Rev 1100 | Rev 1123 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1085 | pj | 1 | /* |
2 | * Project: S.Ha.R.K. |
||
3 | * |
||
4 | * Coordinators: |
||
5 | * Giorgio Buttazzo <giorgio@sssup.it> |
||
6 | * Paolo Gai <pj@gandalf.sssup.it> |
||
7 | * |
||
8 | * Authors : |
||
9 | * Paolo Gai <pj@gandalf.sssup.it> |
||
10 | * Massimiliano Giorgi <massy@gandalf.sssup.it> |
||
11 | * Luca Abeni <luca@gandalf.sssup.it> |
||
12 | * (see the web pages for full authors list) |
||
13 | * |
||
14 | * ReTiS Lab (Scuola Superiore S.Anna - Pisa - Italy) |
||
15 | * |
||
16 | * http://www.sssup.it |
||
17 | * http://retis.sssup.it |
||
18 | * http://shark.sssup.it |
||
19 | */ |
||
20 | |||
21 | /** |
||
22 | ------------ |
||
1108 | pj | 23 | CVS : $Id: cash.c,v 1.3 2002-11-11 07:56:31 pj Exp $ |
1085 | pj | 24 | |
25 | File: $File$ |
||
1108 | pj | 26 | Revision: $Revision: 1.3 $ |
27 | Last update: $Date: 2002-11-11 07:56:31 $ |
||
1085 | pj | 28 | ------------ |
29 | |||
30 | This file contains the aperiodic server CBS (Total Bandwidth Server) |
||
31 | |||
32 | Read CBS.h for further details. |
||
33 | |||
34 | **/ |
||
35 | |||
36 | /* |
||
37 | * Copyright (C) 2000 Paolo Gai |
||
38 | * |
||
39 | * This program is free software; you can redistribute it and/or modify |
||
40 | * it under the terms of the GNU General Public License as published by |
||
41 | * the Free Software Foundation; either version 2 of the License, or |
||
42 | * (at your option) any later version. |
||
43 | * |
||
44 | * This program is distributed in the hope that it will be useful, |
||
45 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
46 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
47 | * GNU General Public License for more details. |
||
48 | * |
||
49 | * You should have received a copy of the GNU General Public License |
||
50 | * along with this program; if not, write to the Free Software |
||
51 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
||
52 | * |
||
53 | */ |
||
54 | |||
55 | |||
56 | #include "cash.h" |
||
57 | #include <ll/stdio.h> |
||
58 | #include <ll/string.h> |
||
59 | #include <kernel/model.h> |
||
60 | #include <kernel/descr.h> |
||
61 | #include <kernel/var.h> |
||
62 | #include <kernel/func.h> |
||
63 | |||
64 | /*+ 4 debug purposes +*/ |
||
65 | #undef CBS_TEST |
||
66 | |||
67 | #ifdef TESTG |
||
68 | #include "drivers/glib.h" |
||
69 | TIME x,oldx; |
||
70 | extern TIME starttime; |
||
71 | #endif |
||
72 | |||
73 | |||
74 | |||
75 | |||
76 | |||
77 | |||
78 | /*+ Status used in the level +*/ |
||
79 | #define CBSGHD_IDLE APER_STATUS_BASE /*+ waiting the activation +*/ |
||
80 | #define CBSGHD_ZOMBIE APER_STATUS_BASE+1 /*+ waiting the period end +*/ |
||
81 | |||
82 | /* structure of an element of the capacity queue */ |
||
83 | struct cap_queue { |
||
84 | int cap; |
||
85 | struct timespec dead; |
||
86 | struct cap_queue *next; |
||
87 | }; |
||
88 | |||
89 | /*+ the level redefinition for the CBS_HD level +*/ |
||
90 | typedef struct { |
||
91 | level_des l; /*+ the standard level descriptor +*/ |
||
92 | |||
93 | /* The wcet are stored in the task descriptor, but we need |
||
94 | an array for the deadlines. We can't use the timespec_priority |
||
95 | field because it is used by the master level!!!... |
||
96 | Notice that however the use of the timespec_priority field |
||
97 | does not cause any problem... */ |
||
98 | |||
99 | struct timespec cbsghd_dline[MAX_PROC]; /*+ CBSGHD deadlines +*/ |
||
100 | |||
101 | TIME period[MAX_PROC]; /*+ CBSGHD activation period +*/ |
||
102 | |||
103 | TIME maxperiod[MAX_PROC]; /*+ maximum period of each elastic task +*/ |
||
104 | |||
105 | int cremaining[MAX_PROC]; /*+ instance remaining computation time +*/ |
||
106 | |||
107 | TIME act_period[MAX_PROC]; /*+ actual period of each elastic task: it |
||
108 | must be less than maxperiod!!! +*/ |
||
109 | |||
110 | TIME last_response_time[MAX_PROC]; /* response time of the last instance */ |
||
111 | |||
112 | TIME cnormal[MAX_PROC]; /*+ CBSGHD normal computation time +*/ |
||
113 | |||
114 | struct timespec reactivation_time[MAX_PROC]; |
||
115 | /*+ the time at witch the reactivation timer is post +*/ |
||
116 | int reactivation_timer[MAX_PROC]; |
||
117 | /*+ the recativation timer +*/ |
||
118 | |||
119 | struct cap_queue *queue; /* pointer to the spare capacity queue */ |
||
120 | |||
121 | int flags; /*+ the init flags... +*/ |
