |
||
525 | } |
||
526 | return -1; |
||
527 | } |
||
528 | |||
529 | static int CBSGHD_level_accept_guest_model(LEVEL l, TASK_MODEL *m) |
||
530 | { |
||
531 | return -1; |
||
532 | } |
||
533 | |||
534 | static char *onoff(int i) |
||
535 | { |
||
536 | if (i) |
||
537 | return "On "; |
||
538 | else |
||
539 | return "Off"; |
||
540 | } |
||
541 | |||
542 | static void CBSGHD_level_status(LEVEL l) |
||
543 | { |
||
544 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
545 | PID p; |
||
546 | |||
547 | kern_printf("On-line guarantee : %s\n", |
||
548 | onoff(lev->flags & CBSGHD_ENABLE_GUARANTEE)); |
||
549 | kern_printf("Used Bandwidth : %u/%u\n", |
||
550 | lev->U, MAX_BANDWIDTH); |
||
551 | |||
552 | for (p=0; p<MAX_PROC; p++) |
||
553 | if (proc_table[p].task_level == l && proc_table[p].status != FREE ) |
||
554 | kern_printf("Pid: %2d Name: %10s Period: %9ld Dline: %9ld.%6ld Stat: %s\n", |
||
555 | p, |
||
556 | proc_table[p].name, |
||
557 | lev->period[p], |
||
558 | lev->cbsghd_dline[p].tv_sec, |
||
559 | lev->cbsghd_dline[p].tv_nsec/1000, |
||
560 | CBSGHD_status_to_a(proc_table[p].status)); |
||
561 | } |
||
562 | |||
563 | static PID CBSGHD_level_scheduler(LEVEL l) |
||
564 | { |
||
565 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
566 | |||
567 | /* it stores the actual time and set the IDLE flag in order to handle |
||
568 | the capacity queue discharging!!! */ |
||
569 | lev->idle = 1; |
||
570 | ll_gettime(TIME_EXACT, &lev->start_idle); |
||
571 | |||
572 | |||
573 | /* the CBSGHD don't schedule anything... |
||
574 | it's an EDF level or similar that do it! */ |
||
575 | return NIL; |
||
576 | } |
||
577 | |||
578 | /* The on-line guarantee is enabled only if the appropriate flag is set... */ |
||
579 | static int CBSGHD_level_guarantee(LEVEL l, bandwidth_t *freebandwidth) |
||
580 | { |
||
581 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
582 | |||
583 | if (lev->flags & CBSGHD_FAILED_GUARANTEE) { |
||
584 | *freebandwidth = 0; |
||
585 | //kern_printf("guarantee :garanzia fallita!!!!!!\n"); |
||
586 | return 0; |
||
587 | } |
||
588 | else if (*freebandwidth >= lev->U) { |
||
589 | *freebandwidth -= lev->U; |
||
590 | return 1; |
||
591 | } |
||
592 | else { |
||
593 | //kern_printf("guarantee :garanzia fallita per mancanza di banda!!!!!!\n"); |
||
594 | //kern_printf("freeband: %d request band: %d", *freebandwidth, lev->U); |
||
595 | return 0; |
||
596 | } |
||
597 | } |
||
598 | |||
599 | static int CBSGHD_task_create(LEVEL l, PID p, TASK_MODEL *m) |
||
600 | { |
||
601 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
602 | |||
603 | /* if the CBSGHD_task_create is called, then the pclass must be a |
||
604 | valid pclass. */ |
||
605 | ELASTIC_HARD_TASK_MODEL *s = (ELASTIC_HARD_TASK_MODEL *)m; |
||
606 | |||
607 | /* Enable wcet check */ |
||
608 | proc_table[p].avail_time = 0; |
||
609 | proc_table[p].wcet = s->wcet; |
||
610 | proc_table[p].control |= CONTROL_CAP; |
||
611 | |||
612 | lev->period[p] = s->period; |
||
613 | lev->maxperiod[p] = s->maxperiod; |
||
614 | lev->cnormal[p] = s->cnormal; |
||
615 | NULL_TIMESPEC(&lev->cbsghd_dline[p]); |
||
616 | |||
617 | |||
618 | /* update the bandwidth... */ |
||
619 | if (lev->flags & CBSGHD_ENABLE_GUARANTEE) { |
||
620 | bandwidth_t b; |
||
621 | b = (MAX_BANDWIDTH / s->period) * s->cnormal; |
||
622 | |||
623 | /* really update lev->U, checking an overflow... */ |
