Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | pj | 1 | /* e_j1f.c -- float version of e_j1.c. |
2 | * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
||
3 | */ |
||
4 | |||
5 | /* |
||
6 | * ==================================================== |
||
7 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
||
8 | * |
||
9 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
||
10 | * Permission to use, copy, modify, and distribute this |
||
11 | * software is freely granted, provided that this notice |
||
12 | * is preserved. |
||
13 | * ==================================================== |
||
14 | */ |
||
15 | |||
16 | #ifndef lint |
||
17 | static char rcsid[] = "$\Id: e_j1f.c,v 1.2 1995/05/30 05:48:23 rgrimes Exp $"; |
||
18 | #endif |
||
19 | |||
20 | #include "math.h" |
||
21 | #include "math_private.h" |
||
22 | |||
23 | #ifdef __STDC__ |
||
24 | static float ponef(float), qonef(float); |
||
25 | #else |
||
26 | static float ponef(), qonef(); |
||
27 | #endif |
||
28 | |||
29 | #ifdef __STDC__ |
||
30 | static const float |
||
31 | #else |
||
32 | static float |
||
33 | #endif |
||
34 | huge = 1e30, |
||
35 | one = 1.0, |
||
36 | invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */ |
||
37 | tpi = 6.3661974669e-01, /* 0x3f22f983 */ |
||
38 | /* R0/S0 on [0,2] */ |
||
39 | r00 = -6.2500000000e-02, /* 0xbd800000 */ |
||
40 | r01 = 1.4070566976e-03, /* 0x3ab86cfd */ |
||
41 | r02 = -1.5995563444e-05, /* 0xb7862e36 */ |
||
42 | r03 = 4.9672799207e-08, /* 0x335557d2 */ |
||
43 | s01 = 1.9153760746e-02, /* 0x3c9ce859 */ |
||
44 | s02 = 1.8594678841e-04, /* 0x3942fab6 */ |
||
45 | s03 = 1.1771846857e-06, /* 0x359dffc2 */ |
||
46 | s04 = 5.0463624390e-09, /* 0x31ad6446 */ |
||
47 | s05 = 1.2354227016e-11; /* 0x2d59567e */ |
||
48 | |||
49 | #ifdef __STDC__ |
||
50 | static const float zero = 0.0; |
||
51 | #else |
||
52 | static float zero = 0.0; |
||
53 | #endif |
||
54 | |||
55 | #ifdef __STDC__ |
||
56 | float __ieee754_j1f(float x) |
||
57 | #else |
||
58 | float __ieee754_j1f(x) |
||
59 | float x; |
||
60 | #endif |
||
61 | { |
||
62 | float z, s,c,ss,cc,r,u,v,y; |
||
63 | int32_t hx,ix; |
||
64 | |||
65 | GET_FLOAT_WORD(hx,x); |
||
66 | ix = hx&0x7fffffff; |
||
67 | if(ix>=0x7f800000) return one/x; |
||
68 | y = fabsf(x); |
||
69 | if(ix >= 0x40000000) { /* |x| >= 2.0 */ |
||
70 | s = sinf(y); |
||
71 | c = cosf(y); |
||
72 | ss = -s-c; |
||
73 | cc = s-c; |
||
74 | if(ix<0x7f000000) { /* make sure y+y not overflow */ |
||
75 | z = cosf(y+y); |
||
76 | if ((s*c)>zero) cc = z/ss; |
||
77 | else ss = z/cc; |
||
78 | } |
||
79 | /* |
||
80 | * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x) |
||
81 | * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x) |
||
82 | */ |
||
83 | if(ix>0x80000000) z = (invsqrtpi*cc)/sqrtf(y); |
||
84 | else { |
||
85 | u = ponef(y); v = qonef(y); |
||
86 | z = invsqrtpi*(u*cc-v*ss)/sqrtf(y); |
||
87 | } |
||
88 | if(hx<0) return -z; |
||
89 | else return z; |
||
90 | } |
||
