Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | pj | 1 | /* |
2 | * Project: S.Ha.R.K. |
||
3 | * |
||
4 | * Coordinators: |
||
5 | * Giorgio Buttazzo <giorgio@sssup.it> |
||
6 | * Paolo Gai <pj@gandalf.sssup.it> |
||
7 | * |
||
8 | * Authors : |
||
9 | * Paolo Gai <pj@gandalf.sssup.it> |
||
10 | * Massimiliano Giorgi <massy@gandalf.sssup.it> |
||
11 | * Luca Abeni <luca@gandalf.sssup.it> |
||
12 | * (see the web pages for full authors list) |
||
13 | * |
||
14 | * ReTiS Lab (Scuola Superiore S.Anna - Pisa - Italy) |
||
15 | * |
||
16 | * http://www.sssup.it |
||
17 | * http://retis.sssup.it |
||
18 | * http://shark.sssup.it |
||
19 | */ |
||
20 | |||
21 | /** |
||
22 | ------------ |
||
23 | CVS : $Id: rm.c,v 1.1.1.1 2002-03-29 14:12:52 pj Exp $ |
||
24 | |||
25 | File: $File$ |
||
26 | Revision: $Revision: 1.1.1.1 $ |
||
27 | Last update: $Date: 2002-03-29 14:12:52 $ |
||
28 | ------------ |
||
29 | |||
30 | This file contains the scheduling module RM (Rate Monotonic) |
||
31 | |||
32 | Read rm.h for further details. |
||
33 | |||
34 | This file is equal to EDF.c except for: |
||
35 | |||
36 | . EDF changed to RM :-) |
||
37 | . q_timespec_insert changed to q_insert |
||
38 | . proc_table[p].priority is also modified when we modify lev->period[p] |
||
39 | |||
40 | |||
41 | **/ |
||
42 | |||
43 | /* |
||
44 | * Copyright (C) 2000 Paolo Gai |
||
45 | * |
||
46 | * This program is free software; you can redistribute it and/or modify |
||
47 | * it under the terms of the GNU General Public License as published by |
||
48 | * the Free Software Foundation; either version 2 of the License, or |
||
49 | * (at your option) any later version. |
||
50 | * |
||
51 | * This program is distributed in the hope that it will be useful, |
||
52 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
53 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
54 | * GNU General Public License for more details. |
||
55 | * |
||
56 | * You should have received a copy of the GNU General Public License |
||
57 | * along with this program; if not, write to the Free Software |
||
58 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
||
59 | * |
||
60 | */ |
||
61 | |||
62 | |||
63 | #include <modules/rm.h> |
||
64 | #include <ll/stdio.h> |
||
65 | #include <ll/string.h> |
||
66 | #include <kernel/model.h> |
||
67 | #include <kernel/descr.h> |
||
68 | #include <kernel/var.h> |
||
69 | #include <kernel/func.h> |
||
70 | #include <kernel/trace.h> |
||
71 | |||
72 | /*+ Status used in the level +*/ |
||
73 | #define RM_READY MODULE_STATUS_BASE /*+ - Ready status +*/ |
||
74 | #define RM_DELAY MODULE_STATUS_BASE+1 /*+ - Delay status +*/ |
||
75 | #define RM_WCET_VIOLATED MODULE_STATUS_BASE+2 /*+ when wcet is finished +*/ |
||
76 | #define RM_WAIT MODULE_STATUS_BASE+3 /*+ to wait the deadline +*/ |
||
77 | #define RM_IDLE MODULE_STATUS_BASE+4 /*+ to wait the deadline +*/ |
||
78 | #define RM_ZOMBIE MODULE_STATUS_BASE+5 /*+ to wait the free time +*/ |
||
79 | |||
80 | /*+ flags +*/ |
||
81 | #define RM_FLAG_SPORADIC 1 |
||
82 | #define RM_FLAG_NORAISEEXC 2 |
||
83 | |||
84 | /*+ the level redefinition for the Rate Monotonic +*/ |
||
85 | typedef struct { |
||
86 | level_des l; /*+ the standard level descriptor +*/ |
||
87 | |||
88 | TIME period[MAX_PROC]; /*+ The task periods; the deadlines are |
||
89 | stored in the priority field +*/ |
||
90 | int deadline_timer[MAX_PROC]; |
||
