Rev 1123 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1085 | pj | 1 | /* |
2 | * Project: S.Ha.R.K. |
||
3 | * |
||
4 | * Coordinators: |
||
5 | * Giorgio Buttazzo <giorgio@sssup.it> |
||
6 | * Paolo Gai <pj@gandalf.sssup.it> |
||
7 | * |
||
8 | * Authors : |
||
9 | * Paolo Gai <pj@gandalf.sssup.it> |
||
10 | * Massimiliano Giorgi <massy@gandalf.sssup.it> |
||
11 | * Luca Abeni <luca@gandalf.sssup.it> |
||
12 | * (see the web pages for full authors list) |
||
13 | * |
||
14 | * ReTiS Lab (Scuola Superiore S.Anna - Pisa - Italy) |
||
15 | * |
||
16 | * http://www.sssup.it |
||
17 | * http://retis.sssup.it |
||
18 | * http://shark.sssup.it |
||
19 | */ |
||
20 | |||
21 | /** |
||
22 | ------------ |
||
1287 | giacomo | 23 | CVS : $Id: cash.c,v 1.5 2003-12-17 13:52:45 giacomo Exp $ |
1085 | pj | 24 | |
25 | File: $File$ |
||
1287 | giacomo | 26 | Revision: $Revision: 1.5 $ |
27 | Last update: $Date: 2003-12-17 13:52:45 $ |
||
1085 | pj | 28 | ------------ |
29 | |||
30 | This file contains the aperiodic server CBS (Total Bandwidth Server) |
||
31 | |||
32 | Read CBS.h for further details. |
||
33 | |||
34 | **/ |
||
35 | |||
36 | /* |
||
37 | * Copyright (C) 2000 Paolo Gai |
||
38 | * |
||
39 | * This program is free software; you can redistribute it and/or modify |
||
40 | * it under the terms of the GNU General Public License as published by |
||
41 | * the Free Software Foundation; either version 2 of the License, or |
||
42 | * (at your option) any later version. |
||
43 | * |
||
44 | * This program is distributed in the hope that it will be useful, |
||
45 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
46 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
47 | * GNU General Public License for more details. |
||
48 | * |
||
49 | * You should have received a copy of the GNU General Public License |
||
50 | * along with this program; if not, write to the Free Software |
||
51 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
||
52 | * |
||
53 | */ |
||
54 | |||
55 | |||
56 | #include "cash.h" |
||
57 | #include <ll/stdio.h> |
||
58 | #include <ll/string.h> |
||
59 | #include <kernel/model.h> |
||
60 | #include <kernel/descr.h> |
||
61 | #include <kernel/var.h> |
||
62 | #include <kernel/func.h> |
||
63 | |||
64 | /*+ Status used in the level +*/ |
||
65 | #define CBSGHD_IDLE APER_STATUS_BASE /*+ waiting the activation +*/ |
||
66 | #define CBSGHD_ZOMBIE APER_STATUS_BASE+1 /*+ waiting the period end +*/ |
||
67 | |||
68 | /* structure of an element of the capacity queue */ |
||
69 | struct cap_queue { |
||
70 | int cap; |
||
71 | struct timespec dead; |
||
72 | struct cap_queue *next; |
||
73 | }; |
||
74 | |||
75 | /*+ the level redefinition for the CBS_HD level +*/ |
||
76 | typedef struct { |
||
77 | level_des l; /*+ the standard level descriptor +*/ |
||
78 | |||
79 | /* The wcet are stored in the task descriptor, but we need |
||
80 | an array for the deadlines. We can't use the timespec_priority |
||
81 | field because it is used by the master level!!!... |
||
82 | Notice that however the use of the timespec_priority field |
||
83 | does not cause any problem... */ |
||
84 | |||
85 | struct timespec cbsghd_dline[MAX_PROC]; /*+ CBSGHD deadlines +*/ |
||
86 | |||
87 | TIME period[MAX_PROC]; /*+ CBSGHD activation period +*/ |
||
88 | |||
89 | TIME maxperiod[MAX_PROC]; /*+ maximum period of each elastic task +*/ |
||
90 | |||
91 | int cremaining[MAX_PROC]; /*+ instance remaining computation time +*/ |
||
92 | |||
93 | TIME act_period[MAX_PROC]; /*+ actual period of each elastic task: it |
||
94 | must be less than maxperiod!!! +*/ |
||
95 | |||
1123 | pj | 96 | struct timespec request_time[MAX_PROC]; /* used for the response time */ |
1085 | pj | 97 | TIME last_response_time[MAX_PROC]; /* response time of the last instance */ |
98 | |||
99 | TIME cnormal[MAX_PROC]; /*+ CBSGHD normal computation time +*/ |
