Rev 1108 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1085 | pj | 1 | /* |
2 | * Project: S.Ha.R.K. |
||
3 | * |
||
4 | * Coordinators: |
||
5 | * Giorgio Buttazzo <giorgio@sssup.it> |
||
6 | * Paolo Gai <pj@gandalf.sssup.it> |
||
7 | * |
||
8 | * Authors : |
||
9 | * Paolo Gai <pj@gandalf.sssup.it> |
||
10 | * Massimiliano Giorgi <massy@gandalf.sssup.it> |
||
11 | * Luca Abeni <luca@gandalf.sssup.it> |
||
12 | * (see the web pages for full authors list) |
||
13 | * |
||
14 | * ReTiS Lab (Scuola Superiore S.Anna - Pisa - Italy) |
||
15 | * |
||
16 | * http://www.sssup.it |
||
17 | * http://retis.sssup.it |
||
18 | * http://shark.sssup.it |
||
19 | */ |
||
20 | |||
21 | /** |
||
22 | ------------ |
||
1123 | pj | 23 | CVS : $Id: cash.c,v 1.4 2003-01-07 17:10:16 pj Exp $ |
1085 | pj | 24 | |
25 | File: $File$ |
||
1123 | pj | 26 | Revision: $Revision: 1.4 $ |
27 | Last update: $Date: 2003-01-07 17:10:16 $ |
||
1085 | pj | 28 | ------------ |
29 | |||
30 | This file contains the aperiodic server CBS (Total Bandwidth Server) |
||
31 | |||
32 | Read CBS.h for further details. |
||
33 | |||
34 | **/ |
||
35 | |||
36 | /* |
||
37 | * Copyright (C) 2000 Paolo Gai |
||
38 | * |
||
39 | * This program is free software; you can redistribute it and/or modify |
||
40 | * it under the terms of the GNU General Public License as published by |
||
41 | * the Free Software Foundation; either version 2 of the License, or |
||
42 | * (at your option) any later version. |
||
43 | * |
||
44 | * This program is distributed in the hope that it will be useful, |
||
45 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
46 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
47 | * GNU General Public License for more details. |
||
48 | * |
||
49 | * You should have received a copy of the GNU General Public License |
||
50 | * along with this program; if not, write to the Free Software |
||
51 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
||
52 | * |
||
53 | */ |
||
54 | |||
55 | |||
56 | #include "cash.h" |
||
57 | #include <ll/stdio.h> |
||
58 | #include <ll/string.h> |
||
59 | #include <kernel/model.h> |
||
60 | #include <kernel/descr.h> |
||
61 | #include <kernel/var.h> |
||
62 | #include <kernel/func.h> |
||
1123 | pj | 63 | #include <kernel/trace.h> |
1085 | pj | 64 | |
65 | |||
66 | /*+ Status used in the level +*/ |
||
67 | #define CBSGHD_IDLE APER_STATUS_BASE /*+ waiting the activation +*/ |
||
68 | #define CBSGHD_ZOMBIE APER_STATUS_BASE+1 /*+ waiting the period end +*/ |
||
69 | |||
70 | /* structure of an element of the capacity queue */ |
||
71 | struct cap_queue { |
||
72 | int cap; |
||
73 | struct timespec dead; |
||
74 | struct cap_queue *next; |
||
75 | }; |
||
76 | |||
77 | /*+ the level redefinition for the CBS_HD level +*/ |
||
78 | typedef struct { |
||
79 | level_des l; /*+ the standard level descriptor +*/ |
||
80 | |||
81 | /* The wcet are stored in the task descriptor, but we need |
||
82 | an array for the deadlines. We can't use the timespec_priority |
||
83 | field because it is used by the master level!!!... |
||
84 | Notice that however the use of the timespec_priority field |
||
85 | does not cause any problem... */ |
||
86 | |||
87 | struct timespec cbsghd_dline[MAX_PROC]; /*+ CBSGHD deadlines +*/ |
||
88 | |||
89 | TIME period[MAX_PROC]; /*+ CBSGHD activation period +*/ |
||
90 | |||
91 | TIME maxperiod[MAX_PROC]; /*+ maximum period of each elastic task +*/ |
||
92 | |||
93 | int cremaining[MAX_PROC]; /*+ instance remaining computation time +*/ |
||
94 | |||
95 | TIME act_period[MAX_PROC]; /*+ actual period of each elastic task: it |
||
96 | must be less than maxperiod!!! +*/ |
||
97 | |||
1123 | pj | 98 | struct timespec request_time[MAX_PROC]; /* used for the response time */ |
1085 | pj | 99 | TIME last_response_time[MAX_PROC]; /* response time of the last instance */ |
100 | |||
