Subversion Repositories shark

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 pj 1
/*-
2
 * Copyright (c) 1992, 1993
3
 *      The Regents of the University of California.  All rights reserved.
4
 *
5
 * This software was developed by the Computer Systems Engineering group
6
 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7
 * contributed to Berkeley.
8
 *
9
 * Redistribution and use in source and binary forms, with or without
10
 * modification, are permitted provided that the following conditions
11
 * are met:
12
 * 1. Redistributions of source code must retain the above copyright
13
 *    notice, this list of conditions and the following disclaimer.
14
 * 2. Redistributions in binary form must reproduce the above copyright
15
 *    notice, this list of conditions and the following disclaimer in the
16
 *    documentation and/or other materials provided with the distribution.
17
 * 3. All advertising materials mentioning features or use of this software
18
 *    must display the following acknowledgement:
19
 *      This product includes software developed by the University of
20
 *      California, Berkeley and its contributors.
21
 * 4. Neither the name of the University nor the names of its contributors
22
 *    may be used to endorse or promote products derived from this software
23
 *    without specific prior written permission.
24
 *
25
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35
 * SUCH DAMAGE.
36
 */
37
 
38
#if defined(LIBC_SCCS) && !defined(lint)
39
static char sccsid[] = "@(#)fixunssfdi.c        8.1 (Berkeley) 6/4/93";
40
#endif /* LIBC_SCCS and not lint */
41
 
42
#include "quad.h"
43
 
44
#define ONE_FOURTH      (1 << (LONG_BITS - 2))
45
#define ONE_HALF        (ONE_FOURTH * 2.0)
46
#define ONE             (ONE_FOURTH * 4.0)
47
 
48
/*
49
 * Convert float to (unsigned) quad.  We do most of our work in double,
50
 * out of sheer paranoia.
51
 *
52
 * Not sure what to do with negative numbers---for now, anything out
53
 * of range becomes UQUAD_MAX.
54
 *
55
 * N.B.: must use new ANSI syntax (sorry).
56
 */
57
u_quad_t
58
__fixunssfdi(float f)
59
{
60
        double x, toppart;
61
        union uu t;
62
 
63
        if (f < 0)
64
                return (UQUAD_MAX);     /* ??? should be 0?  ERANGE??? */
65
#ifdef notdef                           /* this falls afoul of a GCC bug */
66
        if (f >= UQUAD_MAX)
67
                return (UQUAD_MAX);
68
#else                                   /* so we wire in 2^64-1 instead */
69
        if (f >= 18446744073709551615.0)
70
                return (UQUAD_MAX);
71
#endif
72
        x = f;
73
        /*
74
         * Get the upper part of the result.  Note that the divide
75
         * may round up; we want to avoid this if possible, so we
76
         * subtract `1/2' first.
77
         */
78
        toppart = (x - ONE_HALF) / ONE;
79
        /*
80
         * Now build a u_quad_t out of the top part.  The difference
81
         * between x and this is the bottom part (this may introduce
82
         * a few fuzzy bits, but what the heck).  With any luck this
83
         * difference will be nonnegative: x should wind up in the
84
         * range [0..ULONG_MAX].  For paranoia, we assume [LONG_MIN..
85
         * 2*ULONG_MAX] instead.
86
         */
87
        t.ul[H] = (unsigned long)toppart;
88
        t.ul[L] = 0;
89
        x -= (double)t.uq;
90
        if (x < 0) {
91
                t.ul[H]--;
92
                x += ULONG_MAX;
93
        }
94
        if (x > ULONG_MAX) {
95
                t.ul[H]++;
96
                x -= ULONG_MAX;
97
        }
98
        t.ul[L] = (u_long)x;
99
        return (t.uq);
100
}