Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1085 | pj | 1 | /* |
2 | * Project: S.Ha.R.K. |
||
3 | * |
||
4 | * Coordinators: Giorgio Buttazzo <giorgio@sssup.it> |
||
5 | * Paolo Gai <pj@hartik.sssup.it> |
||
6 | * |
||
7 | * Authors : Marco Caccamo and Paolo Gai |
||
8 | * |
||
9 | * ReTiS Lab (Scuola Superiore S.Anna - Pisa - Italy) |
||
10 | * |
||
11 | * http://www.sssup.it |
||
12 | * http://retis.sssup.it |
||
13 | * http://shark.sssup.it |
||
14 | */ |
||
15 | |||
16 | /** |
||
17 | ------------ |
||
18 | CVS : $Id: cbs_ft.c,v 1.1.1.1 2002-09-02 09:37:41 pj Exp $ |
||
19 | |||
20 | File: $File$ |
||
21 | Revision: $Revision: 1.1.1.1 $ |
||
22 | Last update: $Date: 2002-09-02 09:37:41 $ |
||
23 | ------------ |
||
24 | |||
25 | This file contains the server CBS_FT |
||
26 | |||
27 | Read CBS_FT.h for further details. |
||
28 | |||
29 | **/ |
||
30 | |||
31 | /* |
||
32 | * Copyright (C) 2000 Marco Caccamo and Paolo Gai |
||
33 | * |
||
34 | * This program is free software; you can redistribute it and/or modify |
||
35 | * it under the terms of the GNU General Public License as published by |
||
36 | * the Free Software Foundation; either version 2 of the License, or |
||
37 | * (at your option) any later version. |
||
38 | * |
||
39 | * This program is distributed in the hope that it will be useful, |
||
40 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
41 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
42 | * GNU General Public License for more details. |
||
43 | * |
||
44 | * You should have received a copy of the GNU General Public License |
||
45 | * along with this program; if not, write to the Free Software |
||
46 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
||
47 | * |
||
48 | */ |
||
49 | |||
50 | |||
51 | #include "cbs_ft.h" |
||
52 | |||
53 | /*+ 4 debug purposes +*/ |
||
54 | #undef CBS_FT_TEST |
||
55 | |||
56 | #ifdef TESTG |
||
57 | #include "drivers/glib.h" |
||
58 | TIME x,oldx; |
||
59 | extern TIME starttime; |
||
60 | #endif |
||
61 | |||
62 | |||
63 | |||
64 | |||
65 | /*+ Status used in the level +*/ |
||
66 | #define CBS_FT_IDLE APER_STATUS_BASE /*+ waiting the activation +*/ |
||
67 | #define CBS_FT_ZOMBIE APER_STATUS_BASE+1 /*+ waiting the period end +*/ |
||
68 | #define CBS_FT_DELAY APER_STATUS_BASE+2 /*+ waiting the delay end +*/ |
||
69 | |||
70 | /* structure of an element of the capacity queue */ |
||
71 | struct cap_queue { |
||
72 | int cap; |
||
73 | struct timespec dead; |
||
74 | struct cap_queue *next; |
||
75 | }; |
||
76 | |||
77 | /*+ the level redefinition for the CBS_FT level +*/ |
||
78 | typedef struct { |
||
79 | level_des l; /*+ the standard level descriptor +*/ |
||
80 | |||
81 | /* The wcet are stored in the task descriptor, but we need |
||
82 | an array for the deadlines. We can't use the timespec_priority |
||
83 | field because it is used by the master level!!!... |
||
84 | Notice that however the use of the timespec_priority field |
||
85 | does not cause any problem... */ |
||
86 | |||
87 | struct timespec cbs_ft_dline[MAX_PROC]; /*+ CBS_FT deadlines +*/ |
||
88 | |||
89 | |||
90 | TIME period[MAX_PROC]; /*+ CBS_FT activation period +*/ |
||
91 | |||
92 | |||
93 | int maxcap[MAX_PROC]; /* amount of capacity reserved to a primary+backup |
||
94 | couple */ |
||
95 | |||
96 | PID backup[MAX_PROC]; /* Backup task pointers, defined for primary tasks */ |
||
97 | |||
98 | char CP[MAX_PROC]; /* checkpoint flag */ |
||
99 | |||
100 | char P_or_B[MAX_PROC]; /* Type of task: PRIMARY or BACKUP */ |
||
101 | |||
102 | |||
103 | struct timespec reactivation_time[MAX_PROC]; |
||
104 | /*+ the time at witch the reactivation timer is post +*/ |
||
105 | |||
106 | int reactivation_timer[MAX_PROC]; /*+ the recativation timer +*/ |
||
107 | |||
108 | struct cap_queue *queue; /* pointer to the spare capacity queue */ |
||
109 | |||
110 | int flags; /*+ the init flags... +*/ |
||
111 | |||
112 | bandwidth_t U; /*+ the used bandwidth by the server +*/ |
||
113 | |||
114 | int idle; /* the idle flag... */ |
||
115 | |||
116 | struct timespec start_idle; /*gives the start time of the last idle period */ |
||
117 | |||
118 | LEVEL scheduling_level; |
||
119 | |||
120 | } CBS_FT_level_des; |
||
121 | |||
122 | |||
123 | |||
124 | /* insert a capacity in the queue capacity ordering by deadline */ |
||
125 | |||