91 | /*+ The task deadline timers +*/ |
||
92 | |||
93 | int flag[MAX_PROC]; |
||
94 | /*+ used to manage the JOB_TASK_MODEL and the |
||
95 | periodicity +*/ |
||
96 | |||
97 | QUEUE ready; /*+ the ready queue +*/ |
||
98 | |||
99 | int flags; /*+ the init flags... +*/ |
||
100 | |||
101 | bandwidth_t U; /*+ the used bandwidth +*/ |
||
102 | |||
103 | } RM_level_des; |
||
104 | |||
105 | |||
106 | static char *RM_status_to_a(WORD status) |
||
107 | { |
||
108 | if (status < MODULE_STATUS_BASE) |
||
109 | return status_to_a(status); |
||
110 | |||
111 | switch (status) { |
||
112 | case RM_READY : return "RM_Ready"; |
||
113 | case RM_DELAY : return "RM_Delay"; |
||
114 | case RM_WCET_VIOLATED: return "RM_Wcet_Violated"; |
||
115 | case RM_WAIT : return "RM_Sporadic_Wait"; |
||
116 | case RM_IDLE : return "RM_Idle"; |
||
117 | case RM_ZOMBIE : return "RM_Zombie"; |
||
118 | default : return "RM_Unknown"; |
||
119 | } |
||
120 | } |
||
121 | |||
122 | static void RM_timer_deadline(void *par) |
||
123 | { |
||
124 | PID p = (PID) par; |
||
125 | RM_level_des *lev; |
||
126 | |||
127 | |||
128 | lev = (RM_level_des *)level_table[proc_table[p].task_level]; |
||
129 | |||
130 | switch (proc_table[p].status) { |
||
131 | case RM_ZOMBIE: |
||
132 | /* we finally put the task in the ready queue */ |
||
133 | proc_table[p].status = FREE; |
||
134 | q_insertfirst(p,&freedesc); |
||
135 | /* and free the allocated bandwidth */ |
||
136 | lev->U -= (MAX_BANDWIDTH/lev->period[p]) * proc_table[p].wcet; |
||
137 | break; |
||
138 | |||
139 | case RM_IDLE: |
||
140 | /* tracer stuff */ |
||
141 | trc_logevent(TRC_INTACTIVATION,&p); |
||
142 | /* similar to RM_task_activate */ |
||
143 | TIMESPEC_ASSIGN(&proc_table[p].request_time, |
||
144 | &proc_table[p].timespec_priority); |
||
145 | ADDUSEC2TIMESPEC(lev->period[p], &proc_table[p].timespec_priority); |
||
146 | proc_table[p].status = RM_READY; |
||
147 | q_insert(p,&lev->ready); |
||
148 | lev->deadline_timer[p] = kern_event_post(&proc_table[p].timespec_priority, |
||
149 | RM_timer_deadline, |
||
150 | (void *)p); |
||
151 | //printk("(d%d idle priority set to %d)",p,proc_table[p].priority ); |
||
152 | event_need_reschedule(); |
||
153 | printk("el%d|",p); |
||
154 | break; |
||
155 | |||
156 | case RM_WAIT: |
||
157 | /* Without this, the task cannot be reactivated!!! */ |
||
158 | proc_table[p].status = SLEEP; |
||
159 | break; |
||
160 | |||
161 | default: |
||
162 | /* else, a deadline miss occurred!!! */ |
||
163 | kern_printf("timer_deadline:AAARRRGGGHHH!!!"); |
||
164 | kern_raise(XDEADLINE_MISS,p); |
||
165 | } |
||
166 | } |
||
167 | |||
168 | static void RM_timer_guest_deadline(void *par) |
||
169 | { |
||
170 | PID p = (PID) par; |
||
171 | |||
172 | kern_printf("AAARRRGGGHHH!!!"); |
||
173 | kern_raise(XDEADLINE_MISS,p); |
||
174 | } |
||
175 | |||
176 | /*+ this function is called when a task finish his delay +*/ |
||
177 | static void RM_timer_delay(void *par) |
||
178 | { |
||
179 | PID p = (PID) par; |
||
180 | RM_level_des *lev; |
||
181 | |||
182 | lev = (RM_level_des *)level_table[proc_table[p].task_level]; |
||
183 | |||
184 | proc_table[p].status = RM_READY; |
||
185 | q_insert(p,&lev->ready); |
||
186 | |||
187 | proc_table[p].delay_timer = NIL; /* Paranoia */ |
||
188 | |||
189 | event_need_reschedule(); |
||
190 | } |
||
191 | |||
192 | |||
193 | static int RM_level_accept_task_model(LEVEL l, TASK_MODEL *m) |
||
194 | { |
||