||
100 | |||
101 | struct timespec reactivation_time[MAX_PROC]; |
||
102 | /*+ the time at witch the reactivation timer is post +*/ |
||
103 | int reactivation_timer[MAX_PROC]; |
||
104 | /*+ the recativation timer +*/ |
||
105 | |||
106 | struct cap_queue *queue; /* pointer to the spare capacity queue */ |
||
107 | |||
108 | int flags; /*+ the init flags... +*/ |
||
109 | |||
110 | bandwidth_t U; /*+ the used bandwidth by the server +*/ |
||
111 | |||
112 | int idle; /* the idle flag... */ |
||
113 | |||
114 | struct timespec start_idle; /*gives the start time of the last idle period */ |
||
115 | |||
116 | LEVEL scheduling_level; |
||
117 | |||
118 | } CBSGHD_level_des; |
||
119 | |||
120 | |||
121 | /* insert a capacity in the queue capacity ordering by deadline */ |
||
122 | |||
123 | static int c_insert(struct timespec dead, int cap, struct cap_queue **que, |
||
124 | PID p) |
||
125 | { |
||
126 | struct cap_queue *prev, *n, *new; |
||
127 | |||
128 | prev = NULL; |
||
129 | n = *que; |
||
130 | |||
131 | while ((n != NULL) && |
||
132 | !TIMESPEC_A_LT_B(&dead, &n->dead)) { |
||
133 | prev = n; |
||
134 | n = n->next; |
||
135 | } |
||
136 | |||
137 | |||
138 | new = (struct cap_queue *)kern_alloc(sizeof(struct cap_queue)); |
||
139 | if (new == NULL) { |
||
140 | kern_printf("\nNew cash_queue element failed\n"); |
||
1100 | pj | 141 | kern_raise(XINVALID_TASK, p); |
1085 | pj | 142 | return -1; |
143 | } |
||
144 | new->next = NULL; |
||
145 | new->cap = cap; |
||
146 | new->dead = dead; |
||
147 | |||
148 | if (prev != NULL) |
||
149 | prev->next = new; |
||
150 | else |
||
151 | *que = new; |
||
152 | |||
153 | if (n != NULL) |
||
154 | new->next = n; |
||
155 | return 0; |
||
156 | } |
||
157 | |||
158 | /* extract the first element from the capacity queue */ |
||
159 | |||
160 | static int c_extractfirst(struct cap_queue **que) |
||
161 | { |
||
162 | struct cap_queue *p = *que; |
||
163 | |||
164 | |||
165 | if (*que == NULL) return(-1); |
||
166 | |||
167 | *que = (*que)->next; |
||
168 | |||
169 | kern_free(p, sizeof(struct cap_queue)); |
||
170 | return(1); |
||
171 | } |
||
172 | |||
173 | /* read data of the first element from the capacity queue */ |
||
174 | |||
175 | static void c_readfirst(struct timespec *d, int *c, struct cap_queue *que) |
||
176 | { |
||
177 | *d = que->dead; |
||
178 | *c = que->cap; |
||
179 | } |
||
180 | |||
181 | /* write data of the first element from the capacity queue */ |
||
182 | |||
183 | static void c_writefirst(struct timespec dead, int cap, struct cap_queue *que) |
||
184 | { |
||
185 | que->dead = dead; |
||
186 | que->cap = cap; |
||
187 | } |
||
188 | |||
189 | |||
190 | static void CBSGHD_activation(CBSGHD_level_des *lev, |
||
191 | PID p, |
||
192 | struct timespec *acttime) |
||
193 | { |
||
194 | JOB_TASK_MODEL job; |
||
195 | |||
196 | |||
197 | /* This rule is used when we recharge the budget at initial task activation |
||
198 | and each time a new task instance must be activated */ |
||
199 | |||
200 | if (TIMESPEC_A_GT_B(acttime, &lev->cbsghd_dline[p])) { |
||
201 | /* we modify the deadline ... */ |
||
202 | TIMESPEC_ASSIGN(&lev->cbsghd_dline[p], acttime); |
||
203 | } |
||
204 | |||
205 | lev->act_period[p] = 0; |
||
206 | |||
207 | if (proc_table[p].avail_time > 0) |
||
208 | proc_table[p].avail_time = 0; |
||
209 | |||
210 | |||
211 | |||
212 | |||
213 | /* there is a while because if the wcet is << than the system tick |
||
214 | we need to postpone the deadline many times */ |
||
215 | while (proc_table[p].avail_time <= 0) { |
||
216 | |||
217 | /* A spare capacity is inserted in the capacity queue!! */ |
||
218 | ADDUSEC2TIMESPEC(lev->period[p], &lev->cbsghd_dline[p]); |
||
219 | lev->act_period[p] += lev->period[p]; |
||
220 | c_insert(lev->cbsghd_dline[p], lev->cnormal[p], &lev->queue, p); |
||
221 | |||