126 | static int c_insert(struct timespec dead, int cap, struct cap_queue **que, |
||
127 | PID p) |
||
128 | { |
||
129 | struct cap_queue *prev, *n, *new; |
||
130 | |||
131 | prev = NULL; |
||
132 | n = *que; |
||
133 | |||
134 | while ((n != NULL) && |
||
135 | !TIMESPEC_A_LT_B(&dead, &n->dead)) { |
||
136 | prev = n; |
||
137 | n = n->next; |
||
138 | } |
||
139 | |||
140 | |||
141 | new = (struct cap_queue *)kern_alloc(sizeof(struct cap_queue)); |
||
142 | if (new == NULL) { |
||
143 | kern_printf("\nNew cash_queue element failed\n"); |
||
144 | kern_raise(XUNVALID_TASK, p); |
||
145 | return -1; |
||
146 | } |
||
147 | new->next = NULL; |
||
148 | new->cap = cap; |
||
149 | new->dead = dead; |
||
150 | |||
151 | if (prev != NULL) |
||
152 | prev->next = new; |
||
153 | else |
||
154 | *que = new; |
||
155 | |||
156 | if (n != NULL) |
||
157 | new->next = n; |
||
158 | return 0; |
||
159 | |||
160 | } |
||
161 | |||
162 | /* extract the first element from the capacity queue */ |
||
163 | |||
164 | int c_extractfirst(struct cap_queue **que) |
||
165 | { |
||
166 | struct cap_queue *p = *que; |
||
167 | |||
168 | |||
169 | if (*que == NULL) return(-1); |
||
170 | |||
171 | *que = (*que)->next; |
||
172 | |||
173 | kern_free(p, sizeof(struct cap_queue)); |
||
174 | return(1); |
||
175 | } |
||
176 | |||
177 | /* read data of the first element from the capacity queue */ |
||
178 | |||
179 | static void c_readfirst(struct timespec *d, int *c, struct cap_queue *que) |
||
180 | { |
||
181 | *d = que->dead; |
||
182 | *c = que->cap; |
||
183 | } |
||
184 | |||
185 | /* write data of the first element from the capacity queue */ |
||
186 | |||
187 | static void c_writefirst(struct timespec dead, int cap, struct cap_queue *que) |
||
188 | { |
||
189 | que->dead = dead; |
||
190 | que->cap = cap; |
||
191 | } |
||
192 | |||
193 | |||
194 | static void CBS_FT_activation(CBS_FT_level_des *lev, |
||
195 | PID p, |
||
196 | struct timespec *acttime) |
||
197 | { |
||
198 | JOB_TASK_MODEL job; |
||
199 | int capacity; |
||
200 | |||
201 | /* This rule is used when we recharge the budget at initial task activation |
||
202 | and each time a new task instance must be activated */ |
||
203 | |||
204 | if (TIMESPEC_A_GT_B(acttime, &lev->cbs_ft_dline[p])) { |
||
205 | /* we modify the deadline ... */ |
||
206 | TIMESPEC_ASSIGN(&lev->cbs_ft_dline[p], acttime); |
||
207 | } |
||
208 | |||
209 | |||
210 | if (proc_table[p].avail_time > 0) |
||
211 | proc_table[p].avail_time = 0; |
||
212 | |||
213 | |||
214 | |||
215 | /* A spare capacity is inserted in the capacity queue!! */ |
||
216 | ADDUSEC2TIMESPEC(lev->period[p], &lev->cbs_ft_dline[p]); |
||
217 | capacity = lev->maxcap[p] - proc_table[ lev->backup[p] ].wcet; |
||
218 | c_insert(lev->cbs_ft_dline[p], capacity, &lev->queue, p); |
||
219 | |||
220 | |||
221 | /* it exploits available capacities from the capacity queue */ |
||
222 | while (proc_table[p].avail_time < proc_table[p].wcet && |
||
223 | lev->queue != NULL) { |
||
224 | struct timespec dead; |
||
225 | int cap, delta; |
||
226 | delta = proc_table[p].wcet - proc_table[p].avail_time; |
||
227 | c_readfirst(&dead, &cap, lev->queue); |
||
228 | if (!TIMESPEC_A_GT_B(&dead, &lev->cbs_ft_dline[p])) { |
||
229 | if (cap > delta) { |
||
230 | proc_table[p].avail_time += delta; |
||
231 | c_writefirst(dead, cap - delta, lev->queue); |
||
232 | } |
||
233 | else { |
||
234 | proc_table[p].avail_time += cap; |
||
235 | c_extractfirst(&lev->queue); |
||
236 | } |
||
237 | } |
||
238 | else |
||
239 | break; |
||
240 | } |
||
241 | |||
242 | /* If the budget is still less than 0, an exception is raised */ |
||
243 | if (proc_table[p].avail_time <= 0) { |
||
244 | kern_printf("\nnegative value for the budget!\n"); |
||
245 | kern_raise(XUNVALID_TASK, p); |
||
246 | return; |
||
247 | } |
||
248 | |||
249 | |||
250 | |||
251 | /*if (p==6) |
||
252 | kern_printf("(act_time:%d dead:%d av_time:%d)\n", |
||
253 | acttime->tv_sec*1000000+ |
||
254 | acttime->tv_nsec/1000, |
||
255 | lev->cbs_ft_dline[p].tv_sec*1000000+ |
||
256 | lev->cbs_ft_dline[p].tv_nsec/1000, |
||
257 | proc_table[p].avail_time); */ |
||
258 | |||
259 | |||
260 | |||
261 | |||
262 | |||
263 | |||
264 | #ifdef TESTG |
||
265 | if (starttime && p == 3) { |
||
266 | oldx = x; |
||
267 | x = ((lev->cbs_ft_dline[p].tv_sec*1000000+lev->cbs_ft_dline[p].tv_nsec/1000)/5000 - starttime) + 20; |
