Subversion Repositories shark

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 pj 1
/* @(#)e_hypot.c 5.1 93/09/24 */
2
/*
3
 * ====================================================
4
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5
 *
6
 * Developed at SunPro, a Sun Microsystems, Inc. business.
7
 * Permission to use, copy, modify, and distribute this
8
 * software is freely granted, provided that this notice
9
 * is preserved.
10
 * ====================================================
11
 */
12
 
13
#ifndef lint
14
static char rcsid[] = "$\Id: e_hypot.c,v 1.2 1995/05/30 05:48:16 rgrimes Exp $";
15
#endif
16
 
17
/* __ieee754_hypot(x,y)
18
 *
19
 * Method :
20
 *      If (assume round-to-nearest) z=x*x+y*y
21
 *      has error less than sqrt(2)/2 ulp, than
22
 *      sqrt(z) has error less than 1 ulp (exercise).
23
 *
24
 *      So, compute sqrt(x*x+y*y) with some care as
25
 *      follows to get the error below 1 ulp:
26
 *
27
 *      Assume x>y>0;
28
 *      (if possible, set rounding to round-to-nearest)
29
 *      1. if x > 2y  use
30
 *              x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
31
 *      where x1 = x with lower 32 bits cleared, x2 = x-x1; else
32
 *      2. if x <= 2y use
33
 *              t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
34
 *      where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
35
 *      y1= y with lower 32 bits chopped, y2 = y-y1.
36
 *
37
 *      NOTE: scaling may be necessary if some argument is too
38
 *            large or too tiny
39
 *
40
 * Special cases:
41
 *      hypot(x,y) is INF if x or y is +INF or -INF; else
42
 *      hypot(x,y) is NAN if x or y is NAN.
43
 *
44
 * Accuracy:
45
 *      hypot(x,y) returns sqrt(x^2+y^2) with error less
46
 *      than 1 ulps (units in the last place)
47
 */
48
 
49
#include "math.h"
50
#include "math_private.h"
51
 
52
#ifdef __STDC__
53
        double __ieee754_hypot(double x, double y)
54
#else
55
        double __ieee754_hypot(x,y)
56
        double x, y;
57
#endif
58
{
59
        double a=x,b=y,t1,t2,y1,y2,w;
60
        int32_t j,k,ha,hb;
61
 
62
        GET_HIGH_WORD(ha,x);
63
        ha &= 0x7fffffff;
64
        GET_HIGH_WORD(hb,y);
65
        hb &= 0x7fffffff;
66
        if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
67
        SET_HIGH_WORD(a,ha);    /* a <- |a| */
68
        SET_HIGH_WORD(b,hb);    /* b <- |b| */
69
        if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
70
        k=0;
71
        if(ha > 0x5f300000) {   /* a>2**500 */
72
           if(ha >= 0x7ff00000) {       /* Inf or NaN */
73
               u_int32_t low;
74
               w = a+b;                 /* for sNaN */
75
               GET_LOW_WORD(low,a);
76
               if(((ha&0xfffff)|low)==0) w = a;
77
               GET_LOW_WORD(low,b);
78
               if(((hb^0x7ff00000)|low)==0) w = b;
79
               return w;
80
           }
81
           /* scale a and b by 2**-600 */
82
           ha -= 0x25800000; hb -= 0x25800000;  k += 600;
83
           SET_HIGH_WORD(a,ha);
84
           SET_HIGH_WORD(b,hb);
85
        }
86
        if(hb < 0x20b00000) {   /* b < 2**-500 */
87
            if(hb <= 0x000fffff) {      /* subnormal b or 0 */
88
                u_int32_t low;
89
                GET_LOW_WORD(low,b);
90
                if((hb|low)==0) return a;
91
                t1=0;
92
                SET_HIGH_WORD(t1,0x7fd00000);   /* t1=2^1022 */
93
                b *= t1;
94
                a *= t1;
95
                k -= 1022;
96
            } else {            /* scale a and b by 2^600 */
97
                ha += 0x25800000;       /* a *= 2^600 */
98
                hb += 0x25800000;       /* b *= 2^600 */
99
                k -= 600;
100
                SET_HIGH_WORD(a,ha);
101
                SET_HIGH_WORD(b,hb);
102
            }
103
        }
104
    /* medium size a and b */
105
        w = a-b;
106
        if (w>b) {
107
            t1 = 0;
108
            SET_HIGH_WORD(t1,ha);
109
            t2 = a-t1;
110
            w  = sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
111
        } else {
112
            a  = a+a;
113
            y1 = 0;
114
            SET_HIGH_WORD(y1,hb);
115
            y2 = b - y1;
116
            t1 = 0;
117
            SET_HIGH_WORD(t1,ha+0x00100000);
118
            t2 = a - t1;
119
            w  = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
120
        }
121
        if(k!=0) {
122
            u_int32_t high;
123
            t1 = 1.0;
124
            GET_HIGH_WORD(high,t1);
125
            SET_HIGH_WORD(t1,high+(k<<20));
126
            return t1*w;
127
        } else return w;
128
}