222 | |||
223 | /* it exploits available capacities from the capacity queue */ |
||
224 | while (proc_table[p].avail_time < (int)lev->cnormal[p] && |
||
225 | lev->queue != NULL) { |
||
226 | struct timespec dead; |
||
227 | int cap, delta; |
||
228 | delta = lev->cnormal[p] - proc_table[p].avail_time; |
||
229 | c_readfirst(&dead, &cap, lev->queue); |
||
230 | if (!TIMESPEC_A_GT_B(&dead, &lev->cbsghd_dline[p])) { |
||
231 | if (cap > delta) { |
||
232 | proc_table[p].avail_time += delta; |
||
233 | c_writefirst(dead, cap - delta, lev->queue); |
||
234 | } |
||
235 | else { |
||
236 | proc_table[p].avail_time += cap; |
||
237 | c_extractfirst(&lev->queue); |
||
238 | } |
||
239 | } |
||
240 | else |
||
241 | break; |
||
242 | } |
||
243 | } |
||
244 | |||
245 | lev->cremaining[p] = proc_table[p].wcet - proc_table[p].avail_time; |
||
246 | |||
247 | |||
248 | #ifdef TESTG |
||
249 | if (starttime && p == 3) { |
||
250 | oldx = x; |
||
251 | x = ((lev->cbsghd_dline[p].tv_sec*1000000+lev->cbsghd_dline[p].tv_nsec/1000)/5000 - starttime) + 20; |
||
252 | // kern_printf("(a%d)",lev->cbsghd_dline[p].tv_sec*1000000+lev->cbsghd_dline[p].tv_nsec/1000); |
||
253 | if (oldx > x) sys_end(); |
||
254 | if (x<640) |
||
255 | grx_plot(x, 15, 8); |
||
256 | } |
||
257 | #endif |
||
258 | |||
259 | /* and, finally, we reinsert the task in the master level */ |
||
260 | job_task_default_model(job, lev->cbsghd_dline[p]); |
||
261 | job_task_def_yesexc(job); |
||
262 | level_table[ lev->scheduling_level ]-> |
||
1123 | pj | 263 | private_insert(lev->scheduling_level, p, (TASK_MODEL *)&job); |
1085 | pj | 264 | } |
265 | |||
266 | |||
267 | /* this is the periodic reactivation of the task... */ |
||
268 | static void CBSGHD_timer_reactivate(void *par) |
||
269 | { |
||
270 | PID p = (PID) par; |
||
271 | CBSGHD_level_des *lev; |
||
272 | |||
273 | lev = (CBSGHD_level_des *)level_table[proc_table[p].task_level]; |
||
274 | |||
275 | if (proc_table[p].status == CBSGHD_IDLE) { |
||
276 | /* the task has finished the current activation and must be |
||
277 | reactivated */ |
||
278 | |||
279 | /* request_time represents the time of the last instance release!! */ |
||
1123 | pj | 280 | TIMESPEC_ASSIGN(&lev->request_time[p], &lev->reactivation_time[p]); |
1085 | pj | 281 | |
282 | /* If idle=1, then we have to discharge the capacities stored in |
||
283 | the capacity queue up to the length of the idle interval */ |
||
284 | if (lev->idle == 1) { |
||
285 | TIME interval; |
||
286 | struct timespec delta; |
||
287 | lev->idle = 0; |
||
1123 | pj | 288 | SUBTIMESPEC(&lev->request_time[p], &lev->start_idle, &delta); |
1085 | pj | 289 | /* length of the idle interval expressed in usec! */ |
290 | interval = TIMESPEC2NANOSEC(&delta) / 1000; |
||
291 | |||
292 | /* it discharge the available capacities from the capacity queue */ |
||
293 | while (interval > 0 && lev->queue != NULL) { |
||
294 | struct timespec dead; |
||
295 | int cap; |
||
296 | c_readfirst(&dead, &cap, lev->queue); |
||
297 | if (cap > interval) { |
||
298 | c_writefirst(dead, cap - interval, lev->queue); |
||
299 | interval = 0; |
||
300 | } |
||
301 | else { |
||
302 | interval -= cap; |
||
303 | c_extractfirst(&lev->queue); |
||
304 | } |
||
305 | } |
||
306 | } |
||
307 | |||
308 | CBSGHD_activation(lev,p,&lev->reactivation_time[p]); |
||
309 | |||
310 | /* check the constraint on the maximum period permitted... */ |
||
311 | if (lev->act_period[p] > lev->maxperiod[p]) { |
||
312 | kern_printf("Deadline miss(timer_react.! process:%d act_period:%lu maxperiod:%lu\n", |
||
313 | p, lev->act_period[p], lev->maxperiod[p]); |
||
314 | kern_raise(XDEADLINE_MISS,p); |
||
315 | } |
||
316 | |||
317 | |||
318 | /* Set the reactivation timer */ |
||
319 | TIMESPEC_ASSIGN(&lev->reactivation_time[p], &lev->cbsghd_dline[p]); |
||
320 | lev->reactivation_timer[p] = kern_event_post(&lev->reactivation_time[p], |