||
268 | // kern_printf("(a%d)",lev->cbs_ft_dline[p].tv_sec*1000000+lev->cbs_ft_dline[p].tv_nsec/1000); |
||
269 | if (oldx > x) sys_end(); |
||
270 | if (x<640) |
||
271 | grx_plot(x, 15, 8); |
||
272 | } |
||
273 | #endif |
||
274 | |||
275 | /* and, finally, we reinsert the task in the master level */ |
||
276 | job_task_default_model(job, lev->cbs_ft_dline[p]); |
||
277 | job_task_def_yesexc(job); |
||
278 | level_table[ lev->scheduling_level ]-> |
||
279 | guest_create(lev->scheduling_level, p, (TASK_MODEL *)&job); |
||
280 | level_table[ lev->scheduling_level ]-> |
||
281 | guest_activate(lev->scheduling_level, p); |
||
282 | } |
||
283 | |||
284 | |||
285 | static char *CBS_FT_status_to_a(WORD status) |
||
286 | { |
||
287 | if (status < MODULE_STATUS_BASE) |
||
288 | return status_to_a(status); |
||
289 | |||
290 | switch (status) { |
||
291 | case CBS_FT_IDLE : return "CBS_FT_Idle"; |
||
292 | case CBS_FT_ZOMBIE : return "CBS_FT_Zombie"; |
||
293 | case CBS_FT_DELAY : return "CBS_FT_Delay"; |
||
294 | default : return "CBS_FT_Unknown"; |
||
295 | } |
||
296 | } |
||
297 | |||
298 | |||
299 | |||
300 | |||
301 | /* this is the periodic reactivation of the task... */ |
||
302 | static void CBS_FT_timer_reactivate(void *par) |
||
303 | { |
||
304 | PID p = (PID) par; |
||
305 | CBS_FT_level_des *lev; |
||
306 | |||
307 | lev = (CBS_FT_level_des *)level_table[proc_table[p].task_level]; |
||
308 | |||
309 | if (proc_table[p].status == CBS_FT_IDLE) { |
||
310 | /* the task has finished the current activation and must be |
||
311 | reactivated */ |
||
312 | |||
313 | /* request_time represents the time of the last instance release!! */ |
||
314 | TIMESPEC_ASSIGN(&proc_table[p].request_time, &lev->reactivation_time[p]); |
||
315 | |||
316 | /* If idle=1, then we have to discharge the capacities stored in |
||
317 | the capacity queue up to the length of the idle interval */ |
||
318 | if (lev->idle == 1) { |
||
319 | TIME interval; |
||
320 | struct timespec delta; |
||
321 | lev->idle = 0; |
||
322 | SUBTIMESPEC(&proc_table[p].request_time, &lev->start_idle, &delta); |
||
323 | /* length of the idle interval expressed in usec! */ |
||
324 | interval = TIMESPEC2NANOSEC(&delta) / 1000; |
||
325 | |||
326 | /* it discharges the available capacities from the capacity queue */ |
||
327 | while (interval > 0 && lev->queue != NULL) { |
||
328 | struct timespec dead; |
||
329 | int cap; |
||
330 | c_readfirst(&dead, &cap, lev->queue); |
||
331 | if (cap > interval) { |
||
332 | c_writefirst(dead, cap - interval, lev->queue); |
||
333 | interval = 0; |
||
334 | } |
||
335 | else { |
||
336 | interval -= cap; |
||
337 | c_extractfirst(&lev->queue); |
||
338 | } |
||
339 | } |
||
340 | } |
||
341 | |||
342 | CBS_FT_activation(lev,p,&lev->reactivation_time[p]); |
||
343 | |||
344 | |||
345 | /* Set the reactivation timer */ |
||
346 | TIMESPEC_ASSIGN(&lev->reactivation_time[p], &lev->cbs_ft_dline[p]); |
||
347 | lev->reactivation_timer[p] = kern_event_post(&lev->reactivation_time[p], |
||
348 | CBS_FT_timer_reactivate, |
||
349 | (void *)p); |
||
350 | event_need_reschedule(); |
||
351 | } |
||
352 | else { |
||
353 | /* this situation cannot occur */ |
||
354 | kern_printf("\nTrying to reactivate a primary task which is not IDLE!\n"); |
||
355 | kern_raise(XUNVALID_TASK,p); |
||
356 | } |
||
357 | } |
||
358 | |||
359 | |||
360 | |||
361 | static void CBS_FT_avail_time_check(CBS_FT_level_des *lev, PID p) |
||
362 | { |
||
363 | |||
364 | /*+ if the capacity became negative the remaining computation time |
||
365 | is diminuished.... +*/ |
||
366 | /* if (p==4) |
||
367 | kern_printf("(old dead:%d av_time:%d)\n", |
||
368 | lev->cbs_ft_dline[p].tv_sec*1000000+ |
||
369 | lev->cbs_ft_dline[p].tv_nsec/1000, |
||
370 | proc_table[p].avail_time); */ |
||
371 | |||
372 | |||
373 | int newcap = proc_table[p].wcet / 100 * 30; |
||
374 | if (newcap <= 0) |
||
375 | newcap = proc_table[p].wcet; |
||
376 | /* it exploits available capacities from the capacity queue */ |
||
377 | while (proc_table[p].avail_time < newcap |
||
378 | && lev->queue != NULL) { |
||
379 | struct timespec dead; |
||
380 | int cap, delta; |
||
381 | delta = newcap - proc_table[p].avail_time; |
||
382 | c_readfirst(&dead, &cap, lev->queue); |
||
383 | if (!TIMESPEC_A_GT_B(&dead, &lev->cbs_ft_dline[p])) { |