195 | if (m->pclass == HARD_PCLASS || m->pclass == (HARD_PCLASS | l)) { |
||
196 | HARD_TASK_MODEL *h = (HARD_TASK_MODEL *)m; |
||
197 | |||
198 | if (h->wcet && h->mit) |
||
199 | return 0; |
||
200 | } |
||
201 | |||
202 | return -1; |
||
203 | } |
||
204 | |||
205 | static int RM_level_accept_guest_model(LEVEL l, TASK_MODEL *m) |
||
206 | { |
||
207 | if (m->pclass == JOB_PCLASS || m->pclass == (JOB_PCLASS | l)) |
||
208 | return 0; |
||
209 | else |
||
210 | return -1; |
||
211 | } |
||
212 | |||
213 | |||
214 | static char *onoff(int i) |
||
215 | { |
||
216 | if (i) |
||
217 | return "On "; |
||
218 | else |
||
219 | return "Off"; |
||
220 | } |
||
221 | |||
222 | static void RM_level_status(LEVEL l) |
||
223 | { |
||
224 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
225 | PID p = lev->ready; |
||
226 | |||
227 | kern_printf("Wcet Check : %s\n", |
||
228 | onoff(lev->flags & RM_ENABLE_WCET_CHECK)); |
||
229 | kern_printf("On-line guarantee : %s\n", |
||
230 | onoff(lev->flags & RM_ENABLE_GUARANTEE)); |
||
231 | kern_printf("Used Bandwidth : %u/%u\n", |
||
232 | lev->U, MAX_BANDWIDTH); |
||
233 | |||
234 | while (p != NIL) { |
||
235 | if ((proc_table[p].pclass) == JOB_PCLASS) |
||
236 | kern_printf("Pid: %2d (GUEST)\n", p); |
||
237 | else |
||
238 | kern_printf("Pid: %2d Name: %10s %s: %9ld Dline: %9ld.%6ld Stat: %s\n", |
||
239 | p, |
||
240 | proc_table[p].name, |
||
241 | lev->flag[p] & RM_FLAG_SPORADIC ? "MinITime" : "Period ", |
||
242 | lev->period[p], |
||
243 | proc_table[p].timespec_priority.tv_sec, |
||
244 | proc_table[p].timespec_priority.tv_nsec/1000, |
||
245 | RM_status_to_a(proc_table[p].status)); |
||
246 | p = proc_table[p].next; |
||
247 | } |
||
248 | |||
249 | for (p=0; p<MAX_PROC; p++) |
||
250 | if (proc_table[p].task_level == l && proc_table[p].status != RM_READY |
||
251 | && proc_table[p].status != FREE ) |
||
252 | kern_printf("Pid: %2d Name: %10s %s: %9ld Dline: %9ld.%6ld Stat: %s\n", |
||
253 | p, |
||
254 | proc_table[p].name, |
||
255 | lev->flag[p] & RM_FLAG_SPORADIC ? "MinITime" : "Period ", |
||
256 | lev->period[p], |
||
257 | proc_table[p].timespec_priority.tv_sec, |
||
258 | proc_table[p].timespec_priority.tv_nsec/1000, |
||
259 | RM_status_to_a(proc_table[p].status)); |
||
260 | } |
||
261 | |||
262 | /* The scheduler only gets the first task in the queue */ |
||
263 | static PID RM_level_scheduler(LEVEL l) |
||
264 | { |
||
265 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
266 | |||
267 | /* { // print 4 dbg the ready queue |
||
268 | PID p= lev->ready; |
||
269 | kern_printf("(s"); |
||
270 | while (p != NIL) { |
||
271 | kern_printf("%d ",p); |
||
272 | p = proc_table[p].next; |
||
273 | } |
||
274 | kern_printf(") "); |
||
275 | } |
||
276 | */ |
||
277 | return (PID)lev->ready; |
||
278 | } |
||
279 | |||
280 | /* The on-line guarantee is enabled only if the appropriate flag is set... */ |
||
281 | static int RM_level_guarantee(LEVEL l, bandwidth_t *freebandwidth) |
||
282 | { |
||
283 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
284 | |||
285 | if (lev->flags & RM_FAILED_GUARANTEE) { |
||
286 | *freebandwidth = 0; |
||
287 | return 0; |
||
288 | } |
||
289 | else |
||
290 | if (*freebandwidth >= lev->U) { |
||
291 | *freebandwidth -= lev->U; |
||
292 | return 1; |
||
293 | } |
||
294 | else |
||
295 | return 0; |
||
296 | |||
297 | } |
||
298 | |||
299 | static int RM_task_create(LEVEL l, PID p, TASK_MODEL *m) |
