Subversion Repositories shark

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 pj 1
/* @(#)e_exp.c 5.1 93/09/24 */
2
/*
3
 * ====================================================
4
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5
 *
6
 * Developed at SunPro, a Sun Microsystems, Inc. business.
7
 * Permission to use, copy, modify, and distribute this
8
 * software is freely granted, provided that this notice
9
 * is preserved.
10
 * ====================================================
11
 */
12
 
13
#ifndef lint
14
static char rcsid[] = "$\Id: e_exp.c,v 1.3.2.1 1997/02/23 11:03:02 joerg Exp $";
15
#endif
16
 
17
/* __ieee754_exp(x)
18
 * Returns the exponential of x.
19
 *
20
 * Method
21
 *   1. Argument reduction:
22
 *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
23
 *      Given x, find r and integer k such that
24
 *
25
 *               x = k*ln2 + r,  |r| <= 0.5*ln2.
26
 *
27
 *      Here r will be represented as r = hi-lo for better
28
 *      accuracy.
29
 *
30
 *   2. Approximation of exp(r) by a special rational function on
31
 *      the interval [0,0.34658]:
32
 *      Write
33
 *          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
34
 *      We use a special Reme algorithm on [0,0.34658] to generate
35
 *      a polynomial of degree 5 to approximate R. The maximum error
36
 *      of this polynomial approximation is bounded by 2**-59. In
37
 *      other words,
38
 *          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
39
 *      (where z=r*r, and the values of P1 to P5 are listed below)
40
 *      and
41
 *          |                  5          |     -59
42
 *          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
43
 *          |                             |
44
 *      The computation of exp(r) thus becomes
45
 *                             2*r
46
 *              exp(r) = 1 + -------
47
 *                            R - r
48
 *                                 r*R1(r)
49
 *                     = 1 + r + ----------- (for better accuracy)
50
 *                                2 - R1(r)
51
 *      where
52
 *                               2       4             10
53
 *              R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
54
 *
55
 *   3. Scale back to obtain exp(x):
56
 *      From step 1, we have
57
 *         exp(x) = 2^k * exp(r)
58
 *
59
 * Special cases:
60
 *      exp(INF) is INF, exp(NaN) is NaN;
61
 *      exp(-INF) is 0, and
62
 *      for finite argument, only exp(0)=1 is exact.
63
 *
64
 * Accuracy:
65
 *      according to an error analysis, the error is always less than
66
 *      1 ulp (unit in the last place).
67
 *
68
 * Misc. info.
69
 *      For IEEE double
70
 *          if x >  7.09782712893383973096e+02 then exp(x) overflow
71
 *          if x < -7.45133219101941108420e+02 then exp(x) underflow
72
 *
73
 * Constants:
74
 * The hexadecimal values are the intended ones for the following
75
 * constants. The decimal values may be used, provided that the
76
 * compiler will convert from decimal to binary accurately enough
77
 * to produce the hexadecimal values shown.
78
 */
79
 
80
#include "math.h"
81
#include "math_private.h"
82
 
83
#ifdef __STDC__
84
static const double
85
#else
86
static double
87
#endif
88
one     = 1.0,
89
halF[2] = {0.5,-0.5,},
90
huge    = 1.0e+300,
91
twom1000= 9.33263618503218878990e-302,     /* 2**-1000=0x01700000,0*/
92
o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */
93
u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */
94
ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */
95
             -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
96
ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */
97
             -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
98
invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
99
P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
100
P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
101
P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
102
P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
103
P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
104
 
105
 
106
#ifdef __STDC__
107
        double __generic___ieee754_exp(double x)        /* default IEEE double exp */
108
#else
109
        double __generic___ieee754_exp(x)       /* default IEEE double exp */
110
        double x;
111
#endif
112
{
113
        double y,hi=0.0,lo=0.0,c,t;
114
        int32_t k=0,xsb;
115
        u_int32_t hx;
116
 
117
        GET_HIGH_WORD(hx,x);
118
        xsb = (hx>>31)&1;               /* sign bit of x */
119
        hx &= 0x7fffffff;               /* high word of |x| */
120
 
121
    /* filter out non-finite argument */
122
        if(hx >= 0x40862E42) {                  /* if |x|>=709.78... */
123
            if(hx>=0x7ff00000) {
124
                u_int32_t lx;
125
                GET_LOW_WORD(lx,x);
126
                if(((hx&0xfffff)|lx)!=0)
127
                     return x+x;                /* NaN */
128
                else return (xsb==0)? x:0.0;    /* exp(+-inf)={inf,0} */
129
            }
130
            if(x > o_threshold) return huge*huge; /* overflow */
131
            if(x < u_threshold) return twom1000*twom1000; /* underflow */
132
        }
133
 
134
    /* argument reduction */
135
        if(hx > 0x3fd62e42) {           /* if  |x| > 0.5 ln2 */
136
            if(hx < 0x3FF0A2B2) {       /* and |x| < 1.5 ln2 */
137
                hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
138
            } else {
139
                k  = invln2*x+halF[xsb];
140
                t  = k;
141
                hi = x - t*ln2HI[0];    /* t*ln2HI is exact here */
142
                lo = t*ln2LO[0];
143
            }
144
            x  = hi - lo;
145
        }
146
        else if(hx < 0x3e300000)  {     /* when |x|<2**-28 */
147
            if(huge+x>one) return one+x;/* trigger inexact */
148
        }
149
        else k = 0;
150
 
151
    /* x is now in primary range */
152
        t  = x*x;
153
        c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
154
        if(k==0)        return one-((x*c)/(c-2.0)-x);
155
        else            y = one-((lo-(x*c)/(2.0-c))-hi);
156
        if(k >= -1021) {
157
            u_int32_t hy;
158
            GET_HIGH_WORD(hy,y);
159
            SET_HIGH_WORD(y,hy+(k<<20));        /* add k to y's exponent */
160
            return y;
161
        } else {
162
            u_int32_t hy;
163
            GET_HIGH_WORD(hy,y);
164
            SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */
165
            return y*twom1000;
166
        }
167
}