||
122 | |||
123 | bandwidth_t U; /*+ the used bandwidth by the server +*/ |
||
124 | |||
125 | int idle; /* the idle flag... */ |
||
126 | |||
127 | struct timespec start_idle; /*gives the start time of the last idle period */ |
||
128 | |||
129 | LEVEL scheduling_level; |
||
130 | |||
131 | } CBSGHD_level_des; |
||
132 | |||
133 | |||
134 | /* insert a capacity in the queue capacity ordering by deadline */ |
||
135 | |||
136 | static int c_insert(struct timespec dead, int cap, struct cap_queue **que, |
||
137 | PID p) |
||
138 | { |
||
139 | struct cap_queue *prev, *n, *new; |
||
140 | |||
141 | prev = NULL; |
||
142 | n = *que; |
||
143 | |||
144 | while ((n != NULL) && |
||
145 | !TIMESPEC_A_LT_B(&dead, &n->dead)) { |
||
146 | prev = n; |
||
147 | n = n->next; |
||
148 | } |
||
149 | |||
150 | |||
151 | new = (struct cap_queue *)kern_alloc(sizeof(struct cap_queue)); |
||
152 | if (new == NULL) { |
||
153 | kern_printf("\nNew cash_queue element failed\n"); |
||
1100 | pj | 154 | kern_raise(XINVALID_TASK, p); |
1085 | pj | 155 | return -1; |
156 | } |
||
157 | new->next = NULL; |
||
158 | new->cap = cap; |
||
159 | new->dead = dead; |
||
160 | |||
161 | if (prev != NULL) |
||
162 | prev->next = new; |
||
163 | else |
||
164 | *que = new; |
||
165 | |||
166 | if (n != NULL) |
||
167 | new->next = n; |
||
168 | return 0; |
||
169 | } |
||
170 | |||
171 | /* extract the first element from the capacity queue */ |
||
172 | |||
173 | static int c_extractfirst(struct cap_queue **que) |
||
174 | { |
||
175 | struct cap_queue *p = *que; |
||
176 | |||
177 | |||
178 | if (*que == NULL) return(-1); |
||
179 | |||
180 | *que = (*que)->next; |
||
181 | |||
182 | kern_free(p, sizeof(struct cap_queue)); |
||
183 | return(1); |
||
184 | } |
||
185 | |||
186 | /* read data of the first element from the capacity queue */ |
||
187 | |||
188 | static void c_readfirst(struct timespec *d, int *c, struct cap_queue *que) |
||
189 | { |
||
190 | *d = que->dead; |
||
191 | *c = que->cap; |
||
192 | } |
||
193 | |||
194 | /* write data of the first element from the capacity queue */ |
||
195 | |||
196 | static void c_writefirst(struct timespec dead, int cap, struct cap_queue *que) |
||
197 | { |
||
198 | que->dead = dead; |
||
199 | que->cap = cap; |
||
200 | } |
||
201 | |||
202 | |||
203 | static void CBSGHD_activation(CBSGHD_level_des *lev, |
||
204 | PID p, |
||
205 | struct timespec *acttime) |
||
206 | { |
||
207 | JOB_TASK_MODEL job; |
||
208 | |||
209 | |||
210 | /* This rule is used when we recharge the budget at initial task activation |
||
211 | and each time a new task instance must be activated */ |
||
212 | |||
213 | if (TIMESPEC_A_GT_B(acttime, &lev->cbsghd_dline[p])) { |
||
214 | /* we modify the deadline ... */ |
||
215 | TIMESPEC_ASSIGN(&lev->cbsghd_dline[p], acttime); |
||
216 | } |
||
217 | |||
218 | lev->act_period[p] = 0; |
||
219 | |||
220 | if (proc_table[p].avail_time > 0) |
||
221 | proc_table[p].avail_time = 0; |
||
222 | |||
223 | |||
224 | |||
225 | |||
226 | /* there is a while because if the wcet is << than the system tick |
||
227 | we need to postpone the deadline many times */ |
||
228 | while (proc_table[p].avail_time <= 0) { |
||
229 | |||
230 | /* A spare capacity is inserted in the capacity queue!! */ |
||
231 | ADDUSEC2TIMESPEC(lev->period[p], &lev->cbsghd_dline[p]); |
||
232 | lev->act_period[p] += lev->period[p]; |
||
233 | c_insert(lev->cbsghd_dline[p], lev->cnormal[p], &lev->queue, p); |
||
234 | |||
235 | |||
236 | /* it exploits available capacities from the capacity queue */ |
||
237 | while (proc_table[p].avail_time < (int)lev->cnormal[p] && |
||
238 | lev->queue != NULL) { |
||
239 | struct timespec dead; |
||
240 | int cap, delta; |
||
241 | delta = lev->cnormal[p] - proc_table[p].avail_time; |
||
242 | c_readfirst(&dead, &cap, lev->queue); |
||
243 | if (!TIMESPEC_A_GT_B(&dead, &lev->cbsghd_dline[p])) { |
||
244 | if (cap > delta) { |
||
245 | proc_table[p].avail_time += delta; |
||
246 | c_writefirst(dead, cap - delta, lev->queue); |
||
247 | } |
||
248 | else { |
||
249 | proc_table[p].avail_time += cap; |
||
250 | c_extractfirst(&lev->queue); |
||
251 | } |
||
252 | } |
||
253 | else |
||
254 | break; |
||
255 | } |
||
256 | } |
||
257 | |||
258 | lev->cremaining[p] = proc_table[p].wcet - proc_table[p].avail_time; |
||
259 | |||
260 | |||
261 | #ifdef TESTG |
||
262 | if (starttime && p == 3) { |