||
300 | { |
||
301 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
302 | |||
303 | /* if the RM_task_create is called, then the pclass must be a |
||
304 | valid pclass. */ |
||
305 | |||
306 | HARD_TASK_MODEL *h = (HARD_TASK_MODEL *)m; |
||
307 | |||
308 | proc_table[p].priority = lev->period[p] = h->mit; |
||
309 | |||
310 | if (h->periodicity == APERIODIC) |
||
311 | lev->flag[p] = RM_FLAG_SPORADIC; |
||
312 | else |
||
313 | lev->flag[p] = 0; |
||
314 | lev->deadline_timer[p] = -1; |
||
315 | |||
316 | /* Enable wcet check */ |
||
317 | if (lev->flags & RM_ENABLE_WCET_CHECK) { |
||
318 | proc_table[p].avail_time = h->wcet; |
||
319 | proc_table[p].wcet = h->wcet; |
||
320 | proc_table[p].control |= CONTROL_CAP; |
||
321 | } |
||
322 | |||
323 | /* update the bandwidth... */ |
||
324 | if (lev->flags & RM_ENABLE_GUARANTEE) { |
||
325 | bandwidth_t b; |
||
326 | b = (MAX_BANDWIDTH / h->mit) * h->wcet; |
||
327 | |||
328 | /* really update lev->U, checking an overflow... */ |
||
329 | if (MAX_BANDWIDTH - lev->U > b) |
||
330 | lev->U += b; |
||
331 | else |
||
332 | /* The task can NOT be guaranteed (U>MAX_BANDWIDTH)... |
||
333 | in this case, we don't raise an exception... in fact, after the |
||
334 | RM_task_create the task_create will call level_guarantee that return |
||
335 | -1... return -1 in RM_task_create isn't correct, because: |
||
336 | . generally, the guarantee must be done when also the resources |
||
337 | are registered |
||
338 | . returning -1 will cause the task_create to return with an errno |
||
339 | ETASK_CREATE instead of ENO_GUARANTEE!!! |
||
340 | |||
341 | Why I use the flag??? because if the lev->U overflows, if i.e. I set |
||
342 | it to MAX_BANDWIDTH, I lose the correct allocated bandwidth... |
||
343 | */ |
||
344 | lev->flags |= RM_FAILED_GUARANTEE; |
||
345 | } |
||
346 | |||
347 | return 0; /* OK, also if the task cannot be guaranteed... */ |
||
348 | } |
||
349 | |||
350 | static void RM_task_detach(LEVEL l, PID p) |
||
351 | { |
||
352 | /* the RM level doesn't introduce any dinamic allocated new field. |
||
353 | we have only to reset the NO_GUARANTEE FIELD and decrement the allocated |
||
354 | bandwidth */ |
||
355 | |||
356 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
357 | |||
358 | if (lev->flags & RM_FAILED_GUARANTEE) |
||
359 | lev->flags &= ~RM_FAILED_GUARANTEE; |
||
360 | else |
||
361 | lev->U -= (MAX_BANDWIDTH / lev->period[p]) * proc_table[p].wcet; |
||
362 | } |
||
363 | |||
364 | static int RM_task_eligible(LEVEL l, PID p) |
||
365 | { |
||
366 | return 0; /* if the task p is chosen, it is always eligible */ |
||
367 | } |
||
368 | |||
369 | #ifdef __TEST1__ |
||
370 | extern int testactive; |
||
371 | extern struct timespec s_stime[]; |
||
372 | extern TIME s_curr[]; |
||
373 | extern TIME s_PID[]; |
||
374 | extern int useds; |
||
375 | #endif |
||
376 | |||
377 | static void RM_task_dispatch(LEVEL l, PID p, int nostop) |
||
378 | { |
||
379 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
380 | |||
381 | // kern_printf("(disp %d)",p); |
||
382 | |||
383 | /* the task state is set EXE by the scheduler() |
||
384 | we extract the task from the ready queue |
||
385 | NB: we can't assume that p is the first task in the queue!!! */ |
||
386 | q_extract(p, &lev->ready); |
||
387 | |||
388 | #ifdef __TEST1__ |
||
389 | if (testactive) |
||
390 | { |
||
391 | TIMESPEC_ASSIGN(&s_stime[useds], &schedule_time); |
