Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | pj | 1 | /* |
2 | * Project: S.Ha.R.K. |
||
3 | * |
||
4 | * Coordinators: |
||
5 | * Giorgio Buttazzo <giorgio@sssup.it> |
||
6 | * Paolo Gai <pj@gandalf.sssup.it> |
||
7 | * |
||
8 | * Authors : |
||
9 | * Paolo Gai <pj@gandalf.sssup.it> |
||
10 | * Massimiliano Giorgi <massy@gandalf.sssup.it> |
||
11 | * Luca Abeni <luca@gandalf.sssup.it> |
||
12 | * (see the web pages for full authors list) |
||
13 | * |
||
14 | * ReTiS Lab (Scuola Superiore S.Anna - Pisa - Italy) |
||
15 | * |
||
16 | * http://www.sssup.it |
||
17 | * http://retis.sssup.it |
||
18 | * http://shark.sssup.it |
||
19 | */ |
||
20 | |||
21 | /** |
||
22 | ------------ |
||
23 | CVS : $Id: rr.c,v 1.1.1.1 2002-03-29 14:12:52 pj Exp $ |
||
24 | |||
25 | File: $File$ |
||
26 | Revision: $Revision: 1.1.1.1 $ |
||
27 | Last update: $Date: 2002-03-29 14:12:52 $ |
||
28 | ------------ |
||
29 | |||
30 | This file contains the scheduling module RR (Round Robin) |
||
31 | |||
32 | Read rr.h for further details. |
||
33 | |||
34 | **/ |
||
35 | |||
36 | /* |
||
37 | * Copyright (C) 2000 Paolo Gai |
||
38 | * |
||
39 | * This program is free software; you can redistribute it and/or modify |
||
40 | * it under the terms of the GNU General Public License as published by |
||
41 | * the Free Software Foundation; either version 2 of the License, or |
||
42 | * (at your option) any later version. |
||
43 | * |
||
44 | * This program is distributed in the hope that it will be useful, |
||
45 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
46 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
47 | * GNU General Public License for more details. |
||
48 | * |
||
49 | * You should have received a copy of the GNU General Public License |
||
50 | * along with this program; if not, write to the Free Software |
||
51 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
||
52 | * |
||
53 | */ |
||
54 | |||
55 | |||
56 | #include <modules/rr.h> |
||
57 | #include <ll/stdio.h> |
||
58 | #include <ll/string.h> |
||
59 | #include <kernel/model.h> |
||
60 | #include <kernel/descr.h> |
||
61 | #include <kernel/var.h> |
||
62 | #include <kernel/func.h> |
||
63 | |||
64 | /*+ Status used in the level +*/ |
||
65 | #define RR_READY MODULE_STATUS_BASE |
||
66 | #define RR_DELAY MODULE_STATUS_BASE+1 |
||
67 | |||
68 | /*+ the level redefinition for the Round Robin level +*/ |
||
69 | typedef struct { |
||
70 | level_des l; /*+ the standard level descriptor +*/ |
||
71 | |||
72 | QQUEUE ready; /*+ the ready queue +*/ |
||
73 | |||
74 | int slice; /*+ the level's time slice +*/ |
||
75 | |||
76 | struct multiboot_info *multiboot; /*+ used if the level have to insert |
||
77 | the main task +*/ |
||
78 | } RR_level_des; |
||
79 | |||
80 | |||
81 | static char *RR_status_to_a(WORD status) |
||
82 | { |
||
83 | if (status < MODULE_STATUS_BASE) |
||
84 | return status_to_a(status); |
||
85 | |||
86 | switch (status) { |
||
87 | case RR_READY: return "RR_Ready"; |
||
88 | case RR_DELAY: return "RR_Delay"; |
||
89 | default : return "RR_Unknown"; |
||
90 | } |
||
91 | } |
||
92 | |||
93 | /*+ this function is called when a task finish his delay +*/ |
||
94 | static void RR_timer_delay(void *par) |
||
95 | { |
||
96 | PID p = (PID) par; |
||
97 | RR_level_des *lev; |
||
98 | |||
99 | lev = (RR_level_des *)level_table[proc_table[p].task_level]; |
||
100 | |||
101 | proc_table[p].status = RR_READY; |
||
102 | qq_insertlast(p,&lev->ready); |