||
263 | oldx = x; |
||
264 | x = ((lev->cbsghd_dline[p].tv_sec*1000000+lev->cbsghd_dline[p].tv_nsec/1000)/5000 - starttime) + 20; |
||
265 | // kern_printf("(a%d)",lev->cbsghd_dline[p].tv_sec*1000000+lev->cbsghd_dline[p].tv_nsec/1000); |
||
266 | if (oldx > x) sys_end(); |
||
267 | if (x<640) |
||
268 | grx_plot(x, 15, 8); |
||
269 | } |
||
270 | #endif |
||
271 | |||
272 | /* and, finally, we reinsert the task in the master level */ |
||
273 | job_task_default_model(job, lev->cbsghd_dline[p]); |
||
274 | job_task_def_yesexc(job); |
||
275 | level_table[ lev->scheduling_level ]-> |
||
276 | guest_create(lev->scheduling_level, p, (TASK_MODEL *)&job); |
||
277 | level_table[ lev->scheduling_level ]-> |
||
278 | guest_activate(lev->scheduling_level, p); |
||
279 | } |
||
280 | |||
281 | |||
282 | static char *CBSGHD_status_to_a(WORD status) |
||
283 | { |
||
284 | if (status < MODULE_STATUS_BASE) |
||
285 | return status_to_a(status); |
||
286 | |||
287 | switch (status) { |
||
288 | case CBSGHD_IDLE : return "CBSGHD_Idle"; |
||
289 | case CBSGHD_ZOMBIE : return "CBSGHD_Zombie"; |
||
290 | default : return "CBSGHD_Unknown"; |
||
291 | } |
||
292 | } |
||
293 | |||
294 | |||
295 | |||
296 | |||
297 | /* this is the periodic reactivation of the task... */ |
||
298 | static void CBSGHD_timer_reactivate(void *par) |
||
299 | { |
||
300 | PID p = (PID) par; |
||
301 | CBSGHD_level_des *lev; |
||
302 | |||
303 | lev = (CBSGHD_level_des *)level_table[proc_table[p].task_level]; |
||
304 | |||
305 | if (proc_table[p].status == CBSGHD_IDLE) { |
||
306 | /* the task has finished the current activation and must be |
||
307 | reactivated */ |
||
308 | |||
309 | /* request_time represents the time of the last instance release!! */ |
||
310 | TIMESPEC_ASSIGN(&proc_table[p].request_time, &lev->reactivation_time[p]); |
||
311 | |||
312 | /* If idle=1, then we have to discharge the capacities stored in |
||
313 | the capacity queue up to the length of the idle interval */ |
||
314 | if (lev->idle == 1) { |
||
315 | TIME interval; |
||
316 | struct timespec delta; |
||
317 | lev->idle = 0; |
||
318 | SUBTIMESPEC(&proc_table[p].request_time, &lev->start_idle, &delta); |
||
319 | /* length of the idle interval expressed in usec! */ |
||
320 | interval = TIMESPEC2NANOSEC(&delta) / 1000; |
||
321 | |||
322 | /* it discharge the available capacities from the capacity queue */ |
||
323 | while (interval > 0 && lev->queue != NULL) { |
||
324 | struct timespec dead; |
||
325 | int cap; |
||
326 | c_readfirst(&dead, &cap, lev->queue); |
||
327 | if (cap > interval) { |
||
328 | c_writefirst(dead, cap - interval, lev->queue); |
||
329 | interval = 0; |
||
330 | } |
||
331 | else { |
||
332 | interval -= cap; |
||
333 | c_extractfirst(&lev->queue); |
||
334 | } |
||
335 | } |
||
336 | } |
||
337 | |||
338 | CBSGHD_activation(lev,p,&lev->reactivation_time[p]); |
||
339 | |||
340 | /* check the constraint on the maximum period permitted... */ |
||
341 | if (lev->act_period[p] > lev->maxperiod[p]) { |
||
342 | kern_printf("Deadline miss(timer_react.! process:%d act_period:%lu maxperiod:%lu\n", |
||
343 | p, lev->act_period[p], lev->maxperiod[p]); |
||
344 | kern_raise(XDEADLINE_MISS,p); |
||
345 | } |
||
346 | |||
347 | |||
348 | /* Set the reactivation timer */ |
||
349 | TIMESPEC_ASSIGN(&lev->reactivation_time[p], &lev->cbsghd_dline[p]); |
||
350 | lev->reactivation_timer[p] = kern_event_post(&lev->reactivation_time[p], |
||
351 | CBSGHD_timer_reactivate, |
||
352 | (void *)p); |
||
353 | event_need_reschedule(); |
||
354 | } |
||
355 | else { |
||
356 | /* this situation cannot occur */ |
||
357 | kern_printf("Trying to reactivate a task which is not IDLE!!!/n"); |
||
1100 | pj | 358 | kern_raise(XINVALID_TASK,p); |
1085 | pj | 359 | } |
360 | } |
||
361 | |||
362 | |||
363 | |||
364 | |||
365 | |||
366 | static void CBSGHD_avail_time_check(CBSGHD_level_des *lev, PID p) |
||
367 | { |
||
368 | |||
369 | /*+ if the capacity became negative the remaining computation time |
||
370 | is diminuished.... +*/ |
||
371 | /* if (p==4) |
||
372 | kern_printf("(old dead:%d av_time:%d crem:%d)\n", |
||
373 | lev->cbsghd_dline[p].tv_sec*1000000+ |
||
374 | lev->cbsghd_dline[p].tv_nsec/1000, proc_table[p].avail_time, |
||
375 | lev->cremaining[p]); */ |
||
376 | |||
377 | |||
378 | if (proc_table[p].avail_time < 0) |
||
379 | lev->cremaining[p] += proc_table[p].avail_time; |