||
321 | CBSGHD_timer_reactivate, |
||
322 | (void *)p); |
||
323 | event_need_reschedule(); |
||
324 | } |
||
325 | else { |
||
326 | /* this situation cannot occur */ |
||
327 | kern_printf("Trying to reactivate a task which is not IDLE!!!/n"); |
||
1100 | pj | 328 | kern_raise(XINVALID_TASK,p); |
1085 | pj | 329 | } |
330 | } |
||
331 | |||
332 | |||
333 | |||
334 | |||
335 | |||
336 | static void CBSGHD_avail_time_check(CBSGHD_level_des *lev, PID p) |
||
337 | { |
||
338 | |||
339 | /*+ if the capacity became negative the remaining computation time |
||
340 | is diminuished.... +*/ |
||
341 | /* if (p==4) |
||
342 | kern_printf("(old dead:%d av_time:%d crem:%d)\n", |
||
343 | lev->cbsghd_dline[p].tv_sec*1000000+ |
||
344 | lev->cbsghd_dline[p].tv_nsec/1000, proc_table[p].avail_time, |
||
345 | lev->cremaining[p]); */ |
||
346 | |||
347 | |||
348 | if (proc_table[p].avail_time < 0) |
||
349 | lev->cremaining[p] += proc_table[p].avail_time; |
||
350 | |||
351 | if (lev->cremaining[p] <= 0) { |
||
352 | kern_printf("Task:%d WCET violation \n", p); |
||
353 | kern_raise(XWCET_VIOLATION, p); |
||
354 | ll_abort(666); |
||
355 | } |
||
356 | |||
357 | |||
358 | /* there is a while because if the wcet is << than the system tick |
||
359 | we need to postpone the deadline many times */ |
||
360 | while (proc_table[p].avail_time <= 0) { |
||
361 | /* it exploits available capacities from the capacity queue */ |
||
362 | while (proc_table[p].avail_time < lev->cremaining[p] |
||
363 | && lev->queue != NULL) { |
||
364 | struct timespec dead; |
||
365 | int cap, delta; |
||
366 | delta = lev->cremaining[p] - proc_table[p].avail_time; |
||
367 | c_readfirst(&dead, &cap, lev->queue); |
||
368 | if (!TIMESPEC_A_GT_B(&dead, &lev->cbsghd_dline[p])) { |
||
369 | if (cap > delta) { |
||
370 | proc_table[p].avail_time += delta; |
||
371 | c_writefirst(dead, cap - delta, lev->queue); |
||
372 | } |
||
373 | else { |
||
374 | proc_table[p].avail_time += cap; |
||
375 | c_extractfirst(&lev->queue); |
||
376 | } |
||
377 | } |
||
378 | else |
||
379 | break; |
||
380 | } |
||
381 | |||
382 | /* if (p==5 && proc_table[p].avail_time <= 0 && |
||
383 | lev->cremaining[p] > lev->cnormal[p]) |
||
384 | kern_printf("(inter dead:%d av_time:%d crem:%d)\n", |
||
385 | lev->cbsghd_dline[p].tv_sec*1000000+ |
||
386 | lev->cbsghd_dline[p].tv_nsec/1000, proc_table[p].avail_time, |
||
387 | lev->cremaining[p]); */ |
||
388 | |||
389 | |||
390 | /* The remaining computation time is modified according |
||
391 | to the new budget! */ |
||
392 | if (proc_table[p].avail_time > 0) |
||
393 | lev->cremaining[p] -= proc_table[p].avail_time; |
||
394 | else { |
||
395 | /* the CBSGHD rule for recharging the capacity: */ |
||
396 | if (lev->cremaining[p] > lev->cnormal[p]) { |
||
397 | ADDUSEC2TIMESPEC(lev->period[p], &lev->cbsghd_dline[p]); |
||
398 | lev->act_period[p] += lev->period[p]; |
||
399 | /* A spare capacity is inserted in the capacity queue!! */ |
||
400 | c_insert(lev->cbsghd_dline[p], lev->cnormal[p], &lev->queue, p); |
||
401 | } |
||
402 | else { |
||
403 | TIME t; |
||
404 | t = (lev->cremaining[p] * lev->period[p]) / lev->cnormal[p]; |
||
405 | ADDUSEC2TIMESPEC(t, &lev->cbsghd_dline[p]); |
||
406 | lev->act_period[p] += t; |
||
407 | /* A spare capacity is inserted in the capacity queue!! */ |
||
408 | c_insert(lev->cbsghd_dline[p], lev->cremaining[p], &lev->queue, p); |
||
409 | } |
||
410 | } |
||
411 | } |
||
412 | |||
413 | /* if (p==4) |
||
414 | kern_printf("n dead:%d av_time:%d crem:%d)\n", |
||
415 | lev->cbsghd_dline[p].tv_sec*1000000+ |
||
416 | lev->cbsghd_dline[p].tv_nsec/1000, proc_table[p].avail_time, |
||
417 | lev->cremaining[p]); */ |
||
418 | |||
419 | /* check the constraint on the maximum period permitted... */ |
||
420 | if (lev->act_period[p] > lev->maxperiod[p]) { |