101 | TIME cnormal[MAX_PROC]; /*+ CBSGHD normal computation time +*/ |
||
102 | |||
103 | struct timespec reactivation_time[MAX_PROC]; |
||
104 | /*+ the time at witch the reactivation timer is post +*/ |
||
105 | int reactivation_timer[MAX_PROC]; |
||
106 | /*+ the recativation timer +*/ |
||
107 | |||
108 | struct cap_queue *queue; /* pointer to the spare capacity queue */ |
||
109 | |||
110 | int flags; /*+ the init flags... +*/ |
||
111 | |||
112 | bandwidth_t U; /*+ the used bandwidth by the server +*/ |
||
113 | |||
114 | int idle; /* the idle flag... */ |
||
115 | |||
116 | struct timespec start_idle; /*gives the start time of the last idle period */ |
||
117 | |||
118 | LEVEL scheduling_level; |
||
119 | |||
120 | } CBSGHD_level_des; |
||
121 | |||
122 | |||
123 | /* insert a capacity in the queue capacity ordering by deadline */ |
||
124 | |||
125 | static int c_insert(struct timespec dead, int cap, struct cap_queue **que, |
||
126 | PID p) |
||
127 | { |
||
128 | struct cap_queue *prev, *n, *new; |
||
129 | |||
130 | prev = NULL; |
||
131 | n = *que; |
||
132 | |||
133 | while ((n != NULL) && |
||
134 | !TIMESPEC_A_LT_B(&dead, &n->dead)) { |
||
135 | prev = n; |
||
136 | n = n->next; |
||
137 | } |
||
138 | |||
139 | |||
140 | new = (struct cap_queue *)kern_alloc(sizeof(struct cap_queue)); |
||
141 | if (new == NULL) { |
||
142 | kern_printf("\nNew cash_queue element failed\n"); |
||
1100 | pj | 143 | kern_raise(XINVALID_TASK, p); |
1085 | pj | 144 | return -1; |
145 | } |
||
146 | new->next = NULL; |
||
147 | new->cap = cap; |
||
148 | new->dead = dead; |
||
149 | |||
150 | if (prev != NULL) |
||
151 | prev->next = new; |
||
152 | else |
||
153 | *que = new; |
||
154 | |||
155 | if (n != NULL) |
||
156 | new->next = n; |
||
157 | return 0; |
||
158 | } |
||
159 | |||
160 | /* extract the first element from the capacity queue */ |
||
161 | |||
162 | static int c_extractfirst(struct cap_queue **que) |
||
163 | { |
||
164 | struct cap_queue *p = *que; |
||
165 | |||
166 | |||
167 | if (*que == NULL) return(-1); |
||
168 | |||
169 | *que = (*que)->next; |
||
170 | |||
171 | kern_free(p, sizeof(struct cap_queue)); |
||
172 | return(1); |
||
173 | } |
||
174 | |||
175 | /* read data of the first element from the capacity queue */ |
||
176 | |||
177 | static void c_readfirst(struct timespec *d, int *c, struct cap_queue *que) |
||
178 | { |
||
179 | *d = que->dead; |
||
180 | *c = que->cap; |
||
181 | } |
||
182 | |||
183 | /* write data of the first element from the capacity queue */ |
||
184 | |||
185 | static void c_writefirst(struct timespec dead, int cap, struct cap_queue *que) |
||
186 | { |
||
187 | que->dead = dead; |
||
188 | que->cap = cap; |
||
189 | } |
||
190 | |||
191 | |||
192 | static void CBSGHD_activation(CBSGHD_level_des *lev, |
||
193 | PID p, |
||
194 | struct timespec *acttime) |
||
195 | { |
||
196 | JOB_TASK_MODEL job; |
||
197 | |||
198 | |||
199 | /* This rule is used when we recharge the budget at initial task activation |
||
200 | and each time a new task instance must be activated */ |
||
201 | |||
202 | if (TIMESPEC_A_GT_B(acttime, &lev->cbsghd_dline[p])) { |
||
203 | /* we modify the deadline ... */ |
||
204 | TIMESPEC_ASSIGN(&lev->cbsghd_dline[p], acttime); |
||
205 | } |
||
206 | |||
207 | lev->act_period[p] = 0; |
||
208 | |||
209 | if (proc_table[p].avail_time > 0) |
||
210 | proc_table[p].avail_time = 0; |
||
211 | |||
212 | |||
213 | |||
214 | |||
215 | /* there is a while because if the wcet is << than the system tick |
||
216 | we need to postpone the deadline many times */ |
||
217 | while (proc_table[p].avail_time <= 0) { |
||
218 | |||
219 | /* A spare capacity is inserted in the capacity queue!! */ |
||
220 | ADDUSEC2TIMESPEC(lev->period[p], &lev->cbsghd_dline[p]); |
||
221 | lev->act_period[p] += lev->period[p]; |
||
222 | c_insert(lev->cbsghd_dline[p], lev->cnormal[p], &lev->queue, p); |