||
624 | if (MAX_BANDWIDTH - lev->U > b) |
||
625 | lev->U += b; |
||
626 | else |
||
627 | /* The task can NOT be guaranteed (U>MAX_BANDWIDTH)... |
||
628 | (see EDF.c) */ |
||
629 | lev->flags |= CBSGHD_FAILED_GUARANTEE; |
||
630 | } |
||
631 | |||
632 | |||
633 | |||
634 | return 0; /* OK, also if the task cannot be guaranteed... */ |
||
635 | } |
||
636 | |||
637 | static void CBSGHD_task_detach(LEVEL l, PID p) |
||
638 | { |
||
639 | /* the CBSGHD level doesn't introduce any dinamic allocated new field. |
||
640 | we have only to reset the NO_GUARANTEE FIELD and decrement the allocated |
||
641 | bandwidth */ |
||
642 | |||
643 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
644 | |||
645 | if (lev->flags & CBSGHD_FAILED_GUARANTEE) |
||
646 | lev->flags &= ~CBSGHD_FAILED_GUARANTEE; |
||
647 | else |
||
648 | lev->U -= (MAX_BANDWIDTH / lev->period[p]) * lev->cnormal[p]; |
||
649 | |||
650 | |||
651 | } |
||
652 | |||
653 | static int CBSGHD_task_eligible(LEVEL l, PID p) |
||
654 | { |
||
655 | return 0; /* if the task p is chosen, it is always eligible */ |
||
656 | } |
||
657 | |||
658 | #ifdef __TEST1__ |
||
659 | extern int testactive; |
||
660 | extern struct timespec s_stime[]; |
||
661 | extern TIME s_curr[]; |
||
662 | extern TIME s_PID[]; |
||
663 | extern int useds; |
||
664 | #endif |
||
665 | |||
666 | static void CBSGHD_task_dispatch(LEVEL l, PID p, int nostop) |
||
667 | { |
||
668 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
669 | level_table[ lev->scheduling_level ]-> |
||
670 | guest_dispatch(lev->scheduling_level,p,nostop); |
||
671 | |||
672 | #ifdef __TEST1__ |
||
673 | if (testactive) |
||
674 | { |
||
675 | TIMESPEC_ASSIGN(&s_stime[useds], &schedule_time); |
||
676 | s_curr[useds] = proc_table[p].avail_time; |
||
677 | s_PID[useds] = p; |
||
678 | useds++; |
||
679 | } |
||
680 | #endif |
||
681 | } |
||
682 | |||
683 | static void CBSGHD_task_epilogue(LEVEL l, PID p) |
||
684 | { |
||
685 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
686 | JOB_TASK_MODEL job; |
||
687 | |||
688 | /* check if the budget is finished... */ |
||
689 | if ( proc_table[p].avail_time <= 0) { |
||
690 | /* we kill the current activation */ |
||
691 | level_table[ lev->scheduling_level ]-> |
||
692 | guest_end(lev->scheduling_level, p); |
||
693 | |||
694 | /* we modify the deadline */ |
||
695 | CBSGHD_avail_time_check(lev, p); |
||
696 | |||
697 | /* and, finally, we reinsert the task in the master level */ |
||
698 | job_task_default_model(job, lev->cbsghd_dline[p]); |
||
699 | job_task_def_yesexc(job); |
||
700 | level_table[ lev->scheduling_level ]-> |
||
701 | guest_create(lev->scheduling_level, p, (TASK_MODEL *)&job); |
||
702 | level_table[ lev->scheduling_level ]-> |
||
703 | guest_activate(lev->scheduling_level, p); |
||
704 | // kern_printf("epil : dl %d per %d p %d |\n", |
||
705 | // lev->cbsghd_dline[p].tv_nsec/1000,lev->period[p],p); |
||
706 | |||
707 | } |
||
708 | else |
||
709 | /* the task has been preempted. it returns into the ready queue by |
||
710 | calling the guest_epilogue... */ |
||
711 | level_table[ lev->scheduling_level ]-> |
||
712 | guest_epilogue(lev->scheduling_level,p); |
||
713 | } |
||
714 | |||
715 | static void CBSGHD_task_activate(LEVEL l, PID p) |
||
716 | { |
||
717 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
718 | |||