||
421 | /*kern_printf("n dead:%d av_time:%d crem:%d)\n", |
||
422 | lev->cbsghd_dline[p].tv_sec*1000000+ |
||
423 | lev->cbsghd_dline[p].tv_nsec/1000, proc_table[p].avail_time, |
||
424 | lev->cremaining[p]); */ |
||
425 | kern_printf("Deadline miss(av.time_check! process:%d act_period:%lu maxperiod:%lu\n", |
||
426 | p, lev->act_period[p], lev->maxperiod[p]); |
||
427 | kern_raise(XDEADLINE_MISS,p); |
||
428 | } |
||
429 | |||
430 | |||
431 | |||
432 | if (TIMESPEC_A_LT_B(&lev->reactivation_time[p], &lev->cbsghd_dline[p])) { |
||
433 | /* we delete the reactivation timer */ |
||
1123 | pj | 434 | kern_event_delete(lev->reactivation_timer[p]); |
1085 | pj | 435 | /* repost the event at the next instance deadline... */ |
436 | lev->reactivation_time[p] = lev->cbsghd_dline[p]; |
||
437 | lev->reactivation_timer[p] = kern_event_post(&lev->reactivation_time[p], |
||
438 | CBSGHD_timer_reactivate, |
||
439 | (void *)p); |
||
440 | } |
||
441 | |||
442 | #ifdef TESTG |
||
443 | if (starttime && p == 3) { |
||
444 | oldx = x; |
||
445 | x = ((lev->cbsghd_dline[p].tv_sec*1000000+ |
||
446 | lev->cbsghd_dline[p].tv_nsec/1000)/5000 - starttime) + 20; |
||
447 | // kern_printf("(e%d avail%d)",lev->cbsghd_dline[p].tv_sec*1000000+ |
||
448 | lev->cbsghd_dline[p].tv_nsec/1000,proc_table[p].avail_time); |
||
449 | if (oldx > x) sys_end(); |
||
450 | if (x<640) |
||
451 | grx_plot(x, 15, 2); |
||
452 | } |
||
453 | #endif |
||
454 | |||
455 | } |
||
456 | |||
457 | |||
458 | /*+ this function is called when a killed or ended task reach the |
||
459 | period end +*/ |
||
460 | static void CBSGHD_timer_zombie(void *par) |
||
461 | { |
||
462 | PID p = (PID) par; |
||
463 | CBSGHD_level_des *lev; |
||
464 | |||
465 | lev = (CBSGHD_level_des *)level_table[proc_table[p].task_level]; |
||
466 | |||
467 | /* we finally put the task in the FREE status */ |
||
468 | proc_table[p].status = FREE; |
||
1108 | pj | 469 | iq_insertfirst(p,&freedesc); |
1085 | pj | 470 | |
471 | /* and free the allocated bandwidth */ |
||
472 | lev->U -= (MAX_BANDWIDTH/lev->period[p]) * lev->cnormal[p]; |
||
473 | |||
474 | } |
||
475 | |||
1123 | pj | 476 | static PID CBSGHD_public_scheduler(LEVEL l) |
1085 | pj | 477 | { |
478 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
479 | |||
480 | /* it stores the actual time and set the IDLE flag in order to handle |
||
481 | the capacity queue discharging!!! */ |
||
482 | lev->idle = 1; |
||
1123 | pj | 483 | kern_gettime(&lev->start_idle); |
1085 | pj | 484 | |
485 | |||
486 | /* the CBSGHD don't schedule anything... |
||
487 | it's an EDF level or similar that do it! */ |
||
488 | return NIL; |
||
489 | } |
||
490 | |||
491 | /* The on-line guarantee is enabled only if the appropriate flag is set... */ |
||
1123 | pj | 492 | static int CBSGHD_public_guarantee(LEVEL l, bandwidth_t *freebandwidth) |
1085 | pj | 493 | { |
494 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
495 | |||
496 | if (lev->flags & CBSGHD_FAILED_GUARANTEE) { |
||
497 | *freebandwidth = 0; |
||
498 | //kern_printf("guarantee :garanzia fallita!!!!!!\n"); |
||
499 | return 0; |
||
500 | } |
||
501 | else if (*freebandwidth >= lev->U) { |
||
502 | *freebandwidth -= lev->U; |
||
503 | return 1; |
||
504 | } |
||
505 | else { |
||
506 | //kern_printf("guarantee :garanzia fallita per mancanza di banda!!!!!!\n"); |
||
507 | //kern_printf("freeband: %d request band: %d", *freebandwidth, lev->U); |
||
508 | return 0; |
||
509 | } |
||
510 | } |
||
511 | |||
1123 | pj | 512 | static int CBSGHD_public_create(LEVEL l, PID p, TASK_MODEL *m) |
1085 | pj | 513 | { |
514 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
1123 | pj | 515 | ELASTIC_HARD_TASK_MODEL *s; |
516 | bandwidth_t b1, b2; |
||
1085 | pj | 517 | |
1123 | pj | 518 | if (m->pclass != ELASTIC_HARD_PCLASS) return -1; |
519 | if (m->level != 0 && m->level != l) return -1; |