||
392 | s_curr[useds] = proc_table[p].avail_time; |
||
393 | s_PID[useds] = p; |
||
394 | useds++; |
||
395 | } |
||
396 | #endif |
||
397 | } |
||
398 | |||
399 | static void RM_task_epilogue(LEVEL l, PID p) |
||
400 | { |
||
401 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
402 | |||
403 | // kern_printf("(epil %d)",p); |
||
404 | |||
405 | /* check if the wcet is finished... */ |
||
406 | if ((lev->flags & RM_ENABLE_WCET_CHECK) && proc_table[p].avail_time <= 0) { |
||
407 | /* if it is, raise a XWCET_VIOLATION exception */ |
||
408 | kern_raise(XWCET_VIOLATION,p); |
||
409 | proc_table[p].status = RM_WCET_VIOLATED; |
||
410 | } |
||
411 | else { |
||
412 | /* the task has been preempted. it returns into the ready queue... */ |
||
413 | q_insert(p,&lev->ready); |
||
414 | proc_table[p].status = RM_READY; |
||
415 | } |
||
416 | } |
||
417 | |||
418 | static void RM_task_activate(LEVEL l, PID p) |
||
419 | { |
||
420 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
421 | |||
422 | if (proc_table[p].status == RM_WAIT) { |
||
423 | kern_raise(XACTIVATION,p); |
||
424 | return; |
||
425 | } |
||
426 | |||
427 | /* Test if we are trying to activate a non sleeping task */ |
||
428 | /* Ignore this; the task is already active */ |
||
429 | if (proc_table[p].status != SLEEP && |
||
430 | proc_table[p].status != RM_WCET_VIOLATED) |
||
431 | return; |
||
432 | |||
433 | |||
434 | /* see also RM_timer_deadline */ |
||
435 | ll_gettime(TIME_EXACT, &proc_table[p].request_time); |
||
436 | |||
437 | TIMESPEC_ASSIGN(&proc_table[p].timespec_priority, |
||
438 | &proc_table[p].request_time); |
||
439 | ADDUSEC2TIMESPEC(lev->period[p], &proc_table[p].timespec_priority); |
||
440 | |||
441 | /* Insert task in the correct position */ |
||
442 | proc_table[p].status = RM_READY; |
||
443 | q_insert(p,&lev->ready); |
||
444 | |||
445 | /* Set the deadline timer */ |
||
446 | lev->deadline_timer[p] = kern_event_post(&proc_table[p].timespec_priority, |
||
447 | RM_timer_deadline, |
||
448 | (void *)p); |
||
449 | } |
||
450 | |||
451 | static void RM_task_insert(LEVEL l, PID p) |
||
452 | { |
||
453 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
454 | |||
455 | /* Similar to RM_task_activate, but we don't check in what state |
||
456 | the task is and we don't set the request_time*/ |
||
457 | |||
458 | /* Insert task in the correct position */ |
||
459 | proc_table[p].status = RM_READY; |
||
460 | q_insert(p,&lev->ready); |
||
461 | } |
||
462 | |||
463 | static void RM_task_extract(LEVEL l, PID p) |
||
464 | { |
||
465 | /* Extract the running task from the level |
||
466 | . we have already extract it from the ready queue at the dispatch time. |
||
467 | . the capacity event have to be removed by the generic kernel |
||
468 | . the wcet don't need modification... |
||
469 | . the state of the task is set by the calling function |
||
470 | . the deadline must remain... |
||
471 | |||
472 | So, we do nothing!!! |
||
473 | */ |
||
474 | } |
||
475 | |||
476 | static void RM_task_endcycle(LEVEL l, PID p) |
||
477 | { |
||
478 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
479 | |||
480 | /* the task has terminated his job before it consume the wcet. All OK! */ |
||
481 | if (lev->flag[p] & RM_FLAG_SPORADIC) |
||
482 | proc_table[p].status = RM_WAIT; |
||
483 | else /* pclass = sporadic_pclass */ |
||
484 | proc_table[p].status = RM_IDLE; |
||
485 | |||