719 | ll_gettime(TIME_EXACT, &proc_table[p].request_time); |
||
720 | |||
721 | /* If idle=1, then we have to discharge the capacities stored in |
||
722 | the capacity queue up to the length of the idle interval */ |
||
723 | if (lev->idle == 1) { |
||
724 | TIME interval; |
||
725 | struct timespec delta; |
||
726 | lev->idle = 0; |
||
727 | SUBTIMESPEC(&proc_table[p].request_time, &lev->start_idle, &delta); |
||
728 | /* length of the idle interval expressed in usec! */ |
||
729 | interval = TIMESPEC2NANOSEC(&delta) / 1000; |
||
730 | |||
731 | /* it discharge the available capacities from the capacity queue */ |
||
732 | while (interval > 0 && lev->queue != NULL) { |
||
733 | struct timespec dead; |
||
734 | int cap; |
||
735 | c_readfirst(&dead, &cap, lev->queue); |
||
736 | if (cap > interval) { |
||
737 | c_writefirst(dead, cap - interval, lev->queue); |
||
738 | interval = 0; |
||
739 | } |
||
740 | else { |
||
741 | interval -= cap; |
||
742 | c_extractfirst(&lev->queue); |
||
743 | } |
||
744 | } |
||
745 | } |
||
746 | |||
747 | CBSGHD_activation(lev, p, &proc_table[p].request_time); |
||
748 | |||
749 | |||
750 | /* check the constraint on the maximum period permitted... */ |
||
751 | if (lev->act_period[p] > lev->maxperiod[p]) { |
||
752 | kern_printf("Deadline miss(task_activ.! process:%d act_period:%lu maxperiod:%lu\n", |
||
753 | p, lev->act_period[p], lev->maxperiod[p]); |
||
754 | kern_raise(XDEADLINE_MISS,p); |
||
755 | } |
||
756 | |||
757 | /* Set the reactivation timer */ |
||
758 | TIMESPEC_ASSIGN(&lev->reactivation_time[p], &lev->cbsghd_dline[p]); |
||
759 | lev->reactivation_timer[p] = kern_event_post(&lev->reactivation_time[p], |
||
760 | CBSGHD_timer_reactivate, |
||
761 | (void *)p); |
||
762 | |||
763 | // kern_printf("act : %d %d |",lev->cbsghd_dline[p].tv_nsec/1000,p); |
||
764 | } |
||
765 | |||
766 | static void CBSGHD_task_insert(LEVEL l, PID p) |
||
767 | { |
||
768 | printk("CBSGHD_task_insert\n"); |
||
769 | kern_raise(XUNVALID_TASK,p); |
||
770 | } |
||
771 | |||
772 | static void CBSGHD_task_extract(LEVEL l, PID p) |
||
773 | { |
||
774 | printk("CBSGHD_task_extract\n"); |
||
775 | kern_raise(XUNVALID_TASK,p); |
||
776 | } |
||
777 | |||
778 | static void CBSGHD_task_endcycle(LEVEL l, PID p) |
||
779 | { |
||
780 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
781 | struct timespec act_time, res; |
||
782 | |||
783 | /* It computes the response time of the current instance... */ |
||
784 | ll_gettime(TIME_EXACT, &act_time); |
||
785 | SUBTIMESPEC(&act_time, &proc_table[p].request_time, &res); |
||
786 | /* response time expressed in usec! */ |
||
787 | lev->last_response_time[p] = TIMESPEC2NANOSEC(&res) / 1000; |
||
788 | |||
789 | level_table[ lev->scheduling_level ]-> |
||
790 | guest_end(lev->scheduling_level,p); |
||
791 | |||
792 | |||
793 | /* A spare capacity is inserted in the capacity queue!! */ |
||
794 | if (proc_table[p].avail_time > 0) { |
||
795 | c_insert(lev->cbsghd_dline[p], proc_table[p].avail_time, &lev->queue, p); |
||
796 | proc_table[p].avail_time = 0; |
||
797 | } |
||
798 | |||
799 | |||
800 | proc_table[p].status = CBSGHD_IDLE; |
||
801 | } |
||
802 | |||
803 | static void CBSGHD_task_end(LEVEL l, PID p) |
||
804 | { |
||
805 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
806 | |||
807 | /* check if the capacity became negative... */ |
||