||
520 | s = (ELASTIC_HARD_TASK_MODEL *)m; |
||
1085 | pj | 521 | |
1123 | pj | 522 | /* kern_printf("accept :ELASTIC TASK found!!!!!!\n"); */ |
523 | b1 = (MAX_BANDWIDTH / s->period) * s->cnormal; |
||
524 | b2 = (MAX_BANDWIDTH / s->maxperiod) * s->wcet; |
||
525 | if (!(s->wcet && s->cnormal && s->period && s->maxperiod && |
||
526 | s->wcet >= s->cnormal && b1 >= b2) ) |
||
527 | return -1; |
||
528 | /* kern_printf("period: %d maxperiod: %d cnormal: %d wcet: %d, b1: %d b2: |
||
529 | %d\n", s->period, s->maxperiod, s->cnormal, s->wcet, b1, b2); */ |
||
530 | |||
531 | /* now we know that m is a valid model */ |
||
532 | |||
533 | |||
1085 | pj | 534 | /* Enable wcet check */ |
535 | proc_table[p].avail_time = 0; |
||
536 | proc_table[p].wcet = s->wcet; |
||
537 | proc_table[p].control |= CONTROL_CAP; |
||
538 | |||
539 | lev->period[p] = s->period; |
||
540 | lev->maxperiod[p] = s->maxperiod; |
||
541 | lev->cnormal[p] = s->cnormal; |
||
542 | NULL_TIMESPEC(&lev->cbsghd_dline[p]); |
||
1123 | pj | 543 | NULL_TIMESPEC(&lev->request_time[p]); |
1085 | pj | 544 | |
1123 | pj | 545 | |
1085 | pj | 546 | /* update the bandwidth... */ |
547 | if (lev->flags & CBSGHD_ENABLE_GUARANTEE) { |
||
548 | bandwidth_t b; |
||
549 | b = (MAX_BANDWIDTH / s->period) * s->cnormal; |
||
550 | |||
551 | /* really update lev->U, checking an overflow... */ |
||
552 | if (MAX_BANDWIDTH - lev->U > b) |
||
553 | lev->U += b; |
||
554 | else |
||
555 | /* The task can NOT be guaranteed (U>MAX_BANDWIDTH)... |
||
556 | (see EDF.c) */ |
||
557 | lev->flags |= CBSGHD_FAILED_GUARANTEE; |
||
558 | } |
||
559 | |||
560 | |||
561 | |||
562 | return 0; /* OK, also if the task cannot be guaranteed... */ |
||
563 | } |
||
564 | |||
1123 | pj | 565 | static void CBSGHD_public_detach(LEVEL l, PID p) |
1085 | pj | 566 | { |
567 | /* the CBSGHD level doesn't introduce any dinamic allocated new field. |
||
568 | we have only to reset the NO_GUARANTEE FIELD and decrement the allocated |
||
569 | bandwidth */ |
||
570 | |||
571 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
572 | |||
573 | if (lev->flags & CBSGHD_FAILED_GUARANTEE) |
||
574 | lev->flags &= ~CBSGHD_FAILED_GUARANTEE; |
||
575 | else |
||
576 | lev->U -= (MAX_BANDWIDTH / lev->period[p]) * lev->cnormal[p]; |
||
577 | |||
578 | |||
579 | } |
||
580 | |||
1123 | pj | 581 | static void CBSGHD_public_dispatch(LEVEL l, PID p, int nostop) |
1085 | pj | 582 | { |
583 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
584 | level_table[ lev->scheduling_level ]-> |
||
1123 | pj | 585 | private_dispatch(lev->scheduling_level,p,nostop); |
1085 | pj | 586 | |
587 | } |
||
588 | |||
1123 | pj | 589 | static void CBSGHD_public_epilogue(LEVEL l, PID p) |
1085 | pj | 590 | { |
591 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
592 | JOB_TASK_MODEL job; |
||
593 | |||
594 | /* check if the budget is finished... */ |
||
595 | if ( proc_table[p].avail_time <= 0) { |
||
596 | /* we kill the current activation */ |
||
597 | level_table[ lev->scheduling_level ]-> |
||
1123 | pj | 598 | private_extract(lev->scheduling_level, p); |
1085 | pj | 599 | |
600 | /* we modify the deadline */ |
||
601 | CBSGHD_avail_time_check(lev, p); |
||
602 | |||
603 | /* and, finally, we reinsert the task in the master level */ |
||
604 | job_task_default_model(job, lev->cbsghd_dline[p]); |
||
605 | job_task_def_yesexc(job); |
||
606 | level_table[ lev->scheduling_level ]-> |
||
1123 | pj | 607 | private_insert(lev->scheduling_level, p, (TASK_MODEL *)&job); |
1085 | pj | 608 | // kern_printf("epil : dl %d per %d p %d |\n", |
609 | // lev->cbsghd_dline[p].tv_nsec/1000,lev->period[p],p); |
||
610 | |||
611 | } |
||
612 | else |
||
613 | /* the task has been preempted. it returns into the ready queue by |
||
614 | calling the guest_epilogue... */ |
||
615 | level_table[ lev->scheduling_level ]-> |