||
380 | |||
381 | if (lev->cremaining[p] <= 0) { |
||
382 | kern_printf("Task:%d WCET violation \n", p); |
||
383 | kern_raise(XWCET_VIOLATION, p); |
||
384 | ll_abort(666); |
||
385 | } |
||
386 | |||
387 | |||
388 | /* there is a while because if the wcet is << than the system tick |
||
389 | we need to postpone the deadline many times */ |
||
390 | while (proc_table[p].avail_time <= 0) { |
||
391 | /* it exploits available capacities from the capacity queue */ |
||
392 | while (proc_table[p].avail_time < lev->cremaining[p] |
||
393 | && lev->queue != NULL) { |
||
394 | struct timespec dead; |
||
395 | int cap, delta; |
||
396 | delta = lev->cremaining[p] - proc_table[p].avail_time; |
||
397 | c_readfirst(&dead, &cap, lev->queue); |
||
398 | if (!TIMESPEC_A_GT_B(&dead, &lev->cbsghd_dline[p])) { |
||
399 | if (cap > delta) { |
||
400 | proc_table[p].avail_time += delta; |
||
401 | c_writefirst(dead, cap - delta, lev->queue); |
||
402 | } |
||
403 | else { |
||
404 | proc_table[p].avail_time += cap; |
||
405 | c_extractfirst(&lev->queue); |
||
406 | } |
||
407 | } |
||
408 | else |
||
409 | break; |
||
410 | } |
||
411 | |||
412 | /* if (p==5 && proc_table[p].avail_time <= 0 && |
||
413 | lev->cremaining[p] > lev->cnormal[p]) |
||
414 | kern_printf("(inter dead:%d av_time:%d crem:%d)\n", |
||
415 | lev->cbsghd_dline[p].tv_sec*1000000+ |
||
416 | lev->cbsghd_dline[p].tv_nsec/1000, proc_table[p].avail_time, |
||
417 | lev->cremaining[p]); */ |
||
418 | |||
419 | |||
420 | /* The remaining computation time is modified according |
||
421 | to the new budget! */ |
||
422 | if (proc_table[p].avail_time > 0) |
||
423 | lev->cremaining[p] -= proc_table[p].avail_time; |
||
424 | else { |
||
425 | /* the CBSGHD rule for recharging the capacity: */ |
||
426 | if (lev->cremaining[p] > lev->cnormal[p]) { |
||
427 | ADDUSEC2TIMESPEC(lev->period[p], &lev->cbsghd_dline[p]); |
||
428 | lev->act_period[p] += lev->period[p]; |
||
429 | /* A spare capacity is inserted in the capacity queue!! */ |
||
430 | c_insert(lev->cbsghd_dline[p], lev->cnormal[p], &lev->queue, p); |
||
431 | } |
||
432 | else { |
||
433 | TIME t; |
||
434 | t = (lev->cremaining[p] * lev->period[p]) / lev->cnormal[p]; |
||
435 | ADDUSEC2TIMESPEC(t, &lev->cbsghd_dline[p]); |
||
436 | lev->act_period[p] += t; |
||
437 | /* A spare capacity is inserted in the capacity queue!! */ |
||
438 | c_insert(lev->cbsghd_dline[p], lev->cremaining[p], &lev->queue, p); |
||
439 | } |
||
440 | } |
||
441 | } |
||
442 | |||
443 | /* if (p==4) |
||
444 | kern_printf("n dead:%d av_time:%d crem:%d)\n", |
||
445 | lev->cbsghd_dline[p].tv_sec*1000000+ |
||
446 | lev->cbsghd_dline[p].tv_nsec/1000, proc_table[p].avail_time, |
||
447 | lev->cremaining[p]); */ |
||
448 | |||
449 | /* check the constraint on the maximum period permitted... */ |
||
450 | if (lev->act_period[p] > lev->maxperiod[p]) { |
||
451 | /*kern_printf("n dead:%d av_time:%d crem:%d)\n", |
||
452 | lev->cbsghd_dline[p].tv_sec*1000000+ |
||
453 | lev->cbsghd_dline[p].tv_nsec/1000, proc_table[p].avail_time, |
||
454 | lev->cremaining[p]); */ |
||
455 | kern_printf("Deadline miss(av.time_check! process:%d act_period:%lu maxperiod:%lu\n", |
||
456 | p, lev->act_period[p], lev->maxperiod[p]); |
||
457 | kern_raise(XDEADLINE_MISS,p); |
||
458 | } |
||
459 | |||
460 | |||
461 | |||
462 | if (TIMESPEC_A_LT_B(&lev->reactivation_time[p], &lev->cbsghd_dline[p])) { |
||
463 | /* we delete the reactivation timer */ |
||
464 | event_delete(lev->reactivation_timer[p]); |
||
465 | /* repost the event at the next instance deadline... */ |
||
466 | lev->reactivation_time[p] = lev->cbsghd_dline[p]; |
||
467 | lev->reactivation_timer[p] = kern_event_post(&lev->reactivation_time[p], |
||
468 | CBSGHD_timer_reactivate, |
||
469 | (void *)p); |
||
470 | } |
||
471 | |||
472 | #ifdef TESTG |
||
473 | if (starttime && p == 3) { |
||
474 | oldx = x; |
||
475 | x = ((lev->cbsghd_dline[p].tv_sec*1000000+ |
||
476 | lev->cbsghd_dline[p].tv_nsec/1000)/5000 - starttime) + 20; |
||
477 | // kern_printf("(e%d avail%d)",lev->cbsghd_dline[p].tv_sec*1000000+ |
||
478 | lev->cbsghd_dline[p].tv_nsec/1000,proc_table[p].avail_time); |
||
479 | if (oldx > x) sys_end(); |
||
480 | if (x<640) |
||
481 | grx_plot(x, 15, 2); |
||
482 | } |
||
483 | #endif |
||
484 | |||
485 | } |
||
486 | |||
487 | |||
488 | /*+ this function is called when a killed or ended task reach the |
