Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | pj | 1 | /* @(#)e_j1.c 5.1 93/09/24 */ |
2 | /* |
||
3 | * ==================================================== |
||
4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
||
5 | * |
||
6 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
||
7 | * Permission to use, copy, modify, and distribute this |
||
8 | * software is freely granted, provided that this notice |
||
9 | * is preserved. |
||
10 | * ==================================================== |
||
11 | */ |
||
12 | |||
13 | #ifndef lint |
||
14 | static char rcsid[] = "$\Id: e_j1.c,v 1.2 1995/05/30 05:48:20 rgrimes Exp $"; |
||
15 | #endif |
||
16 | |||
17 | /* __ieee754_j1(x), __ieee754_y1(x) |
||
18 | * Bessel function of the first and second kinds of order zero. |
||
19 | * Method -- j1(x): |
||
20 | * 1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ... |
||
21 | * 2. Reduce x to |x| since j1(x)=-j1(-x), and |
||
22 | * for x in (0,2) |
||
23 | * j1(x) = x/2 + x*z*R0/S0, where z = x*x; |
||
24 | * (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 ) |
||
25 | * for x in (2,inf) |
||
26 | * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1)) |
||
27 | * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1)) |
||
28 | * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1) |
||
29 | * as follow: |
||
30 | * cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) |
||
31 | * = 1/sqrt(2) * (sin(x) - cos(x)) |
||
32 | * sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) |
||
33 | * = -1/sqrt(2) * (sin(x) + cos(x)) |
||
34 | * (To avoid cancellation, use |
||
35 | * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) |
||
36 | * to compute the worse one.) |
||
37 | * |
||
38 | * 3 Special cases |
||
39 | * j1(nan)= nan |
||
40 | * j1(0) = 0 |
||
41 | * j1(inf) = 0 |
||
42 | * |
||
43 | * Method -- y1(x): |
||
44 | * 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN |
||
45 | * 2. For x<2. |
||
46 | * Since |
||
47 | * y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...) |
||
48 | * therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function. |
||
49 | * We use the following function to approximate y1, |
||
50 | * y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2 |
||
51 | * where for x in [0,2] (abs err less than 2**-65.89) |
||
52 | * U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4 |
||
53 | * V(z) = 1 + v0[0]*z + ... + v0[4]*z^5 |
||
54 | * Note: For tiny x, 1/x dominate y1 and hence |
||
55 | * y1(tiny) = -2/pi/tiny, (choose tiny<2**-54) |
||
56 | * 3. For x>=2. |
||
57 | * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1)) |
||
58 | * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1) |
||
59 | * by method mentioned above. |
||
60 | */ |
||
61 | |||
62 | #include "math.h" |
||
63 | #include "math_private.h" |
||
64 | |||
65 | #ifdef __STDC__ |
||
66 | static double pone(double), qone(double); |
||
67 | #else |
||
68 | static double pone(), qone(); |
||
69 | #endif |
||
70 | |||
71 | #ifdef __STDC__ |
||
72 | static const double |
||
73 | #else |
||
74 | static double |
||
75 | #endif |
||
76 | huge = 1e300, |
||
77 | one = 1.0, |
||
78 | invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */ |
||
79 | tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */ |
||
80 | /* R0/S0 on [0,2] */ |
||
81 | r00 = -6.25000000000000000000e-02, /* 0xBFB00000, 0x00000000 */ |
||
82 | r01 = 1.40705666955189706048e-03, /* 0x3F570D9F, 0x98472C61 */ |
||
83 | r02 = -1.59955631084035597520e-05, /* 0xBEF0C5C6, 0xBA169668 */ |
||
84 | r03 = 4.96727999609584448412e-08, /* 0x3E6AAAFA, 0x46CA0BD9 */ |
||
85 | s01 = 1.91537599538363460805e-02, /* 0x3F939D0B, 0x12637E53 */ |
||
86 | s02 = 1.85946785588630915560e-04, /* 0x3F285F56, 0xB9CDF664 */ |
||
87 | s03 = 1.17718464042623683263e-06, /* 0x3EB3BFF8, 0x333F8498 */ |
||
88 | s04 = 5.04636257076217042715e-09, /* 0x3E35AC88, 0xC97DFF2C */ |
||
89 | s05 = 1.23542274426137913908e-11; /* 0x3DAB2ACF, 0xCFB97ED8 */ |
||
90 | |||
91 | #ifdef __STDC__ |
||
92 | static const double zero = 0.0; |
||
93 | #else |
||
94 | static double zero = 0.0; |
||
95 | #endif |
||
96 | |||
97 | #ifdef __STDC__ |
||
98 | double __ieee754_j1(double x) |
||
99 | #else |
||
100 | double __ieee754_j1(x) |
||
101 | double x; |
||
102 | #endif |
||
103 | { |
||
104 | double z, s,c,ss,cc,r,u,v,y; |
||
105 | int32_t hx,ix; |
||
106 | |||
107 | GET_HIGH_WORD(hx,x); |
||
108 | ix = hx&0x7fffffff; |
||
109 | if(ix>=0x7ff00000) return one/x; |
||
110 | y = fabs(x); |
||
111 | if(ix >= 0x40000000) { /* |x| >= 2.0 */ |
||
112 | s = sin(y); |
||
113 | c = cos(y); |
||
114 | ss = -s-c; |
||
115 | cc = s-c; |
||
116 | if(ix<0x7fe00000) { /* make sure y+y not overflow */ |
||
117 | z = cos(y+y); |
||
118 | if ((s*c)>zero) cc = z/ss; |
||
119 | else ss = z/cc; |
||
120 | } |
||
121 | /* |
||
122 | * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x) |
||
123 | * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x) |
||
124 | */ |
||
125 | if(ix>0x48000000) z = (invsqrtpi*cc)/sqrt(y); |