||
1123 | pj | 616 | private_epilogue(lev->scheduling_level,p); |
1085 | pj | 617 | } |
618 | |||
1123 | pj | 619 | static void CBSGHD_public_activate(LEVEL l, PID p) |
1085 | pj | 620 | { |
621 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
622 | |||
1123 | pj | 623 | kern_gettime(&lev->request_time[p]); |
1085 | pj | 624 | |
625 | /* If idle=1, then we have to discharge the capacities stored in |
||
626 | the capacity queue up to the length of the idle interval */ |
||
627 | if (lev->idle == 1) { |
||
628 | TIME interval; |
||
629 | struct timespec delta; |
||
630 | lev->idle = 0; |
||
1123 | pj | 631 | SUBTIMESPEC(&lev->request_time[p], &lev->start_idle, &delta); |
1085 | pj | 632 | /* length of the idle interval expressed in usec! */ |
633 | interval = TIMESPEC2NANOSEC(&delta) / 1000; |
||
634 | |||
635 | /* it discharge the available capacities from the capacity queue */ |
||
636 | while (interval > 0 && lev->queue != NULL) { |
||
637 | struct timespec dead; |
||
638 | int cap; |
||
639 | c_readfirst(&dead, &cap, lev->queue); |
||
640 | if (cap > interval) { |
||
641 | c_writefirst(dead, cap - interval, lev->queue); |
||
642 | interval = 0; |
||
643 | } |
||
644 | else { |
||
645 | interval -= cap; |
||
646 | c_extractfirst(&lev->queue); |
||
647 | } |
||
648 | } |
||
649 | } |
||
650 | |||
1123 | pj | 651 | CBSGHD_activation(lev, p, &lev->request_time[p]); |
1085 | pj | 652 | |
653 | |||
654 | /* check the constraint on the maximum period permitted... */ |
||
655 | if (lev->act_period[p] > lev->maxperiod[p]) { |
||
656 | kern_printf("Deadline miss(task_activ.! process:%d act_period:%lu maxperiod:%lu\n", |
||
657 | p, lev->act_period[p], lev->maxperiod[p]); |
||
658 | kern_raise(XDEADLINE_MISS,p); |
||
659 | } |
||
660 | |||
661 | /* Set the reactivation timer */ |
||
662 | TIMESPEC_ASSIGN(&lev->reactivation_time[p], &lev->cbsghd_dline[p]); |
||
663 | lev->reactivation_timer[p] = kern_event_post(&lev->reactivation_time[p], |
||
664 | CBSGHD_timer_reactivate, |
||
665 | (void *)p); |
||
666 | |||
667 | // kern_printf("act : %d %d |",lev->cbsghd_dline[p].tv_nsec/1000,p); |
||
668 | } |
||
669 | |||
1123 | pj | 670 | static void CBSGHD_public_unblock(LEVEL l, PID p) |
1085 | pj | 671 | { |
672 | printk("CBSGHD_task_insert\n"); |
||
1100 | pj | 673 | kern_raise(XINVALID_TASK,p); |
1085 | pj | 674 | } |
675 | |||
1123 | pj | 676 | static void CBSGHD_public_block(LEVEL l, PID p) |
1085 | pj | 677 | { |
678 | printk("CBSGHD_task_extract\n"); |
||
1100 | pj | 679 | kern_raise(XINVALID_TASK,p); |
1085 | pj | 680 | } |
681 | |||
1123 | pj | 682 | static int CBSGHD_public_message(LEVEL l, PID p, void *m) |
1085 | pj | 683 | { |
684 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
685 | struct timespec act_time, res; |
||
686 | |||
687 | /* It computes the response time of the current instance... */ |
||
1123 | pj | 688 | kern_gettime(&act_time); |
689 | SUBTIMESPEC(&act_time, &lev->request_time[p], &res); |
||
1085 | pj | 690 | /* response time expressed in usec! */ |
691 | lev->last_response_time[p] = TIMESPEC2NANOSEC(&res) / 1000; |
||
692 | |||
693 | level_table[ lev->scheduling_level ]-> |
||
1123 | pj | 694 | private_extract(lev->scheduling_level,p); |
1085 | pj | 695 | |
696 | |||
697 | /* A spare capacity is inserted in the capacity queue!! */ |
||
698 | if (proc_table[p].avail_time > 0) { |
||
699 | c_insert(lev->cbsghd_dline[p], proc_table[p].avail_time, &lev->queue, p); |
||
700 | proc_table[p].avail_time = 0; |
||
701 | } |
||
702 | |||
703 | |||
704 | proc_table[p].status = CBSGHD_IDLE; |
||
1123 | pj | 705 | |
706 | jet_update_endcycle(); /* Update the Jet data... */ |
||
707 | |||
708 | return 0; |
||
1085 | pj | 709 | } |
710 | |||
1123 | pj | 711 | static void CBSGHD_public_end(LEVEL l, PID p) |
1085 | pj | 712 | { |
713 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