||
384 | if (cap > delta) { |
||
385 | proc_table[p].avail_time += delta; |
||
386 | c_writefirst(dead, cap - delta, lev->queue); |
||
387 | } |
||
388 | else { |
||
389 | proc_table[p].avail_time += cap; |
||
390 | c_extractfirst(&lev->queue); |
||
391 | } |
||
392 | } |
||
393 | else |
||
394 | break; |
||
395 | } |
||
396 | |||
397 | |||
398 | |||
399 | /*if (p==6) |
||
400 | kern_printf("(ATC dead:%d av_time:%d)\n", |
||
401 | lev->cbs_ft_dline[p].tv_sec*1000000+ |
||
402 | lev->cbs_ft_dline[p].tv_nsec/1000, |
||
403 | proc_table[p].avail_time); */ |
||
404 | |||
405 | |||
406 | |||
407 | /* if the budget is still empty, the backup task must be woken up. |
||
408 | Remind that a short chunk of primary will go ahead executing |
||
409 | before the task switch occurs */ |
||
410 | if (proc_table[p].avail_time <= 0) { |
||
411 | lev->CP[p] = 1; |
||
412 | proc_table[p].avail_time += proc_table[ lev->backup[p] ].wcet; |
||
413 | } |
||
414 | |||
415 | |||
416 | /*if (p==6) |
||
417 | kern_printf("(ATC1 dead:%d av_time:%d)\n", |
||
418 | lev->cbs_ft_dline[p].tv_sec*1000000+ |
||
419 | lev->cbs_ft_dline[p].tv_nsec/1000, |
||
420 | proc_table[p].avail_time); */ |
||
421 | |||
422 | |||
423 | |||
424 | } |
||
425 | |||
426 | |||
427 | /*+ this function is called when a killed or ended task reach the |
||
428 | period end +*/ |
||
429 | static void CBS_FT_timer_zombie(void *par) |
||
430 | { |
||
431 | PID p = (PID) par; |
||
432 | CBS_FT_level_des *lev; |
||
433 | |||
434 | lev = (CBS_FT_level_des *)level_table[proc_table[p].task_level]; |
||
435 | |||
436 | /* we finally put the task in the FREE status */ |
||
437 | proc_table[p].status = FREE; |
||
438 | q_insertfirst(p,&freedesc); |
||
439 | |||
440 | |||
441 | /* and free the allocated bandwidth */ |
||
442 | lev->U -= (MAX_BANDWIDTH / lev->period[p]) * (TIME)lev->maxcap[p]; |
||
443 | } |
||
444 | |||
445 | |||
446 | static int CBS_FT_level_accept_task_model(LEVEL l, TASK_MODEL *m) |
||
447 | { |
||
448 | |||
449 | if (m->pclass == FT_PCLASS || m->pclass == |
||
450 | (FT_PCLASS | l)) { |
||
451 | FT_TASK_MODEL *f = (FT_TASK_MODEL *) m; |
||
452 | |||
453 | //kern_printf("accept :FAULT TOLERANT TASK found!!!!!!\n"); */ |
||
454 | if (f->type == PRIMARY && f->execP > 0 && f->budget < (int)f->period |
||
455 | && f->backup != NIL) return 0; |
||
456 | if (f->type == BACKUP && f->wcetB > 0) |
||
457 | return 0; |
||
458 | } |
||
459 | return -1; |
||
460 | } |
||
461 | |||
462 | |||
463 | |||
464 | static int CBS_FT_level_accept_guest_model(LEVEL l, TASK_MODEL *m) |
||
465 | { |
||
466 | return -1; |
||
467 | } |
||
468 | |||
469 | static char *onoff(int i) |
||
470 | { |
||
471 | if (i) |
||
472 | return "On "; |
||
473 | else |
||
474 | return "Off"; |
||
475 | } |
||
476 | |||
477 | static void CBS_FT_level_status(LEVEL l) |
||
478 | { |
||
479 | CBS_FT_level_des *lev = (CBS_FT_level_des *)(level_table[l]); |
||
480 | PID p; |
||
481 | |||
482 | kern_printf("On-line guarantee : %s\n", |
||
483 | onoff(lev->flags & CBS_FT_ENABLE_GUARANTEE)); |
||
484 | kern_printf("Used Bandwidth : %u/%u\n", |
||
485 | lev->U, MAX_BANDWIDTH); |
||
486 | |||
487 | for (p=0; p<MAX_PROC; p++) |
||
488 | if (proc_table[p].task_level == l && proc_table[p].status != FREE ) |
||
489 | kern_printf("Pid: %2d Name: %10s Period: %9ld Dline: %9ld.%6ld Stat: %s\n", |
||
490 | p, |
||
491 | proc_table[p].name, |
||
492 | lev->period[p], |
||
493 | lev->cbs_ft_dline[p].tv_sec, |
||
494 | lev->cbs_ft_dline[p].tv_nsec/1000, |
||
495 | CBS_FT_status_to_a(proc_table[p].status)); |
||
496 | } |
||
497 | |||
498 | static PID CBS_FT_level_scheduler(LEVEL l) |
||
499 | { |
||
500 | CBS_FT_level_des *lev = (CBS_FT_level_des *)(level_table[l]); |
||
501 | |||
502 | /* it stores the actual time and set the IDLE flag in order to handle |
||
503 | the capacity queue discharging!!! */ |
||
504 | lev->idle = 1; |
||
505 | ll_gettime(TIME_EXACT, &lev->start_idle); |
||
506 | |||
507 | |||
508 | /* the CBS_FT don't schedule anything... |
||
509 | it's an EDF level or similar that do it! */ |
||
510 | return NIL; |
||
511 | } |
||
512 | |||
513 | |||
514 | /* The on-line guarantee is enabled only if the appropriate flag is set... */ |
||
515 | static int CBS_FT_level_guarantee(LEVEL l, bandwidth_t *freebandwidth) |
||
516 | { |
||
517 | CBS_FT_level_des *lev = (CBS_FT_level_des *)(level_table[l]); |
