Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | pj | 1 | /* |
2 | * Project: S.Ha.R.K. |
||
3 | * |
||
4 | * Coordinators: |
||
5 | * Giorgio Buttazzo <giorgio@sssup.it> |
||
6 | * Paolo Gai <pj@gandalf.sssup.it> |
||
7 | * |
||
8 | * Authors : |
||
9 | * Paolo Gai <pj@gandalf.sssup.it> |
||
10 | * (see the web pages for full authors list) |
||
11 | * |
||
12 | * ReTiS Lab (Scuola Superiore S.Anna - Pisa - Italy) |
||
13 | * |
||
14 | * http://www.sssup.it |
||
15 | * http://retis.sssup.it |
||
16 | * http://shark.sssup.it |
||
17 | */ |
||
18 | |||
19 | /** |
||
20 | ------------ |
||
21 | CVS : $Id: time.c,v 1.1.1.1 2002-03-29 14:12:52 pj Exp $ |
||
22 | |||
23 | File: $File$ |
||
24 | Revision: $Revision: 1.1.1.1 $ |
||
25 | Last update: $Date: 2002-03-29 14:12:52 $ |
||
26 | ------------ |
||
27 | |||
28 | This file contains the functions defined in time.h |
||
29 | |||
30 | **/ |
||
31 | |||
32 | /* |
||
33 | * Copyright (C) 2000 Paolo Gai |
||
34 | * |
||
35 | * This program is free software; you can redistribute it and/or modify |
||
36 | * it under the terms of the GNU General Public License as published by |
||
37 | * the Free Software Foundation; either version 2 of the License, or |
||
38 | * (at your option) any later version. |
||
39 | * |
||
40 | * This program is distributed in the hope that it will be useful, |
||
41 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
42 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
43 | * GNU General Public License for more details. |
||
44 | * |
||
45 | * You should have received a copy of the GNU General Public License |
||
46 | * along with this program; if not, write to the Free Software |
||
47 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
||
48 | * |
||
49 | */ |
||
50 | |||
51 | |||
52 | #include <ll/ll.h> |
||
53 | #include <errno.h> |
||
54 | #include <kernel/func.h> |
||
55 | #include <pthread.h> |
||
56 | #include <signal.h> |
||
57 | #include <time.h> |
||
58 | #include <limits.h> |
||
59 | |||
60 | struct internal_timer_struct { |
||
61 | struct sigevent evp; /* the sigevent MUST be allocated by the applic. */ |
||
62 | int event; /* the timer event... the timer is disarmed when |
||
63 | event == -1 */ |
||
64 | struct timespec period; /* period for periodic timers */ |
||
65 | struct timespec current; /* time at whitch the event is posted */ |
||
66 | |||
67 | /* these fields are used only if SIGEV_SIGNAL is specified */ |
||
68 | int signal; /* the reserved signal entry for the timer */ |
||
69 | int overrun; /* the signal overrun counter */ |
||
70 | |||
71 | int used; /* 1 if the timer is used */ |
||
72 | int next; |
||
73 | }; |
||
74 | |||
75 | |||
76 | /* the timer table */ |
||
77 | static struct internal_timer_struct timer_table[TIMER_MAX]; |
||
78 | |||
79 | /* the free timer pointer */ |
||
80 | static int timerqueue_free; |
||
81 | |||
82 | void TIMER_register_module() |
||
83 | { |
||
84 | int x; |
||
85 | |||
86 | for (x = 0; x < TIMER_MAX; x++) { |
||
87 | timer_table[x].event = -1; /* invalid value */ |
||
88 | NULL_TIMESPEC(&timer_table[x].period); |
||
89 | timer_table[x].used = 0; |
||
90 | timer_table[x].overrun = 0; |
