Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | pj | 1 | /* @(#)e_exp.c 5.1 93/09/24 */ |
2 | /* |
||
3 | * ==================================================== |
||
4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
||
5 | * |
||
6 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
||
7 | * Permission to use, copy, modify, and distribute this |
||
8 | * software is freely granted, provided that this notice |
||
9 | * is preserved. |
||
10 | * ==================================================== |
||
11 | */ |
||
12 | |||
13 | #ifndef lint |
||
14 | static char rcsid[] = "$\Id: e_exp.c,v 1.3.2.1 1997/02/23 11:03:02 joerg Exp $"; |
||
15 | #endif |
||
16 | |||
17 | /* __ieee754_exp(x) |
||
18 | * Returns the exponential of x. |
||
19 | * |
||
20 | * Method |
||
21 | * 1. Argument reduction: |
||
22 | * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. |
||
23 | * Given x, find r and integer k such that |
||
24 | * |
||
25 | * x = k*ln2 + r, |r| <= 0.5*ln2. |
||
26 | * |
||
27 | * Here r will be represented as r = hi-lo for better |
||
28 | * accuracy. |
||
29 | * |
||
30 | * 2. Approximation of exp(r) by a special rational function on |
||
31 | * the interval [0,0.34658]: |
||
32 | * Write |
||
33 | * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... |
||
34 | * We use a special Reme algorithm on [0,0.34658] to generate |
||
35 | * a polynomial of degree 5 to approximate R. The maximum error |
||
36 | * of this polynomial approximation is bounded by 2**-59. In |
||
37 | * other words, |
||
38 | * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 |
||
39 | * (where z=r*r, and the values of P1 to P5 are listed below) |
||
40 | * and |
||
41 | * | 5 | -59 |
||
42 | * | 2.0+P1*z+...+P5*z - R(z) | <= 2 |
||
43 | * | | |
||
44 | * The computation of exp(r) thus becomes |
||
45 | * 2*r |
||
46 | * exp(r) = 1 + ------- |
||
47 | * R - r |
||
48 | * r*R1(r) |
||
49 | * = 1 + r + ----------- (for better accuracy) |
||
50 | * 2 - R1(r) |
||
51 | * where |
||
52 | * 2 4 10 |
||
53 | * R1(r) = r - (P1*r + P2*r + ... + P5*r ). |
||
54 | * |
||
55 | * 3. Scale back to obtain exp(x): |
||
56 | * From step 1, we have |
||
57 | * exp(x) = 2^k * exp(r) |
||
58 | * |
||
59 | * Special cases: |
||
60 | * exp(INF) is INF, exp(NaN) is NaN; |
||
61 | * exp(-INF) is 0, and |
||
62 | * for finite argument, only exp(0)=1 is exact. |
||
63 | * |
||
64 | * Accuracy: |
||
65 | * according to an error analysis, the error is always less than |
||
66 | * 1 ulp (unit in the last place). |
||
67 | * |
||
68 | * Misc. info. |
||
69 | * For IEEE double |
||
70 | * if x > 7.09782712893383973096e+02 then exp(x) overflow |
||
71 | * if x < -7.45133219101941108420e+02 then exp(x) underflow |
||
72 | * |
||
73 | * Constants: |
||
74 | * The hexadecimal values are the intended ones for the following |
||
75 | * constants. The decimal values may be used, provided that the |
||
76 | * compiler will convert from decimal to binary accurately enough |
||
77 | * to produce the hexadecimal values shown. |
||
78 | */ |
||
79 | |||
80 | #include "math.h" |
||
81 | #include "math_private.h" |
||
82 | |||
83 | #ifdef __STDC__ |
||
84 | static const double |
||
85 | #else |
||
86 | static double |
||
87 | #endif |
||
88 | one = 1.0, |
||
89 | halF[2] = {0.5,-0.5,}, |
||
90 | huge = 1.0e+300, |
||
91 | twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/ |
||
92 | o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */ |
||
93 | u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */ |
||
94 | ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ |
||
95 | -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */ |
||
96 | ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ |
||
97 | -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */ |
||
98 | invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */ |
||
99 | P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ |
||
100 | P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ |
||
101 | P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ |
||
102 | P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ |
||
103 | P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ |
||
104 | |||
105 | |||
106 | #ifdef __STDC__ |
||
107 | double __generic___ieee754_exp(double x) /* default IEEE double exp */ |
||
108 | #else |
||
109 | double __generic___ieee754_exp(x) /* default IEEE double exp */ |
||
110 | double x; |
||
111 | #endif |
||
112 | { |
||
113 | double y,hi=0.0,lo=0.0,c,t; |
||
114 | int32_t k=0,xsb; |
||
115 | u_int32_t hx; |
||
116 | |||
117 | GET_HIGH_WORD(hx,x); |
||
118 | xsb = (hx>>31)&1; /* sign bit of x */ |
||
119 | hx &= 0x7fffffff; /* high word of |x| */ |
||
120 | |||
121 | /* filter out non-finite argument */ |
||
122 | if(hx >= 0x40862E42) { /* if |x|>=709.78... */ |
||
123 | if(hx>=0x7ff00000) { |
||
124 | u_int32_t lx; |
||
125 | GET_LOW_WORD(lx,x); |
||
126 | if(((hx&0xfffff)|lx)!=0) |
||
127 | return x+x; /* NaN */ |
||
128 | else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */ |
||
129 | } |
||
130 | if(x > o_threshold) return huge*huge; /* overflow */ |
||
131 | if(x < u_threshold) return twom1000*twom1000; /* underflow */ |
||
132 | } |
||
133 | |||
134 | /* argument reduction */ |
||
135 | if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ |
||
136 | if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ |
||
137 | hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb; |
||
138 | } else { |
||
139 | k = invln2*x+halF[xsb]; |
||
140 | t = k; |
||
141 | hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */ |
||
142 | lo = t*ln2LO[0]; |
||
143 | } |
||
144 | x = hi - lo; |
||
145 | } |
||
146 | else if(hx < 0x3e300000) { /* when |x|<2**-28 */ |
||
147 | if(huge+x>one) return one+x;/* trigger inexact */ |
||
148 | } |
||
149 | else k = 0; |
||
150 | |||
151 | /* x is now in primary range */ |
||
152 | t = x*x; |
||
153 | c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); |
||
154 | if(k==0) return one-((x*c)/(c-2.0)-x); |
||
155 | else y = one-((lo-(x*c)/(2.0-c))-hi); |
||
156 | if(k >= -1021) { |
||
157 | u_int32_t hy; |
||
158 | GET_HIGH_WORD(hy,y); |
||
159 | SET_HIGH_WORD(y,hy+(k<<20)); /* add k to y's exponent */ |
||
160 | return y; |
||
161 | } else { |
||
162 | u_int32_t hy; |
||
163 | GET_HIGH_WORD(hy,y); |
||
164 | SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */ |
||
165 | return y*twom1000; |
||
166 | } |
||
167 | } |