||
518 | |||
519 | if (lev->flags & CBS_FT_FAILED_GUARANTEE) { |
||
520 | *freebandwidth = 0; |
||
521 | kern_printf("guarantee :garanzia fallita!!!!!!\n"); |
||
522 | return 0; |
||
523 | } |
||
524 | else if (*freebandwidth >= lev->U) { |
||
525 | *freebandwidth -= lev->U; |
||
526 | return 1; |
||
527 | } |
||
528 | else { |
||
529 | kern_printf("guarantee :garanzia fallita per mancanza di banda!!!!!!\n"); |
||
530 | kern_printf("freeband: %d request band: %d", *freebandwidth, lev->U); |
||
531 | return 0; |
||
532 | } |
||
533 | } |
||
534 | |||
535 | |||
536 | static int CBS_FT_task_create(LEVEL l, PID p, TASK_MODEL *m) |
||
537 | |||
538 | { |
||
539 | CBS_FT_level_des *lev = (CBS_FT_level_des *)(level_table[l]); |
||
540 | |||
541 | /* if the CBS_FT_task_create is called, then the pclass must be a |
||
542 | valid pclass. */ |
||
543 | FT_TASK_MODEL *s = (FT_TASK_MODEL *)m; |
||
544 | |||
545 | |||
546 | |||
547 | /* Enable budget check */ |
||
548 | proc_table[p].control |= CONTROL_CAP; |
||
549 | |||
550 | proc_table[p].avail_time = 0; |
||
551 | NULL_TIMESPEC(&lev->cbs_ft_dline[p]); |
||
552 | |||
553 | |||
554 | if (s->type == PRIMARY) { |
||
555 | proc_table[p].wcet = (int)s->execP; |
||
556 | lev->period[p] = s->period; |
||
557 | lev->maxcap[p] = s->budget; |
||
558 | lev->backup[p] = s->backup; |
||
559 | lev->CP[p] = 0; |
||
560 | lev->P_or_B[p] = PRIMARY; |
||
561 | |||
562 | /* update the bandwidth... */ |
||
563 | if (lev->flags & CBS_FT_ENABLE_GUARANTEE) { |
||
564 | bandwidth_t b; |
||
565 | b = (MAX_BANDWIDTH / lev->period[p]) * (TIME)lev->maxcap[p]; |
||
566 | |||
567 | /* really update lev->U, checking an overflow... */ |
||
568 | if (MAX_BANDWIDTH - lev->U > b) |
||
569 | lev->U += b; |
||
570 | else |
||
571 | /* The task can NOT be guaranteed (U>MAX_BANDWIDTH)... |
||
572 | (see EDF.c) */ |
||
573 | lev->flags |= CBS_FT_FAILED_GUARANTEE; |
||
574 | } |
||
575 | } |
||
576 | else { |
||
577 | proc_table[p].wcet = (int)s->wcetB; |
||
578 | lev->P_or_B[p] = BACKUP; |
||
579 | |||
580 | /* Backup tasks are unkillable tasks! */ |
||
581 | proc_table[p].control |= NO_KILL; |
||
582 | } |
||
583 | |||
584 | return 0; /* OK, also if the task cannot be guaranteed... */ |
||
585 | } |
||
586 | |||
587 | |||
588 | static void CBS_FT_task_detach(LEVEL l, PID p) |
||
589 | { |
||
590 | /* the CBS_FT level doesn't introduce any dynamic allocated new field. |
||
591 | we have only to reset the NO_GUARANTEE FIELD and decrement the allocated |
||
592 | bandwidth */ |
||
593 | |||
594 | CBS_FT_level_des *lev = (CBS_FT_level_des *)(level_table[l]); |
||
595 | |||
596 | if (lev->flags & CBS_FT_FAILED_GUARANTEE) |
||
597 | lev->flags &= ~CBS_FT_FAILED_GUARANTEE; |
||
598 | else |
||
599 | lev->U -= (MAX_BANDWIDTH / lev->period[p]) * (TIME)lev->maxcap[p]; |
||
600 | } |
||
601 | |||
602 | |||
603 | static int CBS_FT_task_eligible(LEVEL l, PID p) |
||
604 | { |
||
605 | return 0; /* if the task p is chosen, it is always eligible */ |
||
606 | } |
||
607 | |||
608 | #ifdef __TEST1__ |
||
609 | extern int testactive; |
||
610 | extern struct timespec s_stime[]; |
||
611 | extern TIME s_curr[]; |
||
612 | extern TIME s_PID[]; |
||
613 | extern int useds; |
||
614 | #endif |
||
615 | |||
616 | static void CBS_FT_task_dispatch(LEVEL l, PID p, int nostop) |
||
617 | { |
||
618 | CBS_FT_level_des *lev = (CBS_FT_level_des *)(level_table[l]); |
||
619 | level_table[ lev->scheduling_level ]-> |
||
620 | guest_dispatch(lev->scheduling_level,p,nostop); |
||
621 | |||
622 | #ifdef __TEST1__ |
||
623 | if (testactive) |
||
624 | { |
||
625 | TIMESPEC_ASSIGN(&s_stime[useds], &schedule_time); |
||
626 | s_curr[useds] = proc_table[p].avail_time; |
||
627 | s_PID[useds] = p; |
||
628 | useds++; |
||
629 | } |
||
630 | #endif |
||
631 | } |
||
632 | |||
633 | static void CBS_FT_task_epilogue(LEVEL l, PID p) |
||
634 | { |
||
635 | CBS_FT_level_des *lev = (CBS_FT_level_des *)(level_table[l]); |
||
636 | |||
637 | /* check if the budget is finished... */ |
||
638 | if (proc_table[p].avail_time <= 0) { |
||
639 | |||
640 | /* A backup task cannot ever exhaust its budget! */ |
||
641 | if (lev->P_or_B[p] == BACKUP) { |
||
642 | kern_printf("\nBACKUP wcet violation!\n"); |
||
643 | kern_raise(XWCET_VIOLATION,p); |
||
644 | /* we kill the current activation */ |
||