||
223 | |||
224 | |||
225 | /* it exploits available capacities from the capacity queue */ |
||
226 | while (proc_table[p].avail_time < (int)lev->cnormal[p] && |
||
227 | lev->queue != NULL) { |
||
228 | struct timespec dead; |
||
229 | int cap, delta; |
||
230 | delta = lev->cnormal[p] - proc_table[p].avail_time; |
||
231 | c_readfirst(&dead, &cap, lev->queue); |
||
232 | if (!TIMESPEC_A_GT_B(&dead, &lev->cbsghd_dline[p])) { |
||
233 | if (cap > delta) { |
||
234 | proc_table[p].avail_time += delta; |
||
235 | c_writefirst(dead, cap - delta, lev->queue); |
||
236 | } |
||
237 | else { |
||
238 | proc_table[p].avail_time += cap; |
||
239 | c_extractfirst(&lev->queue); |
||
240 | } |
||
241 | } |
||
242 | else |
||
243 | break; |
||
244 | } |
||
245 | } |
||
246 | |||
247 | lev->cremaining[p] = proc_table[p].wcet - proc_table[p].avail_time; |
||
248 | |||
249 | |||
250 | #ifdef TESTG |
||
251 | if (starttime && p == 3) { |
||
252 | oldx = x; |
||
253 | x = ((lev->cbsghd_dline[p].tv_sec*1000000+lev->cbsghd_dline[p].tv_nsec/1000)/5000 - starttime) + 20; |
||
254 | // kern_printf("(a%d)",lev->cbsghd_dline[p].tv_sec*1000000+lev->cbsghd_dline[p].tv_nsec/1000); |
||
255 | if (oldx > x) sys_end(); |
||
256 | if (x<640) |
||
257 | grx_plot(x, 15, 8); |
||
258 | } |
||
259 | #endif |
||
260 | |||
261 | /* and, finally, we reinsert the task in the master level */ |
||
262 | job_task_default_model(job, lev->cbsghd_dline[p]); |
||
263 | job_task_def_yesexc(job); |
||
264 | level_table[ lev->scheduling_level ]-> |
||
1123 | pj | 265 | private_insert(lev->scheduling_level, p, (TASK_MODEL *)&job); |
1085 | pj | 266 | } |
267 | |||
268 | |||
269 | /* this is the periodic reactivation of the task... */ |
||
270 | static void CBSGHD_timer_reactivate(void *par) |
||
271 | { |
||
272 | PID p = (PID) par; |
||
273 | CBSGHD_level_des *lev; |
||
274 | |||
275 | lev = (CBSGHD_level_des *)level_table[proc_table[p].task_level]; |
||
276 | |||
277 | if (proc_table[p].status == CBSGHD_IDLE) { |
||
278 | /* the task has finished the current activation and must be |
||
279 | reactivated */ |
||
280 | |||
281 | /* request_time represents the time of the last instance release!! */ |
||
1123 | pj | 282 | TIMESPEC_ASSIGN(&lev->request_time[p], &lev->reactivation_time[p]); |
1085 | pj | 283 | |
284 | /* If idle=1, then we have to discharge the capacities stored in |
||
285 | the capacity queue up to the length of the idle interval */ |
||
286 | if (lev->idle == 1) { |
||
287 | TIME interval; |
||
288 | struct timespec delta; |
||
289 | lev->idle = 0; |
||
1123 | pj | 290 | SUBTIMESPEC(&lev->request_time[p], &lev->start_idle, &delta); |
1085 | pj | 291 | /* length of the idle interval expressed in usec! */ |
292 | interval = TIMESPEC2NANOSEC(&delta) / 1000; |
||
293 | |||
294 | /* it discharge the available capacities from the capacity queue */ |
||
295 | while (interval > 0 && lev->queue != NULL) { |
||
296 | struct timespec dead; |
||
297 | int cap; |
||
298 | c_readfirst(&dead, &cap, lev->queue); |
||
299 | if (cap > interval) { |
||
300 | c_writefirst(dead, cap - interval, lev->queue); |
||
301 | interval = 0; |
||
302 | } |
||
303 | else { |
||
304 | interval -= cap; |
||
305 | c_extractfirst(&lev->queue); |
||
306 | } |
||
307 | } |
||
308 | } |
||
309 | |||
310 | CBSGHD_activation(lev,p,&lev->reactivation_time[p]); |
||
311 | |||
312 | /* check the constraint on the maximum period permitted... */ |
||
313 | if (lev->act_period[p] > lev->maxperiod[p]) { |
||
314 | kern_printf("Deadline miss(timer_react.! process:%d act_period:%lu maxperiod:%lu\n", |
||
315 | p, lev->act_period[p], lev->maxperiod[p]); |
||
316 | kern_raise(XDEADLINE_MISS,p); |
||
317 | } |
||
318 | |||
319 | |||
320 | /* Set the reactivation timer */ |
||
321 | TIMESPEC_ASSIGN(&lev->reactivation_time[p], &lev->cbsghd_dline[p]); |
||