||
91 | // evp is not initialized |
||
92 | timer_table[x].next = x+1; |
||
93 | } |
||
94 | timer_table[TIMER_MAX-1].next = -1; |
||
95 | timerqueue_free = 0; |
||
96 | |||
97 | } |
||
98 | |||
99 | /*---------------------------------------------------------------------*/ |
||
100 | /* 14.2.1 - Clocks */ |
||
101 | /*---------------------------------------------------------------------*/ |
||
102 | |||
103 | int clock_settime(clockid_t clock_id, const struct timespec *tp) |
||
104 | { |
||
105 | if (clock_id != CLOCK_REALTIME) |
||
106 | errno = EINVAL; |
||
107 | else |
||
108 | errno = EPERM; |
||
109 | return -1; |
||
110 | } |
||
111 | |||
112 | int clock_gettime(clockid_t clock_id, struct timespec *tp) |
||
113 | { |
||
114 | if (clock_id != CLOCK_REALTIME) { |
||
115 | errno = EINVAL; |
||
116 | return -1; |
||
117 | } |
||
118 | |||
119 | sys_gettime(tp); |
||
120 | return 0; |
||
121 | } |
||
122 | |||
123 | int clock_getres(clockid_t clock_id, struct timespec *res) |
||
124 | { |
||
125 | if (clock_id != CLOCK_REALTIME) { |
||
126 | errno = EINVAL; |
||
127 | return -1; |
||
128 | } |
||
129 | |||
130 | if (res) { |
||
131 | /* 1 usec */ |
||
132 | res->tv_sec = 0; |
||
133 | res->tv_nsec = 1000; |
||
134 | } |
||
135 | |||
136 | return 0; |
||
137 | } |
||
138 | |||
139 | /*---------------------------------------------------------------------*/ |
||
140 | /* 14.2.2 - Create a Per-Process Timer */ |
||
141 | /*---------------------------------------------------------------------*/ |
||
142 | |||
143 | int timer_create(clockid_t clock_id, struct sigevent *evp, timer_t *timerid) |
||
144 | { |
||
145 | if (clock_id != CLOCK_REALTIME) { |
||
146 | errno = EINVAL; |
||
147 | return -1; |
||
148 | } |
||
149 | |||
150 | kern_cli(); |
||
151 | |||
152 | if (timerqueue_free == -1 || sigqueue_free == -1) { |
||
153 | kern_sti(); |
||
154 | errno = EAGAIN; |
||
155 | return -1; |
||
156 | } |
||
157 | |||
158 | /* alloc a timer descriptor */ |
||
159 | *timerid = timerqueue_free; |
||
160 | timerqueue_free = timer_table[timerqueue_free].next; |
||
161 | timer_table[*timerid].used = 1; |
||
162 | |||
163 | /* alloc a signal descriptor and fill the timer struct */ |
||
164 | if (!evp) { |
||
165 | // set default data for the evp field |
||
166 | timer_table[*timerid].evp.sigev_notify = SIGEV_SIGNAL; |
||
167 | timer_table[*timerid].evp.sigev_signo = DEFAULT_TIMER_SIGNAL; |
||
168 | timer_table[*timerid].evp.sigev_value.sival_int = *timerid; |
||
169 | } |
||
170 | else |
||
171 | timer_table[*timerid].evp = *evp; |
||
172 | |||
173 | if (timer_table[*timerid].evp.sigev_notify == SIGEV_SIGNAL) { |
||
174 | // alloc a signal descriptor |
||
175 | timer_table[*timerid].signal = sigqueue_free; |
||
176 | sig_queue[sigqueue_free].flags |= USED_FOR_TIMER; |
||
177 | sigqueue_free = sig_queue[sigqueue_free].next; |
||
178 | } |
||
179 | |||
180 | timer_table[*timerid].event = -1; |
||
181 | |||
182 | NULL_TIMESPEC(&timer_table[*timerid].period); |
||
183 | NULL_TIMESPEC(&timer_table[*timerid].current); |
||
184 | |||
185 | timer_table[*timerid].overrun = 0; |
||
186 | |||
187 | kern_sti(); |
||