||
489 | period end +*/ |
||
490 | static void CBSGHD_timer_zombie(void *par) |
||
491 | { |
||
492 | PID p = (PID) par; |
||
493 | CBSGHD_level_des *lev; |
||
494 | |||
495 | lev = (CBSGHD_level_des *)level_table[proc_table[p].task_level]; |
||
496 | |||
497 | /* we finally put the task in the FREE status */ |
||
498 | proc_table[p].status = FREE; |
||
1108 | pj | 499 | iq_insertfirst(p,&freedesc); |
1085 | pj | 500 | |
501 | /* and free the allocated bandwidth */ |
||
502 | lev->U -= (MAX_BANDWIDTH/lev->period[p]) * lev->cnormal[p]; |
||
503 | |||
504 | } |
||
505 | |||
506 | |||
507 | static int CBSGHD_level_accept_task_model(LEVEL l, TASK_MODEL *m) |
||
508 | { |
||
509 | |||
510 | |||
511 | if (m->pclass == ELASTIC_HARD_PCLASS || m->pclass == |
||
512 | (ELASTIC_HARD_PCLASS | l)) { |
||
513 | ELASTIC_HARD_TASK_MODEL *s = (ELASTIC_HARD_TASK_MODEL *)m; |
||
514 | bandwidth_t b1, b2; |
||
515 | /* kern_printf("accept :ELASTIC TASK found!!!!!!\n"); */ |
||
516 | b1 = (MAX_BANDWIDTH / s->period) * s->cnormal; |
||
517 | b2 = (MAX_BANDWIDTH / s->maxperiod) * s->wcet; |
||
518 | if (s->wcet && s->cnormal && s->period && s->maxperiod && |
||
519 | s->wcet >= s->cnormal && b1 >= b2) |
||
520 | return 0; |
||
521 | /* kern_printf("period: %d maxperiod: %d cnormal: %d wcet: %d, b1: %d b2: |
||
522 | %d\n", s->period, s->maxperiod, s->cnormal, s->wcet, b1, b2); */ |
||
523 | } |
||
524 | return -1; |
||
525 | } |
||
526 | |||
527 | static int CBSGHD_level_accept_guest_model(LEVEL l, TASK_MODEL *m) |
||
528 | { |
||
529 | return -1; |
||
530 | } |
||
531 | |||
532 | static char *onoff(int i) |
||
533 | { |
||
534 | if (i) |
||
535 | return "On "; |
||
536 | else |
||
537 | return "Off"; |
||
538 | } |
||
539 | |||
540 | static void CBSGHD_level_status(LEVEL l) |
||
541 | { |
||
542 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
543 | PID p; |
||
544 | |||
545 | kern_printf("On-line guarantee : %s\n", |
||
546 | onoff(lev->flags & CBSGHD_ENABLE_GUARANTEE)); |
||
547 | kern_printf("Used Bandwidth : %u/%u\n", |
||
548 | lev->U, MAX_BANDWIDTH); |
||
549 | |||
550 | for (p=0; p<MAX_PROC; p++) |
||
551 | if (proc_table[p].task_level == l && proc_table[p].status != FREE ) |
||
552 | kern_printf("Pid: %2d Name: %10s Period: %9ld Dline: %9ld.%6ld Stat: %s\n", |
||
553 | p, |
||
554 | proc_table[p].name, |
||
555 | lev->period[p], |
||
556 | lev->cbsghd_dline[p].tv_sec, |
||
557 | lev->cbsghd_dline[p].tv_nsec/1000, |
||
558 | CBSGHD_status_to_a(proc_table[p].status)); |
||
559 | } |
||
560 | |||
561 | static PID CBSGHD_level_scheduler(LEVEL l) |
||
562 | { |
||
563 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
564 | |||
565 | /* it stores the actual time and set the IDLE flag in order to handle |
||
566 | the capacity queue discharging!!! */ |
||
567 | lev->idle = 1; |
||
568 | ll_gettime(TIME_EXACT, &lev->start_idle); |
||
569 | |||
570 | |||
571 | /* the CBSGHD don't schedule anything... |
||
572 | it's an EDF level or similar that do it! */ |
||
573 | return NIL; |
||
574 | } |
||
575 | |||
576 | /* The on-line guarantee is enabled only if the appropriate flag is set... */ |
||
577 | static int CBSGHD_level_guarantee(LEVEL l, bandwidth_t *freebandwidth) |
||
578 | { |
||
579 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
580 | |||
581 | if (lev->flags & CBSGHD_FAILED_GUARANTEE) { |
||
582 | *freebandwidth = 0; |
||
583 | //kern_printf("guarantee :garanzia fallita!!!!!!\n"); |
||
584 | return 0; |
||
585 | } |
||
586 | else if (*freebandwidth >= lev->U) { |
||
587 | *freebandwidth -= lev->U; |
||
588 | return 1; |
||
589 | } |
||
590 | else { |
||
591 | //kern_printf("guarantee :garanzia fallita per mancanza di banda!!!!!!\n"); |
||
592 | //kern_printf("freeband: %d request band: %d", *freebandwidth, lev->U); |
||
593 | return 0; |
||
594 | } |
||
595 | } |
||
596 | |||
597 | static int CBSGHD_task_create(LEVEL l, PID p, TASK_MODEL *m) |
||
598 | { |
||
599 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
600 | |||
601 | /* if the CBSGHD_task_create is called, then the pclass must be a |
||
602 | valid pclass. */ |
||
603 | ELASTIC_HARD_TASK_MODEL *s = (ELASTIC_HARD_TASK_MODEL *)m; |
||
604 | |||
605 | /* Enable wcet check */ |
||
606 | proc_table[p].avail_time = 0; |
||
607 | proc_table[p].wcet = s->wcet; |
||
608 | proc_table[p].control |= CONTROL_CAP; |
||
609 | |||
610 | lev->period[p] = s->period; |
||
