Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | pj | 1 | /* @(#)e_hypot.c 5.1 93/09/24 */ |
2 | /* |
||
3 | * ==================================================== |
||
4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
||
5 | * |
||
6 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
||
7 | * Permission to use, copy, modify, and distribute this |
||
8 | * software is freely granted, provided that this notice |
||
9 | * is preserved. |
||
10 | * ==================================================== |
||
11 | */ |
||
12 | |||
13 | #ifndef lint |
||
14 | static char rcsid[] = "$\Id: e_hypot.c,v 1.2 1995/05/30 05:48:16 rgrimes Exp $"; |
||
15 | #endif |
||
16 | |||
17 | /* __ieee754_hypot(x,y) |
||
18 | * |
||
19 | * Method : |
||
20 | * If (assume round-to-nearest) z=x*x+y*y |
||
21 | * has error less than sqrt(2)/2 ulp, than |
||
22 | * sqrt(z) has error less than 1 ulp (exercise). |
||
23 | * |
||
24 | * So, compute sqrt(x*x+y*y) with some care as |
||
25 | * follows to get the error below 1 ulp: |
||
26 | * |
||
27 | * Assume x>y>0; |
||
28 | * (if possible, set rounding to round-to-nearest) |
||
29 | * 1. if x > 2y use |
||
30 | * x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y |
||
31 | * where x1 = x with lower 32 bits cleared, x2 = x-x1; else |
||
32 | * 2. if x <= 2y use |
||
33 | * t1*y1+((x-y)*(x-y)+(t1*y2+t2*y)) |
||
34 | * where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1, |
||
35 | * y1= y with lower 32 bits chopped, y2 = y-y1. |
||
36 | * |
||
37 | * NOTE: scaling may be necessary if some argument is too |
||
38 | * large or too tiny |
||
39 | * |
||
40 | * Special cases: |
||
41 | * hypot(x,y) is INF if x or y is +INF or -INF; else |
||
42 | * hypot(x,y) is NAN if x or y is NAN. |
||
43 | * |
||
44 | * Accuracy: |
||
45 | * hypot(x,y) returns sqrt(x^2+y^2) with error less |
||
46 | * than 1 ulps (units in the last place) |
||
47 | */ |
||
48 | |||
49 | #include "math.h" |
||
50 | #include "math_private.h" |
||
51 | |||
52 | #ifdef __STDC__ |
||
53 | double __ieee754_hypot(double x, double y) |
||
54 | #else |
||
55 | double __ieee754_hypot(x,y) |
||
56 | double x, y; |
||
57 | #endif |
||
58 | { |
||
59 | double a=x,b=y,t1,t2,y1,y2,w; |
||
60 | int32_t j,k,ha,hb; |
||
61 | |||
62 | GET_HIGH_WORD(ha,x); |
||
63 | ha &= 0x7fffffff; |
||
64 | GET_HIGH_WORD(hb,y); |
||
65 | hb &= 0x7fffffff; |
||
66 | if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;} |
||
67 | SET_HIGH_WORD(a,ha); /* a <- |a| */ |
||
68 | SET_HIGH_WORD(b,hb); /* b <- |b| */ |
||
69 | if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */ |
||
70 | k=0; |
||
71 | if(ha > 0x5f300000) { /* a>2**500 */ |
||
72 | if(ha >= 0x7ff00000) { /* Inf or NaN */ |
||
73 | u_int32_t low; |
||
74 | w = a+b; /* for sNaN */ |
||
75 | GET_LOW_WORD(low,a); |
||
76 | if(((ha&0xfffff)|low)==0) w = a; |
||
77 | GET_LOW_WORD(low,b); |
||
78 | if(((hb^0x7ff00000)|low)==0) w = b; |
||
79 | return w; |
||
80 | } |
||
81 | /* scale a and b by 2**-600 */ |
||
82 | ha -= 0x25800000; hb -= 0x25800000; k += 600; |
||
83 | SET_HIGH_WORD(a,ha); |
||
84 | SET_HIGH_WORD(b,hb); |
||
85 | } |
||
86 | if(hb < 0x20b00000) { /* b < 2**-500 */ |
||
87 | if(hb <= 0x000fffff) { /* subnormal b or 0 */ |
||
88 | u_int32_t low; |
||
89 | GET_LOW_WORD(low,b); |
||
90 | if((hb|low)==0) return a; |
||
91 | t1=0; |
||
92 | SET_HIGH_WORD(t1,0x7fd00000); /* t1=2^1022 */ |
||
93 | b *= t1; |
||
94 | a *= t1; |
||
95 | k -= 1022; |
||
96 | } else { /* scale a and b by 2^600 */ |
||
97 | ha += 0x25800000; /* a *= 2^600 */ |
||
98 | hb += 0x25800000; /* b *= 2^600 */ |
||
99 | k -= 600; |
||
100 | SET_HIGH_WORD(a,ha); |
||
101 | SET_HIGH_WORD(b,hb); |
||
102 | } |
||
103 | } |
||
104 | /* medium size a and b */ |
||
105 | w = a-b; |
||
106 | if (w>b) { |
||
107 | t1 = 0; |
||
108 | SET_HIGH_WORD(t1,ha); |
||
109 | t2 = a-t1; |
||
110 | w = sqrt(t1*t1-(b*(-b)-t2*(a+t1))); |
||
111 | } else { |
||
112 | a = a+a; |
||
113 | y1 = 0; |
||
114 | SET_HIGH_WORD(y1,hb); |
||
115 | y2 = b - y1; |
||
116 | t1 = 0; |
||
117 | SET_HIGH_WORD(t1,ha+0x00100000); |
||
118 | t2 = a - t1; |
||
119 | w = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b))); |
||
120 | } |
||
121 | if(k!=0) { |
||
122 | u_int32_t high; |
||
123 | t1 = 1.0; |
||
124 | GET_HIGH_WORD(high,t1); |
||
125 | SET_HIGH_WORD(t1,high+(k<<20)); |
||
126 | return t1*w; |
||
127 | } else return w; |
||
128 | } |