188 | return 0; |
||
189 | } |
||
190 | |||
191 | |||
192 | /*---------------------------------------------------------------------*/ |
||
193 | /* 14.2.3 - Delete a Per-Process Timer */ |
||
194 | /*---------------------------------------------------------------------*/ |
||
195 | |||
196 | int timer_delete(timer_t timerid) |
||
197 | { |
||
198 | if (timerid < 0 || timerid >= TIMER_MAX) { |
||
199 | errno = EINVAL; |
||
200 | return -1; |
||
201 | } |
||
202 | |||
203 | kern_cli(); |
||
204 | |||
205 | if (!timer_table[timerid].used) { |
||
206 | kern_sti(); |
||
207 | errno = EINVAL; |
||
208 | return -1; |
||
209 | } |
||
210 | |||
211 | timer_table[timerid].used = 0; |
||
212 | |||
213 | /* delete the event if the timer is armed */ |
||
214 | if (timer_table[timerid].event != -1) |
||
215 | event_delete(timer_table[timerid].event); |
||
216 | |||
217 | if (timer_table[timerid].evp.sigev_notify == SIGEV_SIGNAL) { |
||
218 | if (!(sig_queue[ timer_table[timerid].signal ].flags & SIGNAL_POSTED)) { |
||
219 | /* if the signal is not pending, we insert it into the sigqueue_free. |
||
220 | instead, if it is pending, it will be inserted into the queue when |
||
221 | delivered */ |
||
222 | sig_queue[ timer_table[timerid].signal ].next = sigqueue_free; |
||
223 | sigqueue_free = timer_table[timerid].signal; |
||
224 | } |
||
225 | |||
226 | /* reset the timer flags... */ |
||
227 | sig_queue[ timer_table[timerid].signal ].flags &= |
||
228 | ~(USED_FOR_TIMER | SIGNAL_POSTED); |
||
229 | } |
||
230 | |||
231 | kern_sti(); |
||
232 | return 0; |
||
233 | } |
||
234 | |||
235 | /*---------------------------------------------------------------------*/ |
||
236 | /* 14.2.4 - Per-Process Timers */ |
||
237 | /*---------------------------------------------------------------------*/ |
||
238 | |||
239 | void timer_timerfire(void *arg) |
||
240 | { |
||
241 | /* Now, we queue the signal: |
||
242 | - if the signal is already pending, only increment the pending |
||
243 | activations |
||
244 | - if the signal isn't pending, |
||
245 | - we insert the reserved signal into |
||
246 | the sigqueue_free (so it will be popped by the sigqueue) |
||
247 | - we set the posted flag (it will be resetted when the signal |
||
248 | will be dispatched) |
||
249 | */ |
||
250 | |||
251 | int t = (int)arg; |
||
252 | |||
253 | // kern_printf("*%d",t); |
||
254 | // do the action required... |
||
255 | if (timer_table[t].evp.sigev_notify == SIGEV_SIGNAL) { |
||
256 | if (sig_queue[ timer_table[t].signal ].flags & SIGNAL_POSTED) { |
||
257 | // the signal is already pending, increment the pending activations... |
||
258 | if (timer_table[t].overrun != DELAYTIMER_MAX) |
||
259 | timer_table[t].overrun++; |
||
260 | } |
||
261 | else { |
||
262 | timer_table[t].overrun = 0; |
||
263 | // there is no signal pending... post the signal!!! |
||
264 | // This a dirty trick: The timer has allocated a signal descriptor, |
||
265 | // then the timer put at the top of the free queue, |
||
266 | // so sigqueue_internal pick the right number!!! |
||
267 | sig_queue[ timer_table[t].signal ].next = sigqueue_free; |
||
268 | sigqueue_free = timer_table[t].signal; |