611 | lev->maxperiod[p] = s->maxperiod; |
||
612 | lev->cnormal[p] = s->cnormal; |
||
613 | NULL_TIMESPEC(&lev->cbsghd_dline[p]); |
||
614 | |||
615 | |||
616 | /* update the bandwidth... */ |
||
617 | if (lev->flags & CBSGHD_ENABLE_GUARANTEE) { |
||
618 | bandwidth_t b; |
||
619 | b = (MAX_BANDWIDTH / s->period) * s->cnormal; |
||
620 | |||
621 | /* really update lev->U, checking an overflow... */ |
||
622 | if (MAX_BANDWIDTH - lev->U > b) |
||
623 | lev->U += b; |
||
624 | else |
||
625 | /* The task can NOT be guaranteed (U>MAX_BANDWIDTH)... |
||
626 | (see EDF.c) */ |
||
627 | lev->flags |= CBSGHD_FAILED_GUARANTEE; |
||
628 | } |
||
629 | |||
630 | |||
631 | |||
632 | return 0; /* OK, also if the task cannot be guaranteed... */ |
||
633 | } |
||
634 | |||
635 | static void CBSGHD_task_detach(LEVEL l, PID p) |
||
636 | { |
||
637 | /* the CBSGHD level doesn't introduce any dinamic allocated new field. |
||
638 | we have only to reset the NO_GUARANTEE FIELD and decrement the allocated |
||
639 | bandwidth */ |
||
640 | |||
641 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
642 | |||
643 | if (lev->flags & CBSGHD_FAILED_GUARANTEE) |
||
644 | lev->flags &= ~CBSGHD_FAILED_GUARANTEE; |
||
645 | else |
||
646 | lev->U -= (MAX_BANDWIDTH / lev->period[p]) * lev->cnormal[p]; |
||
647 | |||
648 | |||
649 | } |
||
650 | |||
651 | static int CBSGHD_task_eligible(LEVEL l, PID p) |
||
652 | { |
||
653 | return 0; /* if the task p is chosen, it is always eligible */ |
||
654 | } |
||
655 | |||
656 | static void CBSGHD_task_dispatch(LEVEL l, PID p, int nostop) |
||
657 | { |
||
658 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
659 | level_table[ lev->scheduling_level ]-> |
||
660 | guest_dispatch(lev->scheduling_level,p,nostop); |
||
661 | |||
662 | } |
||
663 | |||
664 | static void CBSGHD_task_epilogue(LEVEL l, PID p) |
||
665 | { |
||
666 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
667 | JOB_TASK_MODEL job; |
||
668 | |||
669 | /* check if the budget is finished... */ |
||
670 | if ( proc_table[p].avail_time <= 0) { |
||
671 | /* we kill the current activation */ |
||
672 | level_table[ lev->scheduling_level ]-> |
||
673 | guest_end(lev->scheduling_level, p); |
||
674 | |||
675 | /* we modify the deadline */ |
||
676 | CBSGHD_avail_time_check(lev, p); |
||
677 | |||
678 | /* and, finally, we reinsert the task in the master level */ |
||
679 | job_task_default_model(job, lev->cbsghd_dline[p]); |
||
680 | job_task_def_yesexc(job); |
||
681 | level_table[ lev->scheduling_level ]-> |
||
682 | guest_create(lev->scheduling_level, p, (TASK_MODEL *)&job); |
||
683 | level_table[ lev->scheduling_level ]-> |
||
684 | guest_activate(lev->scheduling_level, p); |
||
685 | // kern_printf("epil : dl %d per %d p %d |\n", |
||
686 | // lev->cbsghd_dline[p].tv_nsec/1000,lev->period[p],p); |
||
687 | |||
688 | } |
||
689 | else |
||
690 | /* the task has been preempted. it returns into the ready queue by |
||
691 | calling the guest_epilogue... */ |
||
692 | level_table[ lev->scheduling_level ]-> |
||
693 | guest_epilogue(lev->scheduling_level,p); |
||
694 | } |
||
695 | |||
696 | static void CBSGHD_task_activate(LEVEL l, PID p) |
||
697 | { |
||
698 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
699 | |||
700 | ll_gettime(TIME_EXACT, &proc_table[p].request_time); |
||
701 | |||
702 | /* If idle=1, then we have to discharge the capacities stored in |
||
703 | the capacity queue up to the length of the idle interval */ |
||
704 | if (lev->idle == 1) { |
||
705 | TIME interval; |
||
706 | struct timespec delta; |
||
707 | lev->idle = 0; |
||
708 | SUBTIMESPEC(&proc_table[p].request_time, &lev->start_idle, &delta); |
||
709 | /* length of the idle interval expressed in usec! */ |
||
710 | interval = TIMESPEC2NANOSEC(&delta) / 1000; |
||
711 | |||
712 | /* it discharge the available capacities from the capacity queue */ |
||
713 | while (interval > 0 && lev->queue != NULL) { |
||
714 | struct timespec dead; |
||
715 | int cap; |
||
716 | c_readfirst(&dead, &cap, lev->queue); |
||
717 | if (cap > interval) { |
||
718 | c_writefirst(dead, cap - interval, lev->queue); |
||
719 | interval = 0; |
||
720 | } |
||
721 | else { |
||
722 | interval -= cap; |
||
723 | c_extractfirst(&lev->queue); |
||
724 | } |
||
725 | } |
||
726 | } |
||
727 | |||
728 | CBSGHD_activation(lev, p, &proc_table[p].request_time); |
||
729 | |||
730 | |||