322 | lev->reactivation_timer[p] = kern_event_post(&lev->reactivation_time[p], |
||
323 | CBSGHD_timer_reactivate, |
||
324 | (void *)p); |
||
325 | event_need_reschedule(); |
||
326 | } |
||
327 | else { |
||
328 | /* this situation cannot occur */ |
||
329 | kern_printf("Trying to reactivate a task which is not IDLE!!!/n"); |
||
1100 | pj | 330 | kern_raise(XINVALID_TASK,p); |
1085 | pj | 331 | } |
332 | } |
||
333 | |||
334 | |||
335 | |||
336 | |||
337 | |||
338 | static void CBSGHD_avail_time_check(CBSGHD_level_des *lev, PID p) |
||
339 | { |
||
340 | |||
341 | /*+ if the capacity became negative the remaining computation time |
||
342 | is diminuished.... +*/ |
||
343 | /* if (p==4) |
||
344 | kern_printf("(old dead:%d av_time:%d crem:%d)\n", |
||
345 | lev->cbsghd_dline[p].tv_sec*1000000+ |
||
346 | lev->cbsghd_dline[p].tv_nsec/1000, proc_table[p].avail_time, |
||
347 | lev->cremaining[p]); */ |
||
348 | |||
349 | |||
350 | if (proc_table[p].avail_time < 0) |
||
351 | lev->cremaining[p] += proc_table[p].avail_time; |
||
352 | |||
353 | if (lev->cremaining[p] <= 0) { |
||
354 | kern_printf("Task:%d WCET violation \n", p); |
||
355 | kern_raise(XWCET_VIOLATION, p); |
||
356 | ll_abort(666); |
||
357 | } |
||
358 | |||
359 | |||
360 | /* there is a while because if the wcet is << than the system tick |
||
361 | we need to postpone the deadline many times */ |
||
362 | while (proc_table[p].avail_time <= 0) { |
||
363 | /* it exploits available capacities from the capacity queue */ |
||
364 | while (proc_table[p].avail_time < lev->cremaining[p] |
||
365 | && lev->queue != NULL) { |
||
366 | struct timespec dead; |
||
367 | int cap, delta; |
||
368 | delta = lev->cremaining[p] - proc_table[p].avail_time; |
||
369 | c_readfirst(&dead, &cap, lev->queue); |
||
370 | if (!TIMESPEC_A_GT_B(&dead, &lev->cbsghd_dline[p])) { |
||
371 | if (cap > delta) { |
||
372 | proc_table[p].avail_time += delta; |
||
373 | c_writefirst(dead, cap - delta, lev->queue); |
||
374 | } |
||
375 | else { |
||
376 | proc_table[p].avail_time += cap; |
||
377 | c_extractfirst(&lev->queue); |
||
378 | } |
||
379 | } |
||
380 | else |
||
381 | break; |
||
382 | } |
||
383 | |||
384 | /* if (p==5 && proc_table[p].avail_time <= 0 && |
||
385 | lev->cremaining[p] > lev->cnormal[p]) |
||
386 | kern_printf("(inter dead:%d av_time:%d crem:%d)\n", |
||
387 | lev->cbsghd_dline[p].tv_sec*1000000+ |
||
388 | lev->cbsghd_dline[p].tv_nsec/1000, proc_table[p].avail_time, |
||
389 | lev->cremaining[p]); */ |
||
390 | |||
391 | |||
392 | /* The remaining computation time is modified according |
||
393 | to the new budget! */ |
||
394 | if (proc_table[p].avail_time > 0) |
||
395 | lev->cremaining[p] -= proc_table[p].avail_time; |
||
396 | else { |
||
397 | /* the CBSGHD rule for recharging the capacity: */ |
||
398 | if (lev->cremaining[p] > lev->cnormal[p]) { |
||
399 | ADDUSEC2TIMESPEC(lev->period[p], &lev->cbsghd_dline[p]); |
||
400 | lev->act_period[p] += lev->period[p]; |
||
401 | /* A spare capacity is inserted in the capacity queue!! */ |
||
402 | c_insert(lev->cbsghd_dline[p], lev->cnormal[p], &lev->queue, p); |
||
403 | } |
||
404 | else { |
||
405 | TIME t; |
||
406 | t = (lev->cremaining[p] * lev->period[p]) / lev->cnormal[p]; |
||
407 | ADDUSEC2TIMESPEC(t, &lev->cbsghd_dline[p]); |
||
408 | lev->act_period[p] += t; |
||
409 | /* A spare capacity is inserted in the capacity queue!! */ |
||
410 | c_insert(lev->cbsghd_dline[p], lev->cremaining[p], &lev->queue, p); |
||
411 | } |
||
412 | } |
||
413 | } |
||
414 | |||
415 | /* if (p==4) |
||
416 | kern_printf("n dead:%d av_time:%d crem:%d)\n", |
||
417 | lev->cbsghd_dline[p].tv_sec*1000000+ |
||
418 | lev->cbsghd_dline[p].tv_nsec/1000, proc_table[p].avail_time, |
||
419 | lev->cremaining[p]); */ |
||
420 | |||
421 | /* check the constraint on the maximum period permitted... */ |
||
422 | if (lev->act_period[p] > lev->maxperiod[p]) { |