||
269 | sigqueue_internal(0, |
||
270 | timer_table[t].evp.sigev_signo, |
||
271 | timer_table[t].evp.sigev_value, |
||
272 | SI_TIMER); |
||
273 | // setting this flag is used for counting overruns... |
||
274 | sig_queue[ timer_table[t].signal ].flags |= SIGNAL_POSTED; |
||
275 | } |
||
276 | |||
277 | } else if (timer_table[t].evp.sigev_notify == SIGEV_THREAD) { |
||
278 | /* a new thread must be created; note that the pthread_create |
||
279 | calls task_createn and task_activate; task_activate works into |
||
280 | signal handlers and calls event_need_reschedule */ |
||
281 | pthread_t new_thread; |
||
282 | |||
283 | if (timer_table[t].evp.sigev_notify_attributes) |
||
284 | pthread_create(&new_thread, |
||
285 | timer_table[t].evp.sigev_notify_attributes, |
||
286 | (void *(*)(void *))timer_table[t].evp.sigev_notify_function, |
||
287 | timer_table[t].evp.sigev_value.sival_ptr); |
||
288 | else { |
||
289 | pthread_attr_t new_attr; |
||
290 | // the task must be created detached |
||
291 | pthread_attr_init(&new_attr); |
||
292 | pthread_attr_setdetachstate(&new_attr, PTHREAD_CREATE_DETACHED); |
||
293 | |||
294 | pthread_create(&new_thread, |
||
295 | &new_attr, |
||
296 | (void *(*)(void *))timer_table[t].evp.sigev_notify_function, |
||
297 | &timer_table[t].evp.sigev_value); |
||
298 | } |
||
299 | } |
||
300 | |||
301 | if (timer_table[t].period.tv_sec != 0 || |
||
302 | timer_table[t].period.tv_nsec != 0) { |
||
303 | struct timespec temp; |
||
304 | |||
305 | TIMESPEC_ASSIGN(&temp,&timer_table[t].current); |
||
306 | ADDTIMESPEC(&temp, &timer_table[t].period, &timer_table[t].current); |
||
307 | |||
308 | timer_table[t].event = |
||
309 | kern_event_post(&timer_table[t].current, |
||
310 | timer_timerfire, |
||
311 | (void *)t); |
||
312 | /* kern_printf("(post e%d %d.%d)", t, |
||
313 | timer_table[t].current.tv_sec, |
||
314 | timer_table[t].current.tv_nsec/1000); */ |
||
315 | } |
||
316 | else |
||
317 | timer_table[t].event = -1; |
||
318 | } |
||
319 | |||
320 | int timer_settime(timer_t timerid, int flags, const struct itimerspec *value, |
||
321 | struct itimerspec *ovalue) |
||
322 | { |
||
323 | struct timespec ct; /* current time */ |
||
324 | int ct_read = 0; /* we take the current time only once */ |
||
325 | |||
326 | if (timerid < 0 || timerid >= TIMER_MAX || !value) { |
||
327 | errno = EINVAL; |
||
328 | return -1; |
||
329 | } |
||
330 | |||
331 | if (value->it_interval.tv_nsec < 0 || |
||
332 | value->it_interval.tv_nsec >= 1000000000) { |
||
333 | errno = EINVAL; |
||
334 | return -1; |
||
335 | } |
||
336 | |||
337 | if (value->it_value.tv_nsec < 0 || |
||
338 | value->it_value.tv_nsec >= 1000000000) { |
||
339 | errno = EINVAL; |
||
340 | return -1; |
||
341 | } |
||
342 | |||
343 | kern_cli(); |
||
344 | |||
345 | if (!timer_table[timerid].used) { |
||
346 | kern_sti(); |
||
347 | errno = EINVAL; |
||
348 | return -1; |
||
349 | } |
||
350 | |||
351 | if (ovalue) { |
||
352 | if (timer_table[timerid].event == -1) |
||
353 | /* the timer is disarmed, set it_value to 0 */ |
||
354 | NULL_TIMESPEC(&ovalue->it_value); |
||
355 | else { |
||