486 | /* we reset the capacity counters... */ |
||
487 | if (lev->flags & RM_ENABLE_WCET_CHECK) |
||
488 | proc_table[p].avail_time = proc_table[p].wcet; |
||
489 | |||
490 | /* when the deadline timer fire, it recognize the situation and set |
||
491 | correctly all the stuffs (like reactivation, request_time, etc... ) */ |
||
492 | } |
||
493 | |||
494 | static void RM_task_end(LEVEL l, PID p) |
||
495 | { |
||
496 | // RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
497 | |||
498 | proc_table[p].status = RM_ZOMBIE; |
||
499 | |||
500 | /* When the deadline timer fire, it put the task descriptor in |
||
501 | the free queue, and free the allocated bandwidth... */ |
||
502 | } |
||
503 | |||
504 | static void RM_task_sleep(LEVEL l, PID p) |
||
505 | { |
||
506 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
507 | |||
508 | /* the task has terminated his job before it consume the wcet. All OK! */ |
||
509 | proc_table[p].status = RM_WAIT; |
||
510 | |||
511 | /* we reset the capacity counters... */ |
||
512 | if (lev->flags & RM_ENABLE_WCET_CHECK) |
||
513 | proc_table[p].avail_time = proc_table[p].wcet; |
||
514 | |||
515 | /* when the deadline timer fire, it recognize the situation and set |
||
516 | correctly the task state to sleep... */ |
||
517 | } |
||
518 | |||
519 | static void RM_task_delay(LEVEL l, PID p, TIME usdelay) |
||
520 | { |
||
521 | struct timespec wakeuptime; |
||
522 | // RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
523 | |||
524 | /* equal to RM_task_endcycle */ |
||
525 | proc_table[p].status = RM_DELAY; |
||
526 | |||
527 | /* we need to delete this event if we kill the task while it is sleeping */ |
||
528 | ll_gettime(TIME_EXACT, &wakeuptime); |
||
529 | ADDUSEC2TIMESPEC(usdelay, &wakeuptime); |
||
530 | proc_table[p].delay_timer = kern_event_post(&wakeuptime, |
||
531 | RM_timer_delay, |
||
532 | (void *)p); |
||
533 | } |
||
534 | |||
535 | /* Guest Functions |
||
536 | These functions manages a JOB_TASK_MODEL, that is used to put |
||
537 | a guest task in the RM ready queue. */ |
||
538 | |||
539 | static int RM_guest_create(LEVEL l, PID p, TASK_MODEL *m) |
||
540 | { |
||
541 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
542 | JOB_TASK_MODEL *job = (JOB_TASK_MODEL *)m; |
||
543 | |||
544 | /* if the RM_guest_create is called, then the pclass must be a |
||
545 | valid pclass. */ |
||
546 | |||
547 | |||
548 | TIMESPEC_ASSIGN(&proc_table[p].timespec_priority, &job->deadline); |
||
549 | |||
550 | lev->deadline_timer[p] = -1; |
||
551 | |||
552 | if (job->noraiseexc) |
||
553 | lev->flag[p] = RM_FLAG_NORAISEEXC; |
||
554 | else |
||
555 | lev->flag[p] = 0; |
||
556 | |||
557 | proc_table[p].priority = lev->period[p] = job->period; |
||
558 | |||
559 | /* there is no bandwidth guarantee at this level, it is performed |
||
560 | by the level that inserts guest tasks... */ |
||
561 | |||
562 | return 0; /* OK, also if the task cannot be guaranteed... */ |
||
563 | } |
||
564 | |||
565 | static void RM_guest_detach(LEVEL l, PID p) |
||
566 | { |
||
567 | /* the RM level doesn't introduce any dinamic allocated new field. |
||
568 | No guarantee is performed on guest tasks... so we don't have to reset |
||
569 | the NO_GUARANTEE FIELD */ |
||
570 | } |
||
571 | |||
572 | static void RM_guest_dispatch(LEVEL l, PID p, int nostop) |
||
573 | { |
||
574 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
575 | |||