||
423 | /*kern_printf("n dead:%d av_time:%d crem:%d)\n", |
||
424 | lev->cbsghd_dline[p].tv_sec*1000000+ |
||
425 | lev->cbsghd_dline[p].tv_nsec/1000, proc_table[p].avail_time, |
||
426 | lev->cremaining[p]); */ |
||
427 | kern_printf("Deadline miss(av.time_check! process:%d act_period:%lu maxperiod:%lu\n", |
||
428 | p, lev->act_period[p], lev->maxperiod[p]); |
||
429 | kern_raise(XDEADLINE_MISS,p); |
||
430 | } |
||
431 | |||
432 | |||
433 | |||
434 | if (TIMESPEC_A_LT_B(&lev->reactivation_time[p], &lev->cbsghd_dline[p])) { |
||
435 | /* we delete the reactivation timer */ |
||
1123 | pj | 436 | kern_event_delete(lev->reactivation_timer[p]); |
1085 | pj | 437 | /* repost the event at the next instance deadline... */ |
438 | lev->reactivation_time[p] = lev->cbsghd_dline[p]; |
||
439 | lev->reactivation_timer[p] = kern_event_post(&lev->reactivation_time[p], |
||
440 | CBSGHD_timer_reactivate, |
||
441 | (void *)p); |
||
442 | } |
||
443 | |||
444 | #ifdef TESTG |
||
445 | if (starttime && p == 3) { |
||
446 | oldx = x; |
||
447 | x = ((lev->cbsghd_dline[p].tv_sec*1000000+ |
||
448 | lev->cbsghd_dline[p].tv_nsec/1000)/5000 - starttime) + 20; |
||
449 | // kern_printf("(e%d avail%d)",lev->cbsghd_dline[p].tv_sec*1000000+ |
||
450 | lev->cbsghd_dline[p].tv_nsec/1000,proc_table[p].avail_time); |
||
451 | if (oldx > x) sys_end(); |
||
452 | if (x<640) |
||
453 | grx_plot(x, 15, 2); |
||
454 | } |
||
455 | #endif |
||
456 | |||
457 | } |
||
458 | |||
459 | |||
460 | /*+ this function is called when a killed or ended task reach the |
||
461 | period end +*/ |
||
462 | static void CBSGHD_timer_zombie(void *par) |
||
463 | { |
||
464 | PID p = (PID) par; |
||
465 | CBSGHD_level_des *lev; |
||
466 | |||
467 | lev = (CBSGHD_level_des *)level_table[proc_table[p].task_level]; |
||
468 | |||
469 | /* we finally put the task in the FREE status */ |
||
470 | proc_table[p].status = FREE; |
||
1108 | pj | 471 | iq_insertfirst(p,&freedesc); |
1085 | pj | 472 | |
473 | /* and free the allocated bandwidth */ |
||
474 | lev->U -= (MAX_BANDWIDTH/lev->period[p]) * lev->cnormal[p]; |
||
475 | |||
476 | } |
||
477 | |||
1123 | pj | 478 | static PID CBSGHD_public_scheduler(LEVEL l) |
1085 | pj | 479 | { |
480 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
481 | |||
482 | /* it stores the actual time and set the IDLE flag in order to handle |
||
483 | the capacity queue discharging!!! */ |
||
484 | lev->idle = 1; |
||
1123 | pj | 485 | kern_gettime(&lev->start_idle); |
1085 | pj | 486 | |
487 | |||
488 | /* the CBSGHD don't schedule anything... |
||
489 | it's an EDF level or similar that do it! */ |
||
490 | return NIL; |
||
491 | } |
||
492 | |||
493 | /* The on-line guarantee is enabled only if the appropriate flag is set... */ |
||
1123 | pj | 494 | static int CBSGHD_public_guarantee(LEVEL l, bandwidth_t *freebandwidth) |
1085 | pj | 495 | { |
496 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
497 | |||
498 | if (lev->flags & CBSGHD_FAILED_GUARANTEE) { |
||
499 | *freebandwidth = 0; |
||
500 | //kern_printf("guarantee :garanzia fallita!!!!!!\n"); |
||
501 | return 0; |
||
502 | } |
||
503 | else if (*freebandwidth >= lev->U) { |
||
504 | *freebandwidth -= lev->U; |
||
505 | return 1; |
||
506 | } |
||
507 | else { |
||
508 | //kern_printf("guarantee :garanzia fallita per mancanza di banda!!!!!!\n"); |
||
509 | //kern_printf("freeband: %d request band: %d", *freebandwidth, lev->U); |
||
510 | return 0; |
||
511 | } |
||
512 | } |
||
513 | |||
1123 | pj | 514 | static int CBSGHD_public_create(LEVEL l, PID p, TASK_MODEL *m) |
1085 | pj | 515 | { |
516 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
1123 | pj | 517 | ELASTIC_HARD_TASK_MODEL *s; |
518 | bandwidth_t b1, b2; |
||
1085 | pj | 519 | |
1123 | pj | 520 | if (m->pclass != ELASTIC_HARD_PCLASS) return -1; |
521 | if (m->level != 0 && m->level != l) return -1; |
||