||
103 | |||
104 | proc_table[p].delay_timer = NIL; /* Paranoia */ |
||
105 | |||
106 | // kern_printf(" DELAY TIMER %d ", p); |
||
107 | |||
108 | event_need_reschedule(); |
||
109 | } |
||
110 | |||
111 | |||
112 | static int RR_level_accept_task_model(LEVEL l, TASK_MODEL *m) |
||
113 | { |
||
114 | if (m->pclass == NRT_PCLASS || m->pclass == (NRT_PCLASS | l)) |
||
115 | return 0; |
||
116 | else |
||
117 | return -1; |
||
118 | } |
||
119 | |||
120 | static int RR_level_accept_guest_model(LEVEL l, TASK_MODEL *m) |
||
121 | { |
||
122 | return -1; |
||
123 | } |
||
124 | |||
125 | static void RR_level_status(LEVEL l) |
||
126 | { |
||
127 | RR_level_des *lev = (RR_level_des *)(level_table[l]); |
||
128 | PID p = qq_queryfirst(&lev->ready); |
||
129 | |||
130 | kern_printf("Slice: %d \n", lev->slice); |
||
131 | |||
132 | while (p != NIL) { |
||
133 | kern_printf("Pid: %d\t Name: %20s Status: %s\n",p,proc_table[p].name, |
||
134 | RR_status_to_a(proc_table[p].status)); |
||
135 | p = proc_table[p].next; |
||
136 | } |
||
137 | |||
138 | for (p=0; p<MAX_PROC; p++) |
||
139 | if (proc_table[p].task_level == l && proc_table[p].status != RR_READY |
||
140 | && proc_table[p].status != FREE ) |
||
141 | kern_printf("Pid: %d\t Name: %20s Status: %s\n",p,proc_table[p].name, |
||
142 | RR_status_to_a(proc_table[p].status)); |
||
143 | |||
144 | } |
||
145 | |||
146 | |||
147 | /* This is not efficient but very fair :-) |
||
148 | The need of all this stuff is because if a task execute a long time |
||
149 | due to (shadow!) priority inheritance, then the task shall go to the |
||
150 | tail of the queue many times... */ |
||
151 | static PID RR_level_scheduler(LEVEL l) |
||
152 | { |
||
153 | RR_level_des *lev = (RR_level_des *)(level_table[l]); |
||
154 | |||
155 | PID p; |
||
156 | |||
157 | for (;;) { |
||
158 | p = qq_queryfirst(&lev->ready); |
||
159 | if (p == -1) |
||
160 | return p; |
||
161 | |||
162 | if (proc_table[p].avail_time <= 0) { |
||
163 | proc_table[p].avail_time += proc_table[p].wcet; |
||
164 | qq_extract(p,&lev->ready); |
||
165 | qq_insertlast(p,&lev->ready); |
||
166 | } |
||
167 | else |
||
168 | return p; |
||
169 | } |
||
170 | } |
||
171 | |||
172 | static int RR_level_guarantee(LEVEL l, bandwidth_t *freebandwidth) |
||
173 | { |
||
174 | /* the RR level always guarantee... the function is defined because |
||
175 | there can be an aperiodic server at a level with less priority than |
||
176 | the RR that need guarantee (e.g., a TBS server) */ |
||
177 | return 1; |
||
178 | } |
||
179 | |||
180 | |||
181 | static int RR_task_create(LEVEL l, PID p, TASK_MODEL *m) |
||
182 | { |
||
183 | RR_level_des *lev = (RR_level_des *)(level_table[l]); |
||
184 | NRT_TASK_MODEL *nrt = (NRT_TASK_MODEL *)m; |
||
185 | |||
186 | /* the task state is set at SLEEP by the general task_create |
||
187 | the only thing to set remains the capacity stuffs that are set |
||
188 | to the values passed in the model... */ |
||
189 | |||
190 | /* I used the wcet field because using wcet can account if a task |
||
191 | consume more than the timeslice... */ |
||
192 | |||
193 | if (nrt->slice) { |
||
194 | proc_table[p].avail_time = nrt->slice; |
||
195 | proc_table[p].wcet = nrt->slice; |
||
196 | } |
||
197 | else { |
||
198 | proc_table[p].avail_time = lev->slice; |
||
199 | proc_table[p].wcet = lev->slice; |
||
200 | } |
||
201 | proc_table[p].control |= CONTROL_CAP; |
||
202 | |||
203 | return 0; /* OK */ |
||
204 | } |
||