576 | /* the task state is set to EXE by the scheduler() |
||
577 | we extract the task from the ready queue |
||
578 | NB: we can't assume that p is the first task in the queue!!! */ |
||
579 | q_extract(p, &lev->ready); |
||
580 | } |
||
581 | |||
582 | static void RM_guest_epilogue(LEVEL l, PID p) |
||
583 | { |
||
584 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
585 | |||
586 | /* the task has been preempted. it returns into the ready queue... */ |
||
587 | q_insert(p,&lev->ready); |
||
588 | proc_table[p].status = RM_READY; |
||
589 | } |
||
590 | |||
591 | static void RM_guest_activate(LEVEL l, PID p) |
||
592 | { |
||
593 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
594 | |||
595 | /* Insert task in the correct position */ |
||
596 | q_insert(p,&lev->ready); |
||
597 | proc_table[p].status = RM_READY; |
||
598 | |||
599 | /* Set the deadline timer */ |
||
600 | if (!(lev->flag[p] & RM_FLAG_NORAISEEXC)) |
||
601 | lev->deadline_timer[p] = kern_event_post(&proc_table[p].timespec_priority, |
||
602 | RM_timer_guest_deadline, |
||
603 | (void *)p); |
||
604 | |||
605 | } |
||
606 | |||
607 | static void RM_guest_insert(LEVEL l, PID p) |
||
608 | { |
||
609 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
610 | |||
611 | /* Insert task in the correct position */ |
||
612 | q_insert(p,&lev->ready); |
||
613 | proc_table[p].status = RM_READY; |
||
614 | } |
||
615 | |||
616 | static void RM_guest_extract(LEVEL l, PID p) |
||
617 | { |
||
618 | /* Extract the running task from the level |
||
619 | . we have already extract it from the ready queue at the dispatch time. |
||
620 | . the state of the task is set by the calling function |
||
621 | . the deadline must remain... |
||
622 | |||
623 | So, we do nothing!!! |
||
624 | */ |
||
625 | } |
||
626 | |||
627 | static void RM_guest_endcycle(LEVEL l, PID p) |
||
628 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
629 | |||
630 | static void RM_guest_end(LEVEL l, PID p) |
||
631 | { |
||
632 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
633 | |||
634 | //kern_printf("RM_guest_end: dline timer %d\n",lev->deadline_timer[p]); |
||
635 | if (proc_table[p].status == RM_READY) |
||
636 | { |
||
637 | q_extract(p, &lev->ready); |
||
638 | //kern_printf("(g_end rdy extr)"); |
||
639 | } |
||
640 | else if (proc_table[p].status == RM_DELAY) { |
||
641 | event_delete(proc_table[p].delay_timer); |
||
642 | proc_table[p].delay_timer = NIL; /* paranoia */ |
||
643 | } |
||
644 | |||
645 | /* we remove the deadline timer, because the slice is finished */ |
||
646 | if (lev->deadline_timer[p] != NIL) { |
||
647 | // kern_printf("RM_guest_end: dline timer %d\n",lev->deadline_timer[p]); |
||
648 | event_delete(lev->deadline_timer[p]); |
||
649 | lev->deadline_timer[p] = NIL; |
||
650 | } |
||
651 | |||
652 | } |
||
653 | |||
654 | static void RM_guest_sleep(LEVEL l, PID p) |
||
655 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
656 | |||
657 | static void RM_guest_delay(LEVEL l, PID p, TIME usdelay) |
||
658 | { |
||
659 | struct timespec wakeuptime; |
||
660 | // RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
661 | |||
662 | /* equal to RM_task_endcycle */ |
||
663 | proc_table[p].status = RM_DELAY; |
||
664 | |||
665 | /* we need to delete this event if we kill the task while it is sleeping */ |
||
666 | ll_gettime(TIME_EXACT, &wakeuptime); |
||
667 | ADDUSEC2TIMESPEC(usdelay, &wakeuptime); |
||