522 | s = (ELASTIC_HARD_TASK_MODEL *)m; |
||
1085 | pj | 523 | |
1123 | pj | 524 | /* kern_printf("accept :ELASTIC TASK found!!!!!!\n"); */ |
525 | b1 = (MAX_BANDWIDTH / s->period) * s->cnormal; |
||
526 | b2 = (MAX_BANDWIDTH / s->maxperiod) * s->wcet; |
||
527 | if (!(s->wcet && s->cnormal && s->period && s->maxperiod && |
||
528 | s->wcet >= s->cnormal && b1 >= b2) ) |
||
529 | return -1; |
||
530 | /* kern_printf("period: %d maxperiod: %d cnormal: %d wcet: %d, b1: %d b2: |
||
531 | %d\n", s->period, s->maxperiod, s->cnormal, s->wcet, b1, b2); */ |
||
532 | |||
533 | /* now we know that m is a valid model */ |
||
534 | |||
535 | |||
1085 | pj | 536 | /* Enable wcet check */ |
537 | proc_table[p].avail_time = 0; |
||
538 | proc_table[p].wcet = s->wcet; |
||
539 | proc_table[p].control |= CONTROL_CAP; |
||
540 | |||
541 | lev->period[p] = s->period; |
||
542 | lev->maxperiod[p] = s->maxperiod; |
||
543 | lev->cnormal[p] = s->cnormal; |
||
544 | NULL_TIMESPEC(&lev->cbsghd_dline[p]); |
||
1123 | pj | 545 | NULL_TIMESPEC(&lev->request_time[p]); |
1085 | pj | 546 | |
1123 | pj | 547 | |
1085 | pj | 548 | /* update the bandwidth... */ |
549 | if (lev->flags & CBSGHD_ENABLE_GUARANTEE) { |
||
550 | bandwidth_t b; |
||
551 | b = (MAX_BANDWIDTH / s->period) * s->cnormal; |
||
552 | |||
553 | /* really update lev->U, checking an overflow... */ |
||
554 | if (MAX_BANDWIDTH - lev->U > b) |
||
555 | lev->U += b; |
||
556 | else |
||
557 | /* The task can NOT be guaranteed (U>MAX_BANDWIDTH)... |
||
558 | (see EDF.c) */ |
||
559 | lev->flags |= CBSGHD_FAILED_GUARANTEE; |
||
560 | } |
||
561 | |||
562 | |||
563 | |||
564 | return 0; /* OK, also if the task cannot be guaranteed... */ |
||
565 | } |
||
566 | |||
1123 | pj | 567 | static void CBSGHD_public_detach(LEVEL l, PID p) |
1085 | pj | 568 | { |
569 | /* the CBSGHD level doesn't introduce any dinamic allocated new field. |
||
570 | we have only to reset the NO_GUARANTEE FIELD and decrement the allocated |
||
571 | bandwidth */ |
||
572 | |||
573 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
574 | |||
575 | if (lev->flags & CBSGHD_FAILED_GUARANTEE) |
||
576 | lev->flags &= ~CBSGHD_FAILED_GUARANTEE; |
||
577 | else |
||
578 | lev->U -= (MAX_BANDWIDTH / lev->period[p]) * lev->cnormal[p]; |
||
579 | |||
580 | |||
581 | } |
||
582 | |||
1123 | pj | 583 | static void CBSGHD_public_dispatch(LEVEL l, PID p, int nostop) |
1085 | pj | 584 | { |
585 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
586 | level_table[ lev->scheduling_level ]-> |
||
1123 | pj | 587 | private_dispatch(lev->scheduling_level,p,nostop); |
1085 | pj | 588 | |
589 | } |
||
590 | |||
1123 | pj | 591 | static void CBSGHD_public_epilogue(LEVEL l, PID p) |
1085 | pj | 592 | { |
593 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
594 | JOB_TASK_MODEL job; |
||
595 | |||
596 | /* check if the budget is finished... */ |
||
597 | if ( proc_table[p].avail_time <= 0) { |
||
598 | /* we kill the current activation */ |
||
599 | level_table[ lev->scheduling_level ]-> |
||
1123 | pj | 600 | private_extract(lev->scheduling_level, p); |
1085 | pj | 601 | |
602 | /* we modify the deadline */ |
||
603 | CBSGHD_avail_time_check(lev, p); |
||
604 | |||
605 | /* and, finally, we reinsert the task in the master level */ |
||
606 | job_task_default_model(job, lev->cbsghd_dline[p]); |
||
607 | job_task_def_yesexc(job); |
||
608 | level_table[ lev->scheduling_level ]-> |
||
1123 | pj | 609 | private_insert(lev->scheduling_level, p, (TASK_MODEL *)&job); |
1085 | pj | 610 | // kern_printf("epil : dl %d per %d p %d |\n", |
611 | // lev->cbsghd_dline[p].tv_nsec/1000,lev->period[p],p); |
||
612 | |||
613 | } |
||
614 | else |
||
615 | /* the task has been preempted. it returns into the ready queue by |
||
616 | calling the guest_epilogue... */ |
||
617 | level_table[ lev->scheduling_level ]-> |
||