205 | |||
206 | static void RR_task_detach(LEVEL l, PID p) |
||
207 | { |
||
208 | /* the RR level doesn't introduce any new field in the TASK_MODEL |
||
209 | so, all detach stuffs are done by the task_create |
||
210 | The task state is set at FREE by the general task_create */ |
||
211 | } |
||
212 | |||
213 | static int RR_task_eligible(LEVEL l, PID p) |
||
214 | { |
||
215 | return 0; /* if the task p is chosen, it is always eligible */ |
||
216 | } |
||
217 | |||
218 | #ifdef __TEST1__ |
||
219 | extern int testactive; |
||
220 | extern struct timespec s_stime[]; |
||
221 | extern TIME s_curr[]; |
||
222 | extern TIME s_PID[]; |
||
223 | extern int useds; |
||
224 | #endif |
||
225 | |||
226 | static void RR_task_dispatch(LEVEL l, PID p, int nostop) |
||
227 | { |
||
228 | RR_level_des *lev = (RR_level_des *)(level_table[l]); |
||
229 | |||
230 | /* the task state is set EXE by the scheduler() |
||
231 | we extract the task from the ready queue |
||
232 | NB: we can't assume that p is the first task in the queue!!! */ |
||
233 | qq_extract(p, &lev->ready); |
||
234 | |||
235 | |||
236 | #ifdef __TEST1__ |
||
237 | if (testactive) |
||
238 | { |
||
239 | TIMESPEC_ASSIGN(&s_stime[useds],&schedule_time); |
||
240 | s_curr[useds] = proc_table[p].avail_time; |
||
241 | s_PID[useds] = p; |
||
242 | useds++; |
||
243 | } |
||
244 | #endif |
||
245 | // if (nostop) kern_printf("Û"); |
||
246 | // kern_printf("(RR d %d)",nostop); |
||
247 | } |
||
248 | |||
249 | static void RR_task_epilogue(LEVEL l, PID p) |
||
250 | { |
||
251 | RR_level_des *lev = (RR_level_des *)(level_table[l]); |
||
252 | |||
253 | /* check if the slice is finished and insert the task in the correct |
||
254 | qqueue position */ |
||
255 | if (proc_table[p].avail_time <= 0) { |
||
256 | proc_table[p].avail_time += proc_table[p].wcet; |
||
257 | qq_insertlast(p,&lev->ready); |
||
258 | } |
||
259 | else |
||
260 | /* curr is >0, so the running task have to run for another curr usec */ |
||
261 | qq_insertfirst(p,&lev->ready); |
||
262 | |||
263 | proc_table[p].status = RR_READY; |
||
264 | } |
||
265 | |||
266 | static void RR_task_activate(LEVEL l, PID p) |
||
267 | { |
||
268 | RR_level_des *lev = (RR_level_des *)(level_table[l]); |
||
269 | |||
270 | /* Test if we are trying to activate a non sleeping task */ |
||
271 | /* Ignore this; the task is already active */ |
||
272 | if (proc_table[p].status != SLEEP) |
||
273 | return; |
||
274 | |||
275 | ll_gettime(TIME_EXACT, &proc_table[p].request_time); |
||
276 | |||
277 | /* Insert task in the correct position */ |
||
278 | proc_table[p].status = RR_READY; |
||
279 | qq_insertlast(p,&lev->ready); |
||
280 | } |
||
281 | |||
282 | static void RR_task_insert(LEVEL l, PID p) |
||
283 | { |
||
284 | RR_level_des *lev = (RR_level_des *)(level_table[l]); |
||
285 | |||
286 | /* Similar to RR_task_activate, but we don't check in what state |
||
287 | the task is and we don't set the request_time */ |
||
288 | |||
289 | /* Insert task in the correct position */ |
||
290 | proc_table[p].status = RR_READY; |
||
291 | qq_insertlast(p,&lev->ready); |
||
292 | } |
||
293 | |||
294 | static void RR_task_extract(LEVEL l, PID p) |
||
295 | { |
||
296 | /* Extract the running task from the level |
||
297 | . we have already extract it from the ready queue at the dispatch time. |
||
298 | . the capacity event have to be removed by the generic kernel |
||
299 | . the wcet don't need modification... |
||