645 | level_table[ lev->scheduling_level ]-> |
||
646 | guest_end(lev->scheduling_level, p); |
||
647 | return; |
||
648 | } |
||
649 | |||
650 | /* we try to recharge the budget */ |
||
651 | CBS_FT_avail_time_check(lev, p); |
||
652 | |||
653 | /* The budget must be greater than 0! */ |
||
654 | if (proc_table[p].avail_time <= 0) { |
||
655 | kern_printf("\nBackup task starting with exhausted budget\n"); |
||
656 | kern_raise(XUNVALID_TASK, p); |
||
657 | lev->CP[p] = 0; |
||
658 | /* we kill the current activation */ |
||
659 | level_table[ lev->scheduling_level ]-> |
||
660 | guest_end(lev->scheduling_level, p); |
||
661 | return; |
||
662 | } |
||
663 | } |
||
664 | |||
665 | /* the task returns into the ready queue by |
||
666 | calling the guest_epilogue... */ |
||
667 | level_table[ lev->scheduling_level ]-> |
||
668 | guest_epilogue(lev->scheduling_level,p); |
||
669 | } |
||
670 | |||
671 | |||
672 | static void CBS_FT_task_activate(LEVEL l, PID p) |
||
673 | { |
||
674 | CBS_FT_level_des *lev = (CBS_FT_level_des *)(level_table[l]); |
||
675 | |||
676 | ll_gettime(TIME_EXACT, &proc_table[p].request_time); |
||
677 | |||
678 | |||
679 | |||
680 | if (lev->P_or_B[p] == BACKUP) { |
||
681 | kern_printf("\nTrying to activate a BACKUP task!\n"); |
||
682 | kern_raise(XUNVALID_TASK, p); |
||
683 | } |
||
684 | else { |
||
685 | |||
686 | /* If idle=1, then we have to discharge the capacities stored in |
||
687 | the capacity queue up to the length of the idle interval */ |
||
688 | if (lev->idle == 1) { |
||
689 | TIME interval; |
||
690 | struct timespec delta; |
||
691 | lev->idle = 0; |
||
692 | SUBTIMESPEC(&proc_table[p].request_time, &lev->start_idle, &delta); |
||
693 | /* length of the idle interval expressed in usec! */ |
||
694 | interval = TIMESPEC2NANOSEC(&delta) / 1000; |
||
695 | |||
696 | /* it discharge the available capacities from the capacity queue */ |
||
697 | while (interval > 0 && lev->queue != NULL) { |
||
698 | struct timespec dead; |
||
699 | int cap; |
||
700 | c_readfirst(&dead, &cap, lev->queue); |
||
701 | if (cap > interval) { |
||
702 | c_writefirst(dead, cap - interval, lev->queue); |
||
703 | interval = 0; |
||
704 | } |
||
705 | else { |
||
706 | interval -= cap; |
||
707 | c_extractfirst(&lev->queue); |
||
708 | } |
||
709 | } |
||
710 | } |
||
711 | |||
712 | CBS_FT_activation(lev, p, &proc_table[p].request_time); |
||
713 | |||
714 | |||
715 | /* Set the reactivation timer */ |
||
716 | TIMESPEC_ASSIGN(&lev->reactivation_time[p], &lev->cbs_ft_dline[p]); |
||
717 | lev->reactivation_timer[p] = kern_event_post(&lev->reactivation_time[p], |
||
718 | CBS_FT_timer_reactivate, |
||
719 | (void *)p); |
||
720 | |||
721 | // kern_printf("act : %d %d |",lev->cbs_ft_dline[p].tv_nsec/1000,p); |
||
722 | } |
||
723 | } |
||
724 | |||
725 | |||
726 | static void CBS_FT_task_insert(LEVEL l, PID p) |
||
727 | { |
||
728 | printk("CBS_FT_task_insert\n"); |
||
729 | kern_raise(XUNVALID_TASK,p); |
||
730 | } |
||
731 | |||
732 | |||
733 | static void CBS_FT_task_extract(LEVEL l, PID p) |
||
734 | { |
||
735 | printk("CBS_FT_task_extract\n"); |
||
736 | kern_raise(XUNVALID_TASK,p); |
||
737 | } |
||
738 | |||
739 | |||
740 | static void CBS_FT_task_endcycle(LEVEL l, PID p) |
||
741 | { |
||
742 | CBS_FT_level_des *lev = (CBS_FT_level_des *)(level_table[l]); |
||
743 | |||
744 | |||
745 | level_table[ lev->scheduling_level ]-> |
||
746 | guest_end(lev->scheduling_level,p); |
||
747 | |||
748 | |||
749 | proc_table[p].status = CBS_FT_IDLE; |
||
750 | |||
751 | |||
752 | if (lev->P_or_B[p] == PRIMARY) { |
||
753 | if (lev->CP[p]) { |
||
754 | JOB_TASK_MODEL job; |
||
755 | |||
756 | /* We have to start the backup task */ |
||
757 | TIMESPEC_ASSIGN(&lev->cbs_ft_dline[ lev->backup[p] ], |
||
758 | &lev->cbs_ft_dline[p]); |
||
759 | proc_table[ lev->backup[p] ].avail_time = proc_table[p].avail_time; |
||
760 | lev->CP[p] = 0; |
||
761 | |||
762 | /* and, finally, we insert the backup task in the master level */ |
||
763 | job_task_default_model(job, lev->cbs_ft_dline[p]); |
||
764 | job_task_def_yesexc(job); |
||
765 | level_table[ lev->scheduling_level ]-> |
||
766 | guest_create(lev->scheduling_level, lev->backup[p], |
||
767 | (TASK_MODEL *)&job); |
||
768 | level_table[ lev->scheduling_level ]-> |
||
769 | guest_activate(lev->scheduling_level, lev->backup[p]); |
||
770 | } |