1123 | pj | 618 | private_epilogue(lev->scheduling_level,p); |
1085 | pj | 619 | } |
620 | |||
1123 | pj | 621 | static void CBSGHD_public_activate(LEVEL l, PID p) |
1085 | pj | 622 | { |
623 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
624 | |||
1123 | pj | 625 | kern_gettime(&lev->request_time[p]); |
1085 | pj | 626 | |
627 | /* If idle=1, then we have to discharge the capacities stored in |
||
628 | the capacity queue up to the length of the idle interval */ |
||
629 | if (lev->idle == 1) { |
||
630 | TIME interval; |
||
631 | struct timespec delta; |
||
632 | lev->idle = 0; |
||
1123 | pj | 633 | SUBTIMESPEC(&lev->request_time[p], &lev->start_idle, &delta); |
1085 | pj | 634 | /* length of the idle interval expressed in usec! */ |
635 | interval = TIMESPEC2NANOSEC(&delta) / 1000; |
||
636 | |||
637 | /* it discharge the available capacities from the capacity queue */ |
||
638 | while (interval > 0 && lev->queue != NULL) { |
||
639 | struct timespec dead; |
||
640 | int cap; |
||
641 | c_readfirst(&dead, &cap, lev->queue); |
||
642 | if (cap > interval) { |
||
643 | c_writefirst(dead, cap - interval, lev->queue); |
||
644 | interval = 0; |
||
645 | } |
||
646 | else { |
||
647 | interval -= cap; |
||
648 | c_extractfirst(&lev->queue); |
||
649 | } |
||
650 | } |
||
651 | } |
||
652 | |||
1123 | pj | 653 | CBSGHD_activation(lev, p, &lev->request_time[p]); |
1085 | pj | 654 | |
655 | |||
656 | /* check the constraint on the maximum period permitted... */ |
||
657 | if (lev->act_period[p] > lev->maxperiod[p]) { |
||
658 | kern_printf("Deadline miss(task_activ.! process:%d act_period:%lu maxperiod:%lu\n", |
||
659 | p, lev->act_period[p], lev->maxperiod[p]); |
||
660 | kern_raise(XDEADLINE_MISS,p); |
||
661 | } |
||
662 | |||
663 | /* Set the reactivation timer */ |
||
664 | TIMESPEC_ASSIGN(&lev->reactivation_time[p], &lev->cbsghd_dline[p]); |
||
665 | lev->reactivation_timer[p] = kern_event_post(&lev->reactivation_time[p], |
||
666 | CBSGHD_timer_reactivate, |
||
667 | (void *)p); |
||
668 | |||
669 | // kern_printf("act : %d %d |",lev->cbsghd_dline[p].tv_nsec/1000,p); |
||
670 | } |
||
671 | |||
1123 | pj | 672 | static void CBSGHD_public_unblock(LEVEL l, PID p) |
1085 | pj | 673 | { |
674 | printk("CBSGHD_task_insert\n"); |
||
1100 | pj | 675 | kern_raise(XINVALID_TASK,p); |
1085 | pj | 676 | } |
677 | |||
1123 | pj | 678 | static void CBSGHD_public_block(LEVEL l, PID p) |
1085 | pj | 679 | { |
680 | printk("CBSGHD_task_extract\n"); |
||
1100 | pj | 681 | kern_raise(XINVALID_TASK,p); |
1085 | pj | 682 | } |
683 | |||
1123 | pj | 684 | static int CBSGHD_public_message(LEVEL l, PID p, void *m) |
1085 | pj | 685 | { |
686 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
687 | struct timespec act_time, res; |
||
688 | |||
689 | /* It computes the response time of the current instance... */ |
||
1123 | pj | 690 | kern_gettime(&act_time); |
691 | SUBTIMESPEC(&act_time, &lev->request_time[p], &res); |
||
1085 | pj | 692 | /* response time expressed in usec! */ |
693 | lev->last_response_time[p] = TIMESPEC2NANOSEC(&res) / 1000; |
||
694 | |||
695 | level_table[ lev->scheduling_level ]-> |
||
1123 | pj | 696 | private_extract(lev->scheduling_level,p); |
1085 | pj | 697 | |
698 | |||
699 | /* A spare capacity is inserted in the capacity queue!! */ |
||
700 | if (proc_table[p].avail_time > 0) { |
||
701 | c_insert(lev->cbsghd_dline[p], proc_table[p].avail_time, &lev->queue, p); |
||
702 | proc_table[p].avail_time = 0; |
||
703 | } |
||
704 | |||
705 | |||
706 | proc_table[p].status = CBSGHD_IDLE; |
||
1123 | pj | 707 | |
708 | jet_update_endcycle(); /* Update the Jet data... */ |
||
709 | trc_logevent(TRC_ENDCYCLE,&exec_shadow); /* tracer stuff */ |
||
710 | |||
711 | return 0; |
||
1085 | pj | 712 | } |
713 | |||
1123 | pj | 714 | static void CBSGHD_public_end(LEVEL l, PID p) |
1085 | pj | 715 | { |
716 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