||
126 | else { |
||
127 | u = pone(y); v = qone(y); |
||
128 | z = invsqrtpi*(u*cc-v*ss)/sqrt(y); |
||
129 | } |
||
130 | if(hx<0) return -z; |
||
131 | else return z; |
||
132 | } |
||
133 | if(ix<0x3e400000) { /* |x|<2**-27 */ |
||
134 | if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */ |
||
135 | } |
||
136 | z = x*x; |
||
137 | r = z*(r00+z*(r01+z*(r02+z*r03))); |
||
138 | s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05)))); |
||
139 | r *= x; |
||
140 | return(x*0.5+r/s); |
||
141 | } |
||
142 | |||
143 | #ifdef __STDC__ |
||
144 | static const double U0[5] = { |
||
145 | #else |
||
146 | static double U0[5] = { |
||
147 | #endif |
||
148 | -1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */ |
||
149 | 5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */ |
||
150 | -1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */ |
||
151 | 2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */ |
||
152 | -9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */ |
||
153 | }; |
||
154 | #ifdef __STDC__ |
||
155 | static const double V0[5] = { |
||
156 | #else |
||
157 | static double V0[5] = { |
||
158 | #endif |
||
159 | 1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */ |
||
160 | 2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */ |
||
161 | 1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */ |
||
162 | 6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */ |
||
163 | 1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */ |
||
164 | }; |
||
165 | |||
166 | #ifdef __STDC__ |
||
167 | double __ieee754_y1(double x) |
||
168 | #else |
||
169 | double __ieee754_y1(x) |
||
170 | double x; |
||
171 | #endif |
||
172 | { |
||
173 | double z, s,c,ss,cc,u,v; |
||
174 | int32_t hx,ix,lx; |
||
175 | |||
176 | EXTRACT_WORDS(hx,lx,x); |
||
177 | ix = 0x7fffffff&hx; |
||
178 | /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */ |
||
179 | if(ix>=0x7ff00000) return one/(x+x*x); |
||
180 | if((ix|lx)==0) return -one/zero; |
||
181 | if(hx<0) return zero/zero; |
||
182 | if(ix >= 0x40000000) { /* |x| >= 2.0 */ |
||
183 | s = sin(x); |
||
184 | c = cos(x); |
||
185 | ss = -s-c; |
||
186 | cc = s-c; |
||
187 | if(ix<0x7fe00000) { /* make sure x+x not overflow */ |
||
188 | z = cos(x+x); |
||
189 | if ((s*c)>zero) cc = z/ss; |
||
190 | else ss = z/cc; |
||
191 | } |
||
192 | /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0)) |
||
193 | * where x0 = x-3pi/4 |
||
194 | * Better formula: |
||
195 | * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) |
||
196 | * = 1/sqrt(2) * (sin(x) - cos(x)) |
||
197 | * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) |
||
198 | * = -1/sqrt(2) * (cos(x) + sin(x)) |
||
199 | * To avoid cancellation, use |
||
200 | * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) |
||
201 | * to compute the worse one. |
||
202 | */ |
||
203 | if(ix>0x48000000) z = (invsqrtpi*ss)/sqrt(x); |
||
204 | else { |
||
205 | u = pone(x); v = qone(x); |
||
206 | z = invsqrtpi*(u*ss+v*cc)/sqrt(x); |
||
207 | } |
||
208 | return z; |
||
209 | } |
||
210 | if(ix<=0x3c900000) { /* x < 2**-54 */ |
||
211 | return(-tpi/x); |
||
212 | } |
||
213 | z = x*x; |
||
214 | u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4]))); |
||
215 | v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4])))); |
||
216 | return(x*(u/v) + tpi*(__ieee754_j1(x)*__ieee754_log(x)-one/x)); |
||
217 | } |
||
218 | |||
219 | /* For x >= 8, the asymptotic expansions of pone is |
||
220 | * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x. |
||
221 | * We approximate pone by |
||
222 | * pone(x) = 1 + (R/S) |
||
223 | * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10 |
||
224 | * S = 1 + ps0*s^2 + ... + ps4*s^10 |
||
225 | * and |
||
226 | * | pone(x)-1-R/S | <= 2 ** ( -60.06) |
||
227 | */ |
||
228 | |||
229 | #ifdef __STDC__ |
||
230 | static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
||
231 | #else |
||
232 | static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
||
233 | #endif |
||
234 | 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ |
||
235 | 1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */ |
||
236 | 1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */ |
||
237 | 4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */ |
||
238 | 3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */ |
||
239 | 7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */ |
||
240 | }; |
||
241 | #ifdef __STDC__ |
||
242 | static const double ps8[5] = { |
||
243 | #else |
||
244 | static double ps8[5] = { |
||
245 | #endif |
||
246 | 1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */ |
||
247 | 3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */ |
||
248 | 3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */ |
||
249 | 9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */ |
||
250 | 3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */ |
||
251 | }; |
||
252 | |||
253 | #ifdef __STDC__ |
||
254 | static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
||