731 | /* check the constraint on the maximum period permitted... */ |
||
732 | if (lev->act_period[p] > lev->maxperiod[p]) { |
||
733 | kern_printf("Deadline miss(task_activ.! process:%d act_period:%lu maxperiod:%lu\n", |
||
734 | p, lev->act_period[p], lev->maxperiod[p]); |
||
735 | kern_raise(XDEADLINE_MISS,p); |
||
736 | } |
||
737 | |||
738 | /* Set the reactivation timer */ |
||
739 | TIMESPEC_ASSIGN(&lev->reactivation_time[p], &lev->cbsghd_dline[p]); |
||
740 | lev->reactivation_timer[p] = kern_event_post(&lev->reactivation_time[p], |
||
741 | CBSGHD_timer_reactivate, |
||
742 | (void *)p); |
||
743 | |||
744 | // kern_printf("act : %d %d |",lev->cbsghd_dline[p].tv_nsec/1000,p); |
||
745 | } |
||
746 | |||
747 | static void CBSGHD_task_insert(LEVEL l, PID p) |
||
748 | { |
||
749 | printk("CBSGHD_task_insert\n"); |
||
1100 | pj | 750 | kern_raise(XINVALID_TASK,p); |
1085 | pj | 751 | } |
752 | |||
753 | static void CBSGHD_task_extract(LEVEL l, PID p) |
||
754 | { |
||
755 | printk("CBSGHD_task_extract\n"); |
||
1100 | pj | 756 | kern_raise(XINVALID_TASK,p); |
1085 | pj | 757 | } |
758 | |||
759 | static void CBSGHD_task_endcycle(LEVEL l, PID p) |
||
760 | { |
||
761 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
762 | struct timespec act_time, res; |
||
763 | |||
764 | /* It computes the response time of the current instance... */ |
||
765 | ll_gettime(TIME_EXACT, &act_time); |
||
766 | SUBTIMESPEC(&act_time, &proc_table[p].request_time, &res); |
||
767 | /* response time expressed in usec! */ |
||
768 | lev->last_response_time[p] = TIMESPEC2NANOSEC(&res) / 1000; |
||
769 | |||
770 | level_table[ lev->scheduling_level ]-> |
||
771 | guest_end(lev->scheduling_level,p); |
||
772 | |||
773 | |||
774 | /* A spare capacity is inserted in the capacity queue!! */ |
||
775 | if (proc_table[p].avail_time > 0) { |
||
776 | c_insert(lev->cbsghd_dline[p], proc_table[p].avail_time, &lev->queue, p); |
||
777 | proc_table[p].avail_time = 0; |
||
778 | } |
||
779 | |||
780 | |||
781 | proc_table[p].status = CBSGHD_IDLE; |
||
782 | } |
||
783 | |||
784 | static void CBSGHD_task_end(LEVEL l, PID p) |
||
785 | { |
||
786 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
787 | |||
788 | /* check if the capacity became negative... */ |
||
789 | /* there is a while because if the wcet is << than the system tick |
||
790 | we need to postpone the deadline many times */ |
||
791 | while (proc_table[p].avail_time < 0) { |
||
792 | /* the CBSGHD rule for recharging the capacity */ |
||
793 | proc_table[p].avail_time += lev->cnormal[p]; |
||
794 | ADDUSEC2TIMESPEC(lev->period[p], &lev->cbsghd_dline[p]); |
||
795 | } |
||
796 | |||
797 | level_table[ lev->scheduling_level ]-> |
||
798 | guest_end(lev->scheduling_level,p); |
||
799 | |||
800 | /* we delete the reactivation timer */ |
||
801 | event_delete(lev->reactivation_timer[p]); |
||
802 | lev->reactivation_timer[p] = -1; |
||
803 | |||
804 | |||
805 | /* Finally, we post the zombie event. when the end period is reached, |
||
806 | the task descriptor and banwidth are freed */ |
||
807 | proc_table[p].status = CBSGHD_ZOMBIE; |
||
808 | lev->reactivation_timer[p] = kern_event_post(&lev->cbsghd_dline[p], |
||
809 | CBSGHD_timer_zombie, |
||
810 | (void *)p); |
||
811 | } |
||
812 | |||
813 | static void CBSGHD_task_sleep(LEVEL l, PID p) |
||
814 | { |
||
815 | printk("CBSGHD_task_sleep\n"); |
||
1100 | pj | 816 | kern_raise(XINVALID_TASK,p); |
1085 | pj | 817 | } |
818 | |||
819 | static int CBSGHD_guest_create(LEVEL l, PID p, TASK_MODEL *m) |
||
1100 | pj | 820 | { kern_raise(XINVALID_GUEST,exec_shadow); return 0; } |
1085 | pj | 821 | |
822 | static void CBSGHD_guest_detach(LEVEL l, PID p) |
||
1100 | pj | 823 | { kern_raise(XINVALID_GUEST,exec_shadow); } |
1085 | pj | 824 | |
825 | static void CBSGHD_guest_dispatch(LEVEL l, PID p, int nostop) |
||
1100 | pj | 826 | { kern_raise(XINVALID_GUEST,exec_shadow); } |
1085 | pj | 827 | |
828 | static void CBSGHD_guest_epilogue(LEVEL l, PID p) |
||
1100 | pj | 829 | { kern_raise(XINVALID_GUEST,exec_shadow); } |
1085 | pj | 830 | |
831 | static void CBSGHD_guest_activate(LEVEL l, PID p) |
||
1100 | pj | 832 | { kern_raise(XINVALID_GUEST,exec_shadow); } |
1085 | pj | 833 | |
834 | static void CBSGHD_guest_insert(LEVEL l, PID p) |
||
1100 | pj | 835 | { kern_raise(XINVALID_GUEST,exec_shadow); } |
1085 | pj | 836 | |
837 | static void CBSGHD_guest_extract(LEVEL l, PID p) |