717 | |||
718 | /* check if the capacity became negative... */ |
||
719 | /* there is a while because if the wcet is << than the system tick |
||
720 | we need to postpone the deadline many times */ |
||
721 | while (proc_table[p].avail_time < 0) { |
||
722 | /* the CBSGHD rule for recharging the capacity */ |
||
723 | proc_table[p].avail_time += lev->cnormal[p]; |
||
724 | ADDUSEC2TIMESPEC(lev->period[p], &lev->cbsghd_dline[p]); |
||
725 | } |
||
726 | |||
727 | level_table[ lev->scheduling_level ]-> |
||
1123 | pj | 728 | private_extract(lev->scheduling_level,p); |
1085 | pj | 729 | |
730 | /* we delete the reactivation timer */ |
||
1123 | pj | 731 | kern_event_delete(lev->reactivation_timer[p]); |
1085 | pj | 732 | lev->reactivation_timer[p] = -1; |
733 | |||
734 | |||
735 | /* Finally, we post the zombie event. when the end period is reached, |
||
736 | the task descriptor and banwidth are freed */ |
||
737 | proc_table[p].status = CBSGHD_ZOMBIE; |
||
738 | lev->reactivation_timer[p] = kern_event_post(&lev->cbsghd_dline[p], |
||
739 | CBSGHD_timer_zombie, |
||
740 | (void *)p); |
||
741 | } |
||
742 | |||
743 | /* Registration functions */ |
||
744 | |||
745 | /*+ Registration function: |
||
746 | int flags the init flags ... see CBS.h +*/ |
||
1123 | pj | 747 | LEVEL CBSGHD_register_level(int flags, LEVEL master) |
1085 | pj | 748 | { |
749 | LEVEL l; /* the level that we register */ |
||
750 | CBSGHD_level_des *lev; /* for readableness only */ |
||
751 | PID i; /* a counter */ |
||
752 | |||
753 | printk("CBSGHD_register_level\n"); |
||
754 | |||
755 | /* request an entry in the level_table */ |
||
1123 | pj | 756 | l = level_alloc_descriptor(sizeof(CBSGHD_level_des)); |
1085 | pj | 757 | |
1123 | pj | 758 | lev = (CBSGHD_level_des *)level_table[l]; |
1085 | pj | 759 | |
760 | printk(" lev=%d\n",(int)lev); |
||
761 | |||
762 | /* fill the standard descriptor */ |
||
1123 | pj | 763 | lev->l.public_scheduler = CBSGHD_public_scheduler; |
1085 | pj | 764 | |
765 | if (flags & CBSGHD_ENABLE_GUARANTEE) |
||
1123 | pj | 766 | lev->l.public_guarantee = CBSGHD_public_guarantee; |
1085 | pj | 767 | else |
1123 | pj | 768 | lev->l.public_guarantee = NULL; |
1085 | pj | 769 | |
1123 | pj | 770 | lev->l.public_create = CBSGHD_public_create; |
771 | lev->l.public_detach = CBSGHD_public_detach; |
||
772 | lev->l.public_end = CBSGHD_public_end; |
||
773 | lev->l.public_dispatch = CBSGHD_public_dispatch; |
||
774 | lev->l.public_epilogue = CBSGHD_public_epilogue; |
||
775 | lev->l.public_activate = CBSGHD_public_activate; |
||
776 | lev->l.public_unblock = CBSGHD_public_unblock; |
||
777 | lev->l.public_block = CBSGHD_public_block; |
||
778 | lev->l.public_message = CBSGHD_public_message; |
||
1085 | pj | 779 | |
780 | /* fill the CBSGHD descriptor part */ |
||
781 | for (i=0; i<MAX_PROC; i++) { |
||
782 | NULL_TIMESPEC(&lev->cbsghd_dline[i]); |
||
783 | lev->period[i] = 0; |
||
1123 | pj | 784 | NULL_TIMESPEC(&lev->request_time[i]); |
1085 | pj | 785 | lev->last_response_time[i] = 0; |
786 | NULL_TIMESPEC(&lev->reactivation_time[i]); |
||
787 | lev->reactivation_timer[i] = -1; |
||
788 | } |
||
789 | |||
790 | |||
791 | lev->U = 0; |
||
792 | lev->idle = 0; |
||
793 | lev->queue = NULL; |
||
794 | |||
795 | lev->scheduling_level = master; |
||
796 | |||
797 | lev->flags = flags & 0x07; |
||
1123 | pj | 798 | |
799 | return l; |
||
1085 | pj | 800 | } |
801 | |||
802 | |||
803 | int CBSGHD_get_response_time(LEVEL l, PID p) |
||
804 | { |
||
805 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
1123 | pj | 806 | |
1085 | pj | 807 | return lev->last_response_time[p]; |
808 | } |
||
809 | |||
810 | |||
811 | bandwidth_t CBSGHD_usedbandwidth(LEVEL l) |
||
812 | { |
||
813 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
1123 | pj | 814 | |
815 | return lev->U; |
||
1085 | pj | 816 | } |
817 |