668 | proc_table[p].delay_timer = kern_event_post(&wakeuptime, |
||
669 | RM_timer_delay, |
||
670 | (void *)p); |
||
671 | } |
||
672 | |||
673 | |||
674 | |||
675 | |||
676 | /* Registration functions */ |
||
677 | |||
678 | /*+ Registration function: |
||
679 | int flags the init flags ... see rm.h +*/ |
||
680 | void RM_register_level(int flags) |
||
681 | { |
||
682 | LEVEL l; /* the level that we register */ |
||
683 | RM_level_des *lev; /* for readableness only */ |
||
684 | PID i; /* a counter */ |
||
685 | |||
686 | printk("RM_register_level\n"); |
||
687 | |||
688 | /* request an entry in the level_table */ |
||
689 | l = level_alloc_descriptor(); |
||
690 | |||
691 | /* alloc the space needed for the RM_level_des */ |
||
692 | lev = (RM_level_des *)kern_alloc(sizeof(RM_level_des)); |
||
693 | |||
694 | printk(" lev=%d\n",(int)lev); |
||
695 | |||
696 | /* update the level_table with the new entry */ |
||
697 | level_table[l] = (level_des *)lev; |
||
698 | |||
699 | /* fill the standard descriptor */ |
||
700 | strncpy(lev->l.level_name, RM_LEVELNAME, MAX_LEVELNAME); |
||
701 | lev->l.level_code = RM_LEVEL_CODE; |
||
702 | lev->l.level_version = RM_LEVEL_VERSION; |
||
703 | |||
704 | lev->l.level_accept_task_model = RM_level_accept_task_model; |
||
705 | lev->l.level_accept_guest_model = RM_level_accept_guest_model; |
||
706 | lev->l.level_status = RM_level_status; |
||
707 | lev->l.level_scheduler = RM_level_scheduler; |
||
708 | |||
709 | if (flags & RM_ENABLE_GUARANTEE) |
||
710 | lev->l.level_guarantee = RM_level_guarantee; |
||
711 | else |
||
712 | lev->l.level_guarantee = NULL; |
||
713 | |||
714 | lev->l.task_create = RM_task_create; |
||
715 | lev->l.task_detach = RM_task_detach; |
||
716 | lev->l.task_eligible = RM_task_eligible; |
||
717 | lev->l.task_dispatch = RM_task_dispatch; |
||
718 | lev->l.task_epilogue = RM_task_epilogue; |
||
719 | lev->l.task_activate = RM_task_activate; |
||
720 | lev->l.task_insert = RM_task_insert; |
||
721 | lev->l.task_extract = RM_task_extract; |
||
722 | lev->l.task_endcycle = RM_task_endcycle; |
||
723 | lev->l.task_end = RM_task_end; |
||
724 | lev->l.task_sleep = RM_task_sleep; |
||
725 | lev->l.task_delay = RM_task_delay; |
||
726 | |||
727 | lev->l.guest_create = RM_guest_create; |
||
728 | lev->l.guest_detach = RM_guest_detach; |
||
729 | lev->l.guest_dispatch = RM_guest_dispatch; |
||
730 | lev->l.guest_epilogue = RM_guest_epilogue; |
||
731 | lev->l.guest_activate = RM_guest_activate; |
||
732 | lev->l.guest_insert = RM_guest_insert; |
||
733 | lev->l.guest_extract = RM_guest_extract; |
||
734 | lev->l.guest_endcycle = RM_guest_endcycle; |
||
735 | lev->l.guest_end = RM_guest_end; |
||
736 | lev->l.guest_sleep = RM_guest_sleep; |
||
737 | lev->l.guest_delay = RM_guest_delay; |
||
738 | |||
739 | /* fill the RM descriptor part */ |
||
740 | for(i=0; i<MAX_PROC; i++) { |
||
741 | lev->period[i] = 0; |
||
742 | lev->deadline_timer[i] = -1; |
||
743 | lev->flag[i] = 0; |
||
744 | } |
||
745 | |||
746 | lev->ready = NIL; |
||
747 | lev->flags = flags & 0x07; |
||
748 | lev->U = 0; |
||
749 | } |
||
750 | |||
751 | bandwidth_t RM_usedbandwidth(LEVEL l) |
||
752 | { |
||
753 | RM_level_des *lev = (RM_level_des *)(level_table[l]); |
||
754 | if (lev->l.level_code == RM_LEVEL_CODE && |
||
755 | lev->l.level_version == RM_LEVEL_VERSION) |
||
756 | return lev->U; |
||
757 | else |
||
758 | return 0; |
||
759 | } |
||
760 |