||
771 | else { |
||
772 | /* A spare capacity is inserted in the capacity queue!! */ |
||
773 | proc_table[p].avail_time += proc_table[ lev->backup[p] ].wcet; |
||
774 | if (proc_table[p].avail_time > 0) { |
||
775 | c_insert(lev->cbs_ft_dline[p], proc_table[p].avail_time, |
||
776 | &lev->queue, p); |
||
777 | proc_table[p].avail_time = 0; |
||
778 | } |
||
779 | } |
||
780 | } |
||
781 | else { |
||
782 | /* this branch is for backup tasks: |
||
783 | A spare capacity is inserted in the capacity queue!! */ |
||
784 | if (proc_table[p].avail_time > 0) { |
||
785 | c_insert(lev->cbs_ft_dline[p], proc_table[p].avail_time, |
||
786 | &lev->queue, p); |
||
787 | proc_table[p].avail_time = 0; |
||
788 | } |
||
789 | } |
||
790 | } |
||
791 | |||
792 | |||
793 | static void CBS_FT_task_end(LEVEL l, PID p) |
||
794 | { |
||
795 | CBS_FT_level_des *lev = (CBS_FT_level_des *)(level_table[l]); |
||
796 | |||
797 | /* A backup task cannot be killed, this behaviour can be modified |
||
798 | in a new release */ |
||
799 | if (lev->P_or_B[p] == BACKUP) { |
||
800 | kern_printf("\nKilling a BACKUP task!\n"); |
||
801 | kern_raise(XUNVALID_TASK, p); |
||
802 | return; |
||
803 | } |
||
804 | |||
805 | /* check if the capacity becomes negative... */ |
||
806 | /* there is a while because if the wcet is << than the system tick |
||
807 | we need to postpone the deadline many times */ |
||
808 | while (proc_table[p].avail_time < 0) { |
||
809 | /* the CBS_FT rule for recharging the capacity */ |
||
810 | proc_table[p].avail_time += lev->maxcap[p]; |
||
811 | ADDUSEC2TIMESPEC(lev->period[p], &lev->cbs_ft_dline[p]); |
||
812 | } |
||
813 | |||
814 | level_table[ lev->scheduling_level ]-> |
||
815 | guest_end(lev->scheduling_level,p); |
||
816 | |||
817 | |||
818 | /* we delete the reactivation timer */ |
||
819 | event_delete(lev->reactivation_timer[p]); |
||
820 | lev->reactivation_timer[p] = -1; |
||
821 | |||
822 | |||
823 | /* Finally, we post the zombie event. when the end period is reached, |
||
824 | the task descriptor and banwidth are freed */ |
||
825 | proc_table[p].status = CBS_FT_ZOMBIE; |
||
826 | lev->reactivation_timer[p] = kern_event_post(&lev->cbs_ft_dline[p], |
||
827 | CBS_FT_timer_zombie, |
||
828 | (void *)p); |
||
829 | } |
||
830 | |||
831 | |||
832 | static void CBS_FT_task_sleep(LEVEL l, PID p) |
||
833 | { |
||
834 | printk("CBS_FT_task_sleep\n"); |
||
835 | kern_raise(XUNVALID_TASK,p); |
||
836 | } |
||
837 | |||
838 | |||
839 | static void CBS_FT_task_delay(LEVEL l, PID p, TIME usdelay) |
||
840 | { |
||
841 | printk("CBS_FT_task_delay\n"); |
||
842 | kern_raise(XUNVALID_TASK,p); |
||
843 | } |
||
844 | |||
845 | |||
846 | static int CBS_FT_guest_create(LEVEL l, PID p, TASK_MODEL *m) |
||
847 | { kern_raise(XUNVALID_GUEST,exec_shadow); return 0; } |
||
848 | |||
849 | static void CBS_FT_guest_detach(LEVEL l, PID p) |
||
850 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
851 | |||
852 | static void CBS_FT_guest_dispatch(LEVEL l, PID p, int nostop) |
||
853 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
854 | |||
855 | static void CBS_FT_guest_epilogue(LEVEL l, PID p) |
||
856 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
857 | |||
858 | static void CBS_FT_guest_activate(LEVEL l, PID p) |
||
859 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
860 | |||
861 | static void CBS_FT_guest_insert(LEVEL l, PID p) |
||
862 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
863 | |||
864 | static void CBS_FT_guest_extract(LEVEL l, PID p) |
||
865 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
866 | |||
867 | static void CBS_FT_guest_endcycle(LEVEL l, PID p) |
||
868 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
869 | |||
870 | static void CBS_FT_guest_end(LEVEL l, PID p) |
||
871 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
872 | |||
873 | static void CBS_FT_guest_sleep(LEVEL l, PID p) |
||
874 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
875 | |||
876 | static void CBS_FT_guest_delay(LEVEL l, PID p,DWORD tickdelay) |
||
877 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
878 | |||
879 | |||
880 | |||
881 | |||
882 | /* Registration functions */ |
||
883 | |||
884 | /*+ Registration function: |
||
885 | int flags the init flags ... see CBS.h +*/ |
||
886 | void CBS_FT_register_level(int flags, LEVEL master) |
||
887 | { |