255 | #else |
||
256 | static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
||
257 | #endif |
||
258 | 1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */ |
||
259 | 1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */ |
||
260 | 6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */ |
||
261 | 1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */ |
||
262 | 5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */ |
||
263 | 5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */ |
||
264 | }; |
||
265 | #ifdef __STDC__ |
||
266 | static const double ps5[5] = { |
||
267 | #else |
||
268 | static double ps5[5] = { |
||
269 | #endif |
||
270 | 5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */ |
||
271 | 9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */ |
||
272 | 5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */ |
||
273 | 7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */ |
||
274 | 1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */ |
||
275 | }; |
||
276 | |||
277 | #ifdef __STDC__ |
||
278 | static const double pr3[6] = { |
||
279 | #else |
||
280 | static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ |
||
281 | #endif |
||
282 | 3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */ |
||
283 | 1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */ |
||
284 | 3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */ |
||
285 | 3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */ |
||
286 | 9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */ |
||
287 | 4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */ |
||
288 | }; |
||
289 | #ifdef __STDC__ |
||
290 | static const double ps3[5] = { |
||
291 | #else |
||
292 | static double ps3[5] = { |
||
293 | #endif |
||
294 | 3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */ |
||
295 | 3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */ |
||
296 | 1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */ |
||
297 | 8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */ |
||
298 | 1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */ |
||
299 | }; |
||
300 | |||
301 | #ifdef __STDC__ |
||
302 | static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
||
303 | #else |
||
304 | static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
||
305 | #endif |
||
306 | 1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */ |
||
307 | 1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */ |
||
308 | 2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */ |
||
309 | 1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */ |
||
310 | 1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */ |
||
311 | 5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */ |
||
312 | }; |
||
313 | #ifdef __STDC__ |
||
314 | static const double ps2[5] = { |
||
315 | #else |
||
316 | static double ps2[5] = { |
||
317 | #endif |
||
318 | 2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */ |
||
319 | 1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */ |
||
320 | 2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */ |
||
321 | 1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */ |
||
322 | 8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */ |
||
323 | }; |
||
324 | |||
325 | #ifdef __STDC__ |
||
326 | static double pone(double x) |
||
327 | #else |
||
328 | static double pone(x) |
||
329 | double x; |
||
330 | #endif |
||
331 | { |
||
332 | #ifdef __STDC__ |
||
333 | const double *p,*q; |
||
334 | #else |
||
335 | double *p,*q; |
||
336 | #endif |
||
337 | double z,r,s; |
||
338 | int32_t ix; |
||
339 | GET_HIGH_WORD(ix,x); |
||
340 | ix &= 0x7fffffff; |
||
341 | if(ix>=0x40200000) {p = pr8; q= ps8;} |
||
342 | else if(ix>=0x40122E8B){p = pr5; q= ps5;} |
||
343 | else if(ix>=0x4006DB6D){p = pr3; q= ps3;} |
||
344 | else if(ix>=0x40000000){p = pr2; q= ps2;} |
||
345 | z = one/(x*x); |
||
346 | r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); |
||
347 | s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); |
||
348 | return one+ r/s; |
||
349 | } |
||
350 | |||
351 | |||
352 | /* For x >= 8, the asymptotic expansions of qone is |
||
353 | * 3/8 s - 105/1024 s^3 - ..., where s = 1/x. |
||
354 | * We approximate pone by |
||
355 | * qone(x) = s*(0.375 + (R/S)) |
||
356 | * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10 |
||
357 | * S = 1 + qs1*s^2 + ... + qs6*s^12 |
||
358 | * and |
||
359 | * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13) |
||
360 | */ |
||
361 | |||
362 | #ifdef __STDC__ |
||
363 | static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
||
364 | #else |
||
365 | static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
||
366 | #endif |
||
367 | 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ |
||
368 | -1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */ |
||
369 | -1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */ |
||
370 | -7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */ |
||
371 | -1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */ |
||