300 | . the state of the task is set by the calling function |
||
301 | |||
302 | So, we do nothing!!! |
||
303 | */ |
||
304 | } |
||
305 | |||
306 | static void RR_task_endcycle(LEVEL l, PID p) |
||
307 | { |
||
308 | // RR_level_des *lev = (RR_level_des *)(level_table[l]); |
||
309 | |||
310 | /* this function is equal to the RR_task_extract, except that |
||
311 | the task fall asleep... */ |
||
312 | proc_table[p].status = SLEEP; |
||
313 | } |
||
314 | |||
315 | static void RR_task_end(LEVEL l, PID p) |
||
316 | { |
||
317 | // RR_level_des *lev = (RR_level_des *)(level_table[l]); |
||
318 | |||
319 | /* we insert the task in the free queue */ |
||
320 | proc_table[p].status = FREE; |
||
321 | q_insert(p,&freedesc); |
||
322 | } |
||
323 | |||
324 | static void RR_task_sleep(LEVEL l, PID p) |
||
325 | { |
||
326 | proc_table[p].status = SLEEP; |
||
327 | } |
||
328 | |||
329 | static void RR_task_delay(LEVEL l, PID p, TIME usdelay) |
||
330 | { |
||
331 | // RR_level_des *lev = (RR_level_des *)(level_table[l]); |
||
332 | struct timespec wakeuptime; |
||
333 | |||
334 | /* equal to RR_task_endcycle */ |
||
335 | proc_table[p].status = RR_DELAY; |
||
336 | |||
337 | /* we need to delete this event if we kill the task while it is sleeping */ |
||
338 | ll_gettime(TIME_EXACT,&wakeuptime); |
||
339 | ADDUSEC2TIMESPEC(usdelay,&wakeuptime); |
||
340 | proc_table[p].delay_timer = kern_event_post(&wakeuptime, |
||
341 | RR_timer_delay, |
||
342 | (void *)p); |
||
343 | } |
||
344 | |||
345 | |||
346 | static int RR_guest_create(LEVEL l, PID p, TASK_MODEL *m) |
||
347 | { kern_raise(XUNVALID_GUEST,exec_shadow); return 0; } |
||
348 | |||
349 | static void RR_guest_detach(LEVEL l, PID p) |
||
350 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
351 | |||
352 | static void RR_guest_dispatch(LEVEL l, PID p, int nostop) |
||
353 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
354 | |||
355 | static void RR_guest_epilogue(LEVEL l, PID p) |
||
356 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
357 | |||
358 | static void RR_guest_activate(LEVEL l, PID p) |
||
359 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
360 | |||
361 | static void RR_guest_insert(LEVEL l, PID p) |
||
362 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
363 | |||
364 | static void RR_guest_extract(LEVEL l, PID p) |
||
365 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
366 | |||
367 | static void RR_guest_endcycle(LEVEL l, PID p) |
||
368 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
369 | |||
370 | static void RR_guest_end(LEVEL l, PID p) |
||
371 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
372 | |||
373 | static void RR_guest_sleep(LEVEL l, PID p) |
||
374 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
375 | |||
376 | static void RR_guest_delay(LEVEL l, PID p,DWORD tickdelay) |
||
377 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
378 | |||
379 | |||
380 | |||
381 | |||
382 | /* Registration functions */ |
||
383 | |||
384 | /*+ This init function install the "main" task +*/ |
||
385 | static void RR_call_main(void *l) |
||
386 | { |
||
387 | LEVEL lev; |
||
388 | PID p; |
||
389 | NRT_TASK_MODEL m; |
||
390 | void *mb; |
||
391 | |||
392 | lev = (LEVEL)l; |
||
393 | |||
394 | nrt_task_default_model(m); |
||
395 | nrt_task_def_level(m,lev); /* with this we are sure that the task arrives |
||
396 | to the correct level */ |
||
397 | |||
398 | mb = ((RR_level_des *)level_table[lev])->multiboot; |
||