||
888 | LEVEL l; /* the level that we register */ |
||
889 | CBS_FT_level_des *lev; /* for readableness only */ |
||
890 | PID i; /* a counter */ |
||
891 | |||
892 | printk("CBS_FT_register_level\n"); |
||
893 | |||
894 | /* request an entry in the level_table */ |
||
895 | l = level_alloc_descriptor(); |
||
896 | |||
897 | printk(" alloco descrittore %d %d\n",l,sizeof(CBS_FT_level_des)); |
||
898 | |||
899 | /* alloc the space needed for the CBS_FT_level_des */ |
||
900 | lev = (CBS_FT_level_des *)kern_alloc(sizeof(CBS_FT_level_des)); |
||
901 | |||
902 | printk(" lev=%d\n",(int)lev); |
||
903 | |||
904 | /* update the level_table with the new entry */ |
||
905 | level_table[l] = (level_des *)lev; |
||
906 | |||
907 | /* fill the standard descriptor */ |
||
908 | strncpy(lev->l.level_name, CBS_FT_LEVELNAME, MAX_LEVELNAME); |
||
909 | lev->l.level_code = CBS_FT_LEVEL_CODE; |
||
910 | lev->l.level_version = CBS_FT_LEVEL_VERSION; |
||
911 | |||
912 | lev->l.level_accept_task_model = CBS_FT_level_accept_task_model; |
||
913 | lev->l.level_accept_guest_model = CBS_FT_level_accept_guest_model; |
||
914 | lev->l.level_status = CBS_FT_level_status; |
||
915 | lev->l.level_scheduler = CBS_FT_level_scheduler; |
||
916 | |||
917 | if (flags & CBS_FT_ENABLE_GUARANTEE) |
||
918 | lev->l.level_guarantee = CBS_FT_level_guarantee; |
||
919 | else |
||
920 | lev->l.level_guarantee = NULL; |
||
921 | |||
922 | lev->l.task_create = CBS_FT_task_create; |
||
923 | lev->l.task_detach = CBS_FT_task_detach; |
||
924 | lev->l.task_eligible = CBS_FT_task_eligible; |
||
925 | lev->l.task_dispatch = CBS_FT_task_dispatch; |
||
926 | lev->l.task_epilogue = CBS_FT_task_epilogue; |
||
927 | lev->l.task_activate = CBS_FT_task_activate; |
||
928 | lev->l.task_insert = CBS_FT_task_insert; |
||
929 | lev->l.task_extract = CBS_FT_task_extract; |
||
930 | lev->l.task_endcycle = CBS_FT_task_endcycle; |
||
931 | lev->l.task_end = CBS_FT_task_end; |
||
932 | lev->l.task_sleep = CBS_FT_task_sleep; |
||
933 | lev->l.task_delay = CBS_FT_task_delay; |
||
934 | |||
935 | lev->l.guest_create = CBS_FT_guest_create; |
||
936 | lev->l.guest_detach = CBS_FT_guest_detach; |
||
937 | lev->l.guest_dispatch = CBS_FT_guest_dispatch; |
||
938 | lev->l.guest_epilogue = CBS_FT_guest_epilogue; |
||
939 | lev->l.guest_activate = CBS_FT_guest_activate; |
||
940 | lev->l.guest_insert = CBS_FT_guest_insert; |
||
941 | lev->l.guest_extract = CBS_FT_guest_extract; |
||
942 | lev->l.guest_endcycle = CBS_FT_guest_endcycle; |
||
943 | lev->l.guest_end = CBS_FT_guest_end; |
||
944 | lev->l.guest_sleep = CBS_FT_guest_sleep; |
||
945 | lev->l.guest_delay = CBS_FT_guest_delay; |
||
946 | |||
947 | /* fill the CBS_FT descriptor part */ |
||
948 | for (i=0; i<MAX_PROC; i++) { |
||
949 | NULL_TIMESPEC(&lev->cbs_ft_dline[i]); |
||
950 | lev->period[i] = 0; |
||
951 | NULL_TIMESPEC(&lev->reactivation_time[i]); |
||
952 | lev->reactivation_timer[i] = -1; |
||
953 | lev->maxcap[i] = 0; |
||
954 | lev->backup[i] = NIL; |
||
955 | lev->CP[i] = 0; |
||
956 | lev->P_or_B[i] = PRIMARY; |
||
957 | } |
||
958 | |||
959 | lev->U = 0; |
||
960 | lev->idle = 0; |
||
961 | lev->queue = NULL; |
||
962 | |||
963 | lev->scheduling_level = master; |
||
964 | |||
965 | lev->flags = flags & 0x07; |
||
966 | } |
||
967 | |||
968 | |||
969 | |||
970 | bandwidth_t CBS_FT_usedbandwidth(LEVEL l) |
||
971 | { |
||
972 | |||
973 | CBS_FT_level_des *lev = (CBS_FT_level_des *)(level_table[l]); |
||
974 | if (lev->l.level_code == CBS_FT_LEVEL_CODE && |
||
975 | lev->l.level_version == CBS_FT_LEVEL_VERSION) |
||
976 | return lev->U; |
||
977 | else |
||
978 | return 0; |
||
979 | } |
||
980 | |||
981 | |||
982 | |||
983 | void CBS_FT_Primary_Abort() |
||
984 | { |
||
985 | PID p; |
||
986 | CBS_FT_level_des *lev; |
||
987 | |||
988 | kern_cli(); |
||
989 | p = exec_shadow; |
||
990 | lev = (CBS_FT_level_des *)level_table[proc_table[p].task_level]; |
||
991 | lev->CP[p] = 1; |
||
992 | kern_sti(); |
||
993 | } |
||
994 | |||
995 | |||
996 | char CBS_FT_Checkpoint() |
||
997 | { |
||
998 | char f; |
||
999 | PID p; |
||
1000 | CBS_FT_level_des *lev; |
||
1001 | |||
1002 | kern_cli(); |
||
1003 | p = exec_shadow; |
||
1004 | lev = (CBS_FT_level_des *)level_table[proc_table[p].task_level]; |
||
1005 | f = lev->CP[p]; |
||
1006 | kern_sti(); |
||
1007 | return f; |
||
1008 | } |
||
1009 |