91 | if(ix<0x32000000) { /* |x|<2**-27 */ |
||
92 | if(huge+x>one) return (float)0.5*x;/* inexact if x!=0 necessary */ |
||
93 | } |
||
94 | z = x*x; |
||
95 | r = z*(r00+z*(r01+z*(r02+z*r03))); |
||
96 | s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05)))); |
||
97 | r *= x; |
||
98 | return(x*(float)0.5+r/s); |
||
99 | } |
||
100 | |||
101 | #ifdef __STDC__ |
||
102 | static const float U0[5] = { |
||
103 | #else |
||
104 | static float U0[5] = { |
||
105 | #endif |
||
106 | -1.9605709612e-01, /* 0xbe48c331 */ |
||
107 | 5.0443872809e-02, /* 0x3d4e9e3c */ |
||
108 | -1.9125689287e-03, /* 0xbafaaf2a */ |
||
109 | 2.3525259166e-05, /* 0x37c5581c */ |
||
110 | -9.1909917899e-08, /* 0xb3c56003 */ |
||
111 | }; |
||
112 | #ifdef __STDC__ |
||
113 | static const float V0[5] = { |
||
114 | #else |
||
115 | static float V0[5] = { |
||
116 | #endif |
||
117 | 1.9916731864e-02, /* 0x3ca3286a */ |
||
118 | 2.0255257550e-04, /* 0x3954644b */ |
||
119 | 1.3560879779e-06, /* 0x35b602d4 */ |
||
120 | 6.2274145840e-09, /* 0x31d5f8eb */ |
||
121 | 1.6655924903e-11, /* 0x2d9281cf */ |
||
122 | }; |
||
123 | |||
124 | #ifdef __STDC__ |
||
125 | float __ieee754_y1f(float x) |
||
126 | #else |
||
127 | float __ieee754_y1f(x) |
||
128 | float x; |
||
129 | #endif |
||
130 | { |
||
131 | float z, s,c,ss,cc,u,v; |
||
132 | int32_t hx,ix; |
||
133 | |||
134 | GET_FLOAT_WORD(hx,x); |
||
135 | ix = 0x7fffffff&hx; |
||
136 | /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */ |
||
137 | if(ix>=0x7f800000) return one/(x+x*x); |
||
138 | if(ix==0) return -one/zero; |
||
139 | if(hx<0) return zero/zero; |
||
140 | if(ix >= 0x40000000) { /* |x| >= 2.0 */ |
||
141 | s = sinf(x); |
||
142 | c = cosf(x); |
||
143 | ss = -s-c; |
||
144 | cc = s-c; |
||
145 | if(ix<0x7f000000) { /* make sure x+x not overflow */ |
||
146 | z = cosf(x+x); |
||
147 | if ((s*c)>zero) cc = z/ss; |
||
148 | else ss = z/cc; |
||
149 | } |
||
150 | /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0)) |
||
151 | * where x0 = x-3pi/4 |
||
152 | * Better formula: |
||
153 | * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) |
||
154 | * = 1/sqrt(2) * (sin(x) - cos(x)) |
||
155 | * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) |
||
156 | * = -1/sqrt(2) * (cos(x) + sin(x)) |
||
157 | * To avoid cancellation, use |
||
158 | * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) |
||
159 | * to compute the worse one. |
||
160 | */ |
||
161 | if(ix>0x48000000) z = (invsqrtpi*ss)/sqrtf(x); |
||
162 | else { |
||
163 | u = ponef(x); v = qonef(x); |
||
164 | z = invsqrtpi*(u*ss+v*cc)/sqrtf(x); |
||
165 | } |
||
166 | return z; |
||
167 | } |
||
168 | if(ix<=0x24800000) { /* x < 2**-54 */ |
||
169 | return(-tpi/x); |
||
170 | } |
||
171 | z = x*x; |
||
172 | u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4]))); |
||
173 | v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4])))); |
||
174 | return(x*(u/v) + tpi*(__ieee754_j1f(x)*__ieee754_logf(x)-one/x)); |
||
175 | } |
||