714 | |||
715 | /* check if the capacity became negative... */ |
||
716 | /* there is a while because if the wcet is << than the system tick |
||
717 | we need to postpone the deadline many times */ |
||
718 | while (proc_table[p].avail_time < 0) { |
||
719 | /* the CBSGHD rule for recharging the capacity */ |
||
720 | proc_table[p].avail_time += lev->cnormal[p]; |
||
721 | ADDUSEC2TIMESPEC(lev->period[p], &lev->cbsghd_dline[p]); |
||
722 | } |
||
723 | |||
724 | level_table[ lev->scheduling_level ]-> |
||
1123 | pj | 725 | private_extract(lev->scheduling_level,p); |
1085 | pj | 726 | |
727 | /* we delete the reactivation timer */ |
||
1123 | pj | 728 | kern_event_delete(lev->reactivation_timer[p]); |
1085 | pj | 729 | lev->reactivation_timer[p] = -1; |
730 | |||
731 | |||
732 | /* Finally, we post the zombie event. when the end period is reached, |
||
733 | the task descriptor and banwidth are freed */ |
||
734 | proc_table[p].status = CBSGHD_ZOMBIE; |
||
735 | lev->reactivation_timer[p] = kern_event_post(&lev->cbsghd_dline[p], |
||
736 | CBSGHD_timer_zombie, |
||
737 | (void *)p); |
||
738 | } |
||
739 | |||
740 | /* Registration functions */ |
||
741 | |||
742 | /*+ Registration function: |
||
743 | int flags the init flags ... see CBS.h +*/ |
||
1123 | pj | 744 | LEVEL CBSGHD_register_level(int flags, LEVEL master) |
1085 | pj | 745 | { |
746 | LEVEL l; /* the level that we register */ |
||
747 | CBSGHD_level_des *lev; /* for readableness only */ |
||
748 | PID i; /* a counter */ |
||
749 | |||
750 | printk("CBSGHD_register_level\n"); |
||
751 | |||
752 | /* request an entry in the level_table */ |
||
1123 | pj | 753 | l = level_alloc_descriptor(sizeof(CBSGHD_level_des)); |
1085 | pj | 754 | |
1123 | pj | 755 | lev = (CBSGHD_level_des *)level_table[l]; |
1085 | pj | 756 | |
757 | printk(" lev=%d\n",(int)lev); |
||
758 | |||
759 | /* fill the standard descriptor */ |
||
1123 | pj | 760 | lev->l.public_scheduler = CBSGHD_public_scheduler; |
1085 | pj | 761 | |
762 | if (flags & CBSGHD_ENABLE_GUARANTEE) |
||
1123 | pj | 763 | lev->l.public_guarantee = CBSGHD_public_guarantee; |
1085 | pj | 764 | else |
1123 | pj | 765 | lev->l.public_guarantee = NULL; |
1085 | pj | 766 | |
1123 | pj | 767 | lev->l.public_create = CBSGHD_public_create; |
768 | lev->l.public_detach = CBSGHD_public_detach; |
||
769 | lev->l.public_end = CBSGHD_public_end; |
||
770 | lev->l.public_dispatch = CBSGHD_public_dispatch; |
||
771 | lev->l.public_epilogue = CBSGHD_public_epilogue; |
||
772 | lev->l.public_activate = CBSGHD_public_activate; |
||
773 | lev->l.public_unblock = CBSGHD_public_unblock; |
||
774 | lev->l.public_block = CBSGHD_public_block; |
||
775 | lev->l.public_message = CBSGHD_public_message; |
||
1085 | pj | 776 | |
777 | /* fill the CBSGHD descriptor part */ |
||
778 | for (i=0; i<MAX_PROC; i++) { |
||
779 | NULL_TIMESPEC(&lev->cbsghd_dline[i]); |
||
780 | lev->period[i] = 0; |
||
1123 | pj | 781 | NULL_TIMESPEC(&lev->request_time[i]); |
1085 | pj | 782 | lev->last_response_time[i] = 0; |
783 | NULL_TIMESPEC(&lev->reactivation_time[i]); |
||
784 | lev->reactivation_timer[i] = -1; |
||
785 | } |
||
786 | |||
787 | |||
788 | lev->U = 0; |
||
789 | lev->idle = 0; |
||
790 | lev->queue = NULL; |
||
791 | |||
792 | lev->scheduling_level = master; |
||
793 | |||
794 | lev->flags = flags & 0x07; |
||
1123 | pj | 795 | |
796 | return l; |
||
1085 | pj | 797 | } |
798 | |||
799 | |||
800 | int CBSGHD_get_response_time(LEVEL l, PID p) |
||
801 | { |
||
802 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
1123 | pj | 803 | |
1085 | pj | 804 | return lev->last_response_time[p]; |
805 | } |
||
806 | |||
807 | |||
808 | bandwidth_t CBSGHD_usedbandwidth(LEVEL l) |
||
809 | { |
||
810 | CBSGHD_level_des *lev = (CBSGHD_level_des *)(level_table[l]); |
||
1123 | pj | 811 | |
812 | return lev->U; |
||
1085 | pj | 813 | } |
814 |