372 | -4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */ |
||
373 | }; |
||
374 | #ifdef __STDC__ |
||
375 | static const double qs8[6] = { |
||
376 | #else |
||
377 | static double qs8[6] = { |
||
378 | #endif |
||
379 | 1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */ |
||
380 | 7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */ |
||
381 | 1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */ |
||
382 | 7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */ |
||
383 | 6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */ |
||
384 | -2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */ |
||
385 | }; |
||
386 | |||
387 | #ifdef __STDC__ |
||
388 | static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
||
389 | #else |
||
390 | static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
||
391 | #endif |
||
392 | -2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */ |
||
393 | -1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */ |
||
394 | -8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */ |
||
395 | -1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */ |
||
396 | -1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */ |
||
397 | -2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */ |
||
398 | }; |
||
399 | #ifdef __STDC__ |
||
400 | static const double qs5[6] = { |
||
401 | #else |
||
402 | static double qs5[6] = { |
||
403 | #endif |
||
404 | 8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */ |
||
405 | 1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */ |
||
406 | 1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */ |
||
407 | 4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */ |
||
408 | 2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */ |
||
409 | -4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */ |
||
410 | }; |
||
411 | |||
412 | #ifdef __STDC__ |
||
413 | static const double qr3[6] = { |
||
414 | #else |
||
415 | static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ |
||
416 | #endif |
||
417 | -5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */ |
||
418 | -1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */ |
||
419 | -4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */ |
||
420 | -5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */ |
||
421 | -2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */ |
||
422 | -2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */ |
||
423 | }; |
||
424 | #ifdef __STDC__ |
||
425 | static const double qs3[6] = { |
||
426 | #else |
||
427 | static double qs3[6] = { |
||
428 | #endif |
||
429 | 4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */ |
||
430 | 6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */ |
||
431 | 3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */ |
||
432 | 5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */ |
||
433 | 1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */ |
||
434 | -1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */ |
||
435 | }; |
||
436 | |||
437 | #ifdef __STDC__ |
||
438 | static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
||
439 | #else |
||
440 | static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
||
441 | #endif |
||
442 | -1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */ |
||
443 | -1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */ |
||
444 | -2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */ |
||
445 | -1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */ |
||
446 | -4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */ |
||
447 | -2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */ |
||
448 | }; |
||
449 | #ifdef __STDC__ |
||
450 | static const double qs2[6] = { |
||
451 | #else |
||
452 | static double qs2[6] = { |
||
453 | #endif |
||
454 | 2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */ |
||
455 | 2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */ |
||
456 | 7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */ |
||
457 | 7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */ |
||
458 | 1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */ |
||
459 | -4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */ |
||
460 | }; |
||
461 | |||
462 | #ifdef __STDC__ |
||
463 | static double qone(double x) |
||
464 | #else |
||
465 | static double qone(x) |
||
466 | double x; |
||
467 | #endif |
||
468 | { |
||
469 | #ifdef __STDC__ |
||
470 | const double *p,*q; |
||
471 | #else |
||
472 | double *p,*q; |
||
473 | #endif |
||
474 | double s,r,z; |
||
475 | int32_t ix; |
||
476 | GET_HIGH_WORD(ix,x); |
||
477 | ix &= 0x7fffffff; |
||
478 | if(ix>=0x40200000) {p = qr8; q= qs8;} |
||
479 | else if(ix>=0x40122E8B){p = qr5; q= qs5;} |
||
480 | else if(ix>=0x4006DB6D){p = qr3; q= qs3;} |
||
481 | else if(ix>=0x40000000){p = qr2; q= qs2;} |
||
482 | z = one/(x*x); |
||
483 | r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); |
||
484 | s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); |
||
485 | return (.375 + r/s)/x; |
||
486 | } |