356 | /* the timer is armed, return the remaining expiration time */ |
||
357 | ll_gettime(TIME_EXACT, &ct); |
||
358 | ct_read = 1; |
||
359 | SUBTIMESPEC(&timer_table[timerid].current, &ct, &ovalue->it_value); |
||
360 | } |
||
361 | /* and return the reactivation period */ |
||
362 | TIMESPEC_ASSIGN(&ovalue->it_interval, &timer_table[timerid].period); |
||
363 | } |
||
364 | |||
365 | /* if it_value is 0, the timer shall be disarmed; if != 0, the timer is |
||
366 | armed: in all the cases, the event must be deleted... */ |
||
367 | if (timer_table[timerid].event != -1) |
||
368 | event_delete(timer_table[timerid].event); |
||
369 | |||
370 | if (value->it_value.tv_sec != 0 || value->it_value.tv_nsec != 0) { |
||
371 | /* it_value != 0 -> arm the timer! */ |
||
372 | TIMESPEC_ASSIGN(&timer_table[timerid].period, &value->it_interval); |
||
373 | |||
374 | if (flags & TIMER_ABSTIME) |
||
375 | /* the time is absolute */ |
||
376 | TIMESPEC_ASSIGN(&timer_table[timerid].current, &value->it_value); |
||
377 | else { |
||
378 | /* the time is relative to current time */ |
||
379 | if (!ct_read) |
||
380 | ll_gettime(TIME_EXACT, &ct); |
||
381 | ADDTIMESPEC(&ct, &value->it_value, &timer_table[timerid].current); |
||
382 | } |
||
383 | timer_table[timerid].event = |
||
384 | kern_event_post(&timer_table[timerid].current, |
||
385 | timer_timerfire, |
||
386 | (void *)timerid); |
||
387 | /* kern_printf("(post e%d %d.%d)", timerid, |
||
388 | timer_table[timerid].current.tv_sec, |
||
389 | timer_table[timerid].current.tv_nsec/1000); */ |
||
390 | } |
||
391 | |||
392 | kern_sti(); |
||
393 | return 0; |
||
394 | } |
||
395 | |||
396 | int timer_gettime(timer_t timerid, struct itimerspec *value) |
||
397 | { |
||
398 | struct timespec ct; /* current time */ |
||
399 | |||
400 | if (timerid < 0 || timerid >= TIMER_MAX) { |
||
401 | errno = EINVAL; |
||
402 | return -1; |
||
403 | } |
||
404 | |||
405 | kern_cli(); |
||
406 | |||
407 | if (!timer_table[timerid].used) { |
||
408 | kern_sti(); |
||
409 | errno = EINVAL; |
||
410 | return -1; |
||
411 | } |
||
412 | |||
413 | if (timer_table[timerid].event == -1) |
||
414 | /* the timer is disarmed, set it_value to 0 */ |
||
415 | NULL_TIMESPEC(&value->it_value); |
||
416 | else { |
||
417 | /* the timer is armed, return the remaining expiration time */ |
||
418 | ll_gettime(TIME_EXACT, &ct); |
||
419 | SUBTIMESPEC(&timer_table[timerid].current, &ct, &value->it_value); |
||
420 | } |
||
421 | /* and return the reactivation period */ |
||
422 | TIMESPEC_ASSIGN(&value->it_interval, &timer_table[timerid].period); |
||
423 | |||
424 | kern_sti(); |
||
425 | return 0; |
||
426 | } |
||
427 | |||
428 | int timer_getoverrun(timer_t timerid) |
||
429 | { |
||
430 | int returnvalue; |
||
431 | |||
432 | if (timerid < 0 || timerid >= TIMER_MAX) { |
||
433 | errno = EINVAL; |
||
434 | return -1; |
||
435 | } |
||
436 | |||
437 | kern_cli(); |
||
438 | |||
439 | if (!timer_table[timerid].used) { |
||
440 | kern_sti(); |
||
441 | errno = EINVAL; |
||
442 | return -1; |
||
443 | } |
||
444 | |||
445 | returnvalue = timer_table[timerid].overrun; |
||
446 | kern_sti(); |
||
447 | return returnvalue; |
||
448 | } |
||
449 |