808 | /* there is a while because if the wcet is << than the system tick |
||
809 | we need to postpone the deadline many times */ |
||
810 | while (proc_table[p].avail_time < 0) { |
||
811 | /* the CBSGHD rule for recharging the capacity */ |
||
812 | proc_table[p].avail_time += lev->cnormal[p]; |
||
813 | ADDUSEC2TIMESPEC(lev->period[p], &lev->cbsghd_dline[p]); |
||
814 | } |
||
815 | |||
816 | level_table[ lev->scheduling_level ]-> |
||
817 | guest_end(lev->scheduling_level,p); |
||
818 | |||
819 | /* we delete the reactivation timer */ |
||
820 | event_delete(lev->reactivation_timer[p]); |
||
821 | lev->reactivation_timer[p] = -1; |
||
822 | |||
823 | |||
824 | /* Finally, we post the zombie event. when the end period is reached, |
||
825 | the task descriptor and banwidth are freed */ |
||
826 | proc_table[p].status = CBSGHD_ZOMBIE; |
||
827 | lev->reactivation_timer[p] = kern_event_post(&lev->cbsghd_dline[p], |
||
828 | CBSGHD_timer_zombie, |
||
829 | (void *)p); |
||
830 | } |
||
831 | |||
832 | static void CBSGHD_task_sleep(LEVEL l, PID p) |
||
833 | { |
||
834 | printk("CBSGHD_task_sleep\n"); |
||
835 | kern_raise(XUNVALID_TASK,p); |
||
836 | } |
||
837 | |||
838 | static void CBSGHD_task_delay(LEVEL l, PID p, TIME usdelay) |
||
839 | { |
||
840 | printk("CBSGHD_task_delay\n"); |
||
841 | kern_raise(XUNVALID_TASK,p); |
||
842 | } |
||
843 | |||
844 | |||
845 | static int CBSGHD_guest_create(LEVEL l, PID p, TASK_MODEL *m) |
||
846 | { kern_raise(XUNVALID_GUEST,exec_shadow); return 0; } |
||
847 | |||
848 | static void CBSGHD_guest_detach(LEVEL l, PID p) |
||
849 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
850 | |||
851 | static void CBSGHD_guest_dispatch(LEVEL l, PID p, int nostop) |
||
852 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
853 | |||
854 | static void CBSGHD_guest_epilogue(LEVEL l, PID p) |
||
855 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
856 | |||
857 | static void CBSGHD_guest_activate(LEVEL l, PID p) |
||
858 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
859 | |||
860 | static void CBSGHD_guest_insert(LEVEL l, PID p) |
||
861 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
862 | |||
863 | static void CBSGHD_guest_extract(LEVEL l, PID p) |
||
864 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
865 | |||
866 | static void CBSGHD_guest_endcycle(LEVEL l, PID p) |
||
867 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
868 | |||
869 | static void CBSGHD_guest_end(LEVEL l, PID p) |
||
870 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
871 | |||
872 | static void CBSGHD_guest_sleep(LEVEL l, PID p) |
||
873 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
874 | |||
875 | static void CBSGHD_guest_delay(LEVEL l, PID p,DWORD tickdelay) |
||
876 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
877 | |||
878 | |||
879 | |||
880 | |||
881 | /* Registration functions */ |
||
882 | |||
883 | /*+ Registration function: |
||
884 | int flags the init flags ... see CBS.h +*/ |
||
885 | void CBSGHD_register_level(int flags, LEVEL master) |
||
886 | { |
||
887 | LEVEL l; /* the level that we register */ |
||
888 | CBSGHD_level_des *lev; /* for readableness only */ |
||
889 | PID i; /* a counter */ |
||
890 | |||
891 | printk("CBSGHD_register_level\n"); |
||
892 | |||
893 | /* request an entry in the level_table */ |
||
894 | l = level_alloc_descriptor(); |
||
895 | |||