399 | nrt_task_def_arg(m,mb); |
||
400 | nrt_task_def_usemath(m); |
||
401 | nrt_task_def_nokill(m); |
||
402 | nrt_task_def_ctrl_jet(m); |
||
403 | |||
404 | p = task_create("Main", __init__, (TASK_MODEL *)&m, NULL); |
||
405 | |||
406 | if (p == NIL) |
||
407 | kern_printf("\nPanic!!! can't create main task... errno =%d\n",errno); |
||
408 | |||
409 | RR_task_activate(lev,p); |
||
410 | } |
||
411 | |||
412 | |||
413 | /*+ Registration function: |
||
414 | TIME slice the slice for the Round Robin queue |
||
415 | int createmain 1 if the level creates the main task 0 otherwise |
||
416 | struct multiboot_info *mb used if createmain specified +*/ |
||
417 | void RR_register_level(TIME slice, |
||
418 | int createmain, |
||
419 | struct multiboot_info *mb) |
||
420 | { |
||
421 | LEVEL l; /* the level that we register */ |
||
422 | RR_level_des *lev; /* for readableness only */ |
||
423 | |||
424 | printk("RR_register_level\n"); |
||
425 | |||
426 | /* request an entry in the level_table */ |
||
427 | l = level_alloc_descriptor(); |
||
428 | |||
429 | /* alloc the space needed for the RR_level_des */ |
||
430 | lev = (RR_level_des *)kern_alloc(sizeof(RR_level_des)); |
||
431 | |||
432 | printk(" lev=%d\n",(int)lev); |
||
433 | |||
434 | /* update the level_table with the new entry */ |
||
435 | level_table[l] = (level_des *)lev; |
||
436 | |||
437 | /* fill the standard descriptor */ |
||
438 | strncpy(lev->l.level_name, RR_LEVELNAME, MAX_LEVELNAME); |
||
439 | lev->l.level_code = RR_LEVEL_CODE; |
||
440 | lev->l.level_version = RR_LEVEL_VERSION; |
||
441 | |||
442 | lev->l.level_accept_task_model = RR_level_accept_task_model; |
||
443 | lev->l.level_accept_guest_model = RR_level_accept_guest_model; |
||
444 | lev->l.level_status = RR_level_status; |
||
445 | lev->l.level_scheduler = RR_level_scheduler; |
||
446 | lev->l.level_guarantee = RR_level_guarantee; |
||
447 | |||
448 | lev->l.task_create = RR_task_create; |
||
449 | lev->l.task_detach = RR_task_detach; |
||
450 | lev->l.task_eligible = RR_task_eligible; |
||
451 | lev->l.task_dispatch = RR_task_dispatch; |
||
452 | lev->l.task_epilogue = RR_task_epilogue; |
||
453 | lev->l.task_activate = RR_task_activate; |
||
454 | lev->l.task_insert = RR_task_insert; |
||
455 | lev->l.task_extract = RR_task_extract; |
||
456 | lev->l.task_endcycle = RR_task_endcycle; |
||
457 | lev->l.task_end = RR_task_end; |
||
458 | lev->l.task_sleep = RR_task_sleep; |
||
459 | lev->l.task_delay = RR_task_delay; |
||
460 | |||
461 | lev->l.guest_create = RR_guest_create; |
||
462 | lev->l.guest_detach = RR_guest_detach; |
||
463 | lev->l.guest_dispatch = RR_guest_dispatch; |
||
464 | lev->l.guest_epilogue = RR_guest_epilogue; |
||
465 | lev->l.guest_activate = RR_guest_activate; |
||
466 | lev->l.guest_insert = RR_guest_insert; |
||
467 | lev->l.guest_extract = RR_guest_extract; |
||
468 | lev->l.guest_endcycle = RR_guest_endcycle; |
||
469 | lev->l.guest_end = RR_guest_end; |
||
470 | lev->l.guest_sleep = RR_guest_sleep; |
||
471 | lev->l.guest_delay = RR_guest_delay; |
||
472 | |||
473 | /* fill the RR descriptor part */ |
||
474 | qq_init(&lev->ready); |
||
475 | |||
476 | if (slice < RR_MINIMUM_SLICE) slice = RR_MINIMUM_SLICE; |
||
477 | if (slice > RR_MAXIMUM_SLICE) slice = RR_MAXIMUM_SLICE; |
||
478 | lev->slice = slice; |
||
479 | |||
480 | lev->multiboot = mb; |
||
481 | |||
482 | if (createmain) |
||
483 | sys_atrunlevel(RR_call_main,(void *) l, RUNLEVEL_INIT); |
||
484 | } |
||
485 | |||
486 |