||
1100 | pj | 838 | { kern_raise(XINVALID_GUEST,exec_shadow); } |
1085 | pj | 839 | |
840 | static void CBSGHD_guest_endcycle(LEVEL l, PID p) |
||
1100 | pj | 841 | { kern_raise(XINVALID_GUEST,exec_shadow); } |
1085 | pj | 842 | |
843 | static void CBSGHD_guest_end(LEVEL l, PID p) |
||
1100 | pj | 844 | { kern_raise(XINVALID_GUEST,exec_shadow); } |
1085 | pj | 845 | |
846 | static void CBSGHD_guest_sleep(LEVEL l, PID p) |
||
1100 | pj | 847 | { kern_raise(XINVALID_GUEST,exec_shadow); } |
1085 | pj | 848 | |
849 | |||
850 | /* Registration functions */ |
||
851 | |||
852 | /*+ Registration function: |
||
853 | int flags the init flags ... see CBS.h +*/ |
||
854 | void CBSGHD_register_level(int flags, LEVEL master) |
||
855 | { |
||
856 | LEVEL l; /* the level that we register */ |
||
857 | CBSGHD_level_des *lev; /* for readableness only */ |
||
858 | PID i; /* a counter */ |
||
859 | |||
860 | printk("CBSGHD_register_level\n"); |
||
861 | |||
862 | /* request an entry in the level_table */ |
||
863 | l = level_alloc_descriptor(); |
||
864 | |||
865 | printk(" alloco descrittore %d %d\n",l,sizeof(CBSGHD_level_des)); |
||
866 | |||
867 | /* alloc the space needed for the CBSGHD_level_des */ |
||
868 | lev = (CBSGHD_level_des *)kern_alloc(sizeof(CBSGHD_level_des)); |
||
869 | |||
870 | printk(" lev=%d\n",(int)lev); |
||
871 | |||
872 | /* update the level_table with the new entry */ |
||
873 | level_table[l] = (level_des *)lev; |
||
874 | |||
875 | /* fill the standard descriptor */ |
||
876 | strncpy(lev->l.level_name, CBSGHD_LEVELNAME, MAX_LEVELNAME); |
||
877 | lev->l.level_code = CBSGHD_LEVEL_CODE; |
||
878 | lev->l.level_version = CBSGHD_LEVEL_VERSION; |
||
879 | |||
880 | lev->l.level_accept_task_model = CBSGHD_level_accept_task_model; |
||
881 | lev->l.level_accept_guest_model = CBSGHD_level_accept_guest_model; |
||
882 | lev->l.level_status = CBSGHD_level_status; |
||
883 | lev->l.level_scheduler = CBSGHD_level_scheduler; |
||
884 | |||
885 | if (flags & CBSGHD_ENABLE_GUARANTEE) |
||
886 | lev->l.level_guarantee = CBSGHD_level_guarantee; |
||
887 | else |
||
888 | lev->l.level_guarantee = NULL; |
||
889 | |||
890 | lev->l.task_create = CBSGHD_task_create; |
||
891 | lev->l.task_detach = CBSGHD_task_detach; |
||
892 | lev->l.task_eligible = CBSGHD_task_eligible; |
||
893 | lev->l.task_dispatch = CBSGHD_task_dispatch; |
||
894 | lev->l.task_epilogue = CBSGHD_task_epilogue; |
||
895 | lev->l.task_activate = CBSGHD_task_activate; |
||
896 | lev->l.task_insert = CBSGHD_task_insert; |
||
897 | lev->l.task_extract = CBSGHD_task_extract; |
||
898 | lev->l.task_endcycle = CBSGHD_task_endcycle; |
||
899 | lev->l.task_end = CBSGHD_task_end; |
||
900 | lev->l.task_sleep = CBSGHD_task_sleep; |
||
901 | |||
902 | lev->l.guest_create = CBSGHD_guest_create; |
||
903 | lev->l.guest_detach = CBSGHD_guest_detach; |
||
904 | lev->l.guest_dispatch = CBSGHD_guest_dispatch; |
||
905 | lev->l.guest_epilogue = CBSGHD_guest_epilogue; |
||
906 | lev->l.guest_activate = CBSGHD_guest_activate; |
||
907 | lev->l.guest_insert = CBSGHD_guest_insert; |
||
908 | lev->l.guest_extract = CBSGHD_guest_extract; |
||
909 | lev->l.guest_endcycle = CBSGHD_guest_endcycle; |
||
910 | lev->l.guest_end = CBSGHD_guest_end; |
||
911 | lev->l.guest_sleep = CBSGHD_guest_sleep; |
||
912 | |||
913 | /* fill the CBSGHD descriptor part */ |
||
914 | for (i=0; i<MAX_PROC; i++) { |
||
915 | NULL_TIMESPEC(&lev->cbsghd_dline[i]); |
||
916 | lev->period[i] = 0; |
||
917 | lev->last_response_time[i] = 0; |
||
918 | NULL_TIMESPEC(&lev->reactivation_time[i]); |
||
919 | lev->reactivation_timer[i] = -1; |
||
920 | } |
||
921 | |||
922 | |||
923 | lev->U = 0; |
||
924 | lev->idle = 0; |
||
925 | lev->queue = NULL; |
||
926 | |||
927 | lev->scheduling_level = master; |
||
928 | |||
929 | lev->flags = flags & 0x07; |
||
930 | } |
||
931 | |||
932 | |||
933 | int CBSGHD_get_response_time(LEVEL l, PID p) |
||
934 | { |
||
935 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
936 | return lev->last_response_time[p]; |
||
937 | } |
||
938 | |||
939 | |||
940 | bandwidth_t CBSGHD_usedbandwidth(LEVEL l) |
||
941 | { |
||
942 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
943 | if (lev->l.level_code == CBSGHD_LEVEL_CODE && |
||
944 | lev->l.level_version == CBSGHD_LEVEL_VERSION) |
||
945 | return lev->U; |
||
946 | else |
||
947 | return 0; |
||
948 | } |
||
949 |