896 | printk(" alloco descrittore %d %d\n",l,sizeof(CBSGHD_level_des)); |
||
897 | |||
898 | /* alloc the space needed for the CBSGHD_level_des */ |
||
899 | lev = (CBSGHD_level_des *)kern_alloc(sizeof(CBSGHD_level_des)); |
||
900 | |||
901 | printk(" lev=%d\n",(int)lev); |
||
902 | |||
903 | /* update the level_table with the new entry */ |
||
904 | level_table[l] = (level_des *)lev; |
||
905 | |||
906 | /* fill the standard descriptor */ |
||
907 | strncpy(lev->l.level_name, CBSGHD_LEVELNAME, MAX_LEVELNAME); |
||
908 | lev->l.level_code = CBSGHD_LEVEL_CODE; |
||
909 | lev->l.level_version = CBSGHD_LEVEL_VERSION; |
||
910 | |||
911 | lev->l.level_accept_task_model = CBSGHD_level_accept_task_model; |
||
912 | lev->l.level_accept_guest_model = CBSGHD_level_accept_guest_model; |
||
913 | lev->l.level_status = CBSGHD_level_status; |
||
914 | lev->l.level_scheduler = CBSGHD_level_scheduler; |
||
915 | |||
916 | if (flags & CBSGHD_ENABLE_GUARANTEE) |
||
917 | lev->l.level_guarantee = CBSGHD_level_guarantee; |
||
918 | else |
||
919 | lev->l.level_guarantee = NULL; |
||
920 | |||
921 | lev->l.task_create = CBSGHD_task_create; |
||
922 | lev->l.task_detach = CBSGHD_task_detach; |
||
923 | lev->l.task_eligible = CBSGHD_task_eligible; |
||
924 | lev->l.task_dispatch = CBSGHD_task_dispatch; |
||
925 | lev->l.task_epilogue = CBSGHD_task_epilogue; |
||
926 | lev->l.task_activate = CBSGHD_task_activate; |
||
927 | lev->l.task_insert = CBSGHD_task_insert; |
||
928 | lev->l.task_extract = CBSGHD_task_extract; |
||
929 | lev->l.task_endcycle = CBSGHD_task_endcycle; |
||
930 | lev->l.task_end = CBSGHD_task_end; |
||
931 | lev->l.task_sleep = CBSGHD_task_sleep; |
||
932 | lev->l.task_delay = CBSGHD_task_delay; |
||
933 | |||
934 | lev->l.guest_create = CBSGHD_guest_create; |
||
935 | lev->l.guest_detach = CBSGHD_guest_detach; |
||
936 | lev->l.guest_dispatch = CBSGHD_guest_dispatch; |
||
937 | lev->l.guest_epilogue = CBSGHD_guest_epilogue; |
||
938 | lev->l.guest_activate = CBSGHD_guest_activate; |
||
939 | lev->l.guest_insert = CBSGHD_guest_insert; |
||
940 | lev->l.guest_extract = CBSGHD_guest_extract; |
||
941 | lev->l.guest_endcycle = CBSGHD_guest_endcycle; |
||
942 | lev->l.guest_end = CBSGHD_guest_end; |
||
943 | lev->l.guest_sleep = CBSGHD_guest_sleep; |
||
944 | lev->l.guest_delay = CBSGHD_guest_delay; |
||
945 | |||
946 | /* fill the CBSGHD descriptor part */ |
||
947 | for (i=0; i<MAX_PROC; i++) { |
||
948 | NULL_TIMESPEC(&lev->cbsghd_dline[i]); |
||
949 | lev->period[i] = 0; |
||
950 | lev->last_response_time[i] = 0; |
||
951 | NULL_TIMESPEC(&lev->reactivation_time[i]); |
||
952 | lev->reactivation_timer[i] = -1; |
||
953 | } |
||
954 | |||
955 | |||
956 | lev->U = 0; |
||
957 | lev->idle = 0; |
||
958 | lev->queue = NULL; |
||
959 | |||
960 | lev->scheduling_level = master; |
||
961 | |||
962 | lev->flags = flags & 0x07; |
||
963 | } |
||
964 | |||
965 | |||
966 | int CBSGHD_get_response_time(LEVEL l, PID p) |
||
967 | { |
||
968 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
969 | return lev->last_response_time[p]; |
||
970 | } |
||
971 | |||
972 | |||
973 | bandwidth_t CBSGHD_usedbandwidth(LEVEL l) |
||
974 | { |
||
975 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
976 | if (lev->l.level_code == CBSGHD_LEVEL_CODE && |
||
977 | lev->l.level_version == CBSGHD_LEVEL_VERSION) |
||
978 | return lev->U; |
||
979 | else |
||
980 | return 0; |
||
981 | } |
||
982 |