176 | |||
177 | /* For x >= 8, the asymptotic expansions of pone is |
||
178 | * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x. |
||
179 | * We approximate pone by |
||
180 | * pone(x) = 1 + (R/S) |
||
181 | * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10 |
||
182 | * S = 1 + ps0*s^2 + ... + ps4*s^10 |
||
183 | * and |
||
184 | * | pone(x)-1-R/S | <= 2 ** ( -60.06) |
||
185 | */ |
||
186 | |||
187 | #ifdef __STDC__ |
||
188 | static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
||
189 | #else |
||
190 | static float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
||
191 | #endif |
||
192 | 0.0000000000e+00, /* 0x00000000 */ |
||
193 | 1.1718750000e-01, /* 0x3df00000 */ |
||
194 | 1.3239480972e+01, /* 0x4153d4ea */ |
||
195 | 4.1205184937e+02, /* 0x43ce06a3 */ |
||
196 | 3.8747453613e+03, /* 0x45722bed */ |
||
197 | 7.9144794922e+03, /* 0x45f753d6 */ |
||
198 | }; |
||
199 | #ifdef __STDC__ |
||
200 | static const float ps8[5] = { |
||
201 | #else |
||
202 | static float ps8[5] = { |
||
203 | #endif |
||
204 | 1.1420736694e+02, /* 0x42e46a2c */ |
||
205 | 3.6509309082e+03, /* 0x45642ee5 */ |
||
206 | 3.6956207031e+04, /* 0x47105c35 */ |
||
207 | 9.7602796875e+04, /* 0x47bea166 */ |
||
208 | 3.0804271484e+04, /* 0x46f0a88b */ |
||
209 | }; |
||
210 | |||
211 | #ifdef __STDC__ |
||
212 | static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
||
213 | #else |
||
214 | static float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
||
215 | #endif |
||
216 | 1.3199052094e-11, /* 0x2d68333f */ |
||
217 | 1.1718749255e-01, /* 0x3defffff */ |
||
218 | 6.8027510643e+00, /* 0x40d9b023 */ |
||
219 | 1.0830818176e+02, /* 0x42d89dca */ |
||
220 | 5.1763616943e+02, /* 0x440168b7 */ |
||
221 | 5.2871520996e+02, /* 0x44042dc6 */ |
||
222 | }; |
||
223 | #ifdef __STDC__ |
||
224 | static const float ps5[5] = { |
||
225 | #else |
||
226 | static float ps5[5] = { |
||
227 | #endif |
||
228 | 5.9280597687e+01, /* 0x426d1f55 */ |
||
229 | 9.9140142822e+02, /* 0x4477d9b1 */ |
||
230 | 5.3532670898e+03, /* 0x45a74a23 */ |
||
231 | 7.8446904297e+03, /* 0x45f52586 */ |
||
232 | 1.5040468750e+03, /* 0x44bc0180 */ |
||
233 | }; |
||
234 | |||
235 | #ifdef __STDC__ |
||
236 | static const float pr3[6] = { |
||
237 | #else |
||
238 | static float pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ |
||
239 | #endif |
||
240 | 3.0250391081e-09, /* 0x314fe10d */ |
||
241 | 1.1718686670e-01, /* 0x3defffab */ |
||
242 | 3.9329774380e+00, /* 0x407bb5e7 */ |
||
243 | 3.5119403839e+01, /* 0x420c7a45 */ |
||
244 | 9.1055007935e+01, /* 0x42b61c2a */ |
||
245 | 4.8559066772e+01, /* 0x42423c7c */ |
||
246 | }; |
||
247 | #ifdef __STDC__ |
||
248 | static const float ps3[5] = { |
||
249 | #else |
||
250 | static float ps3[5] = { |
||
251 | #endif |
||
252 | 3.4791309357e+01, /* 0x420b2a4d */ |
||
253 | 3.3676245117e+02, /* 0x43a86198 */ |
||
254 | 1.0468714600e+03, /* 0x4482dbe3 */ |
||
255 | 8.9081134033e+02, /* 0x445eb3ed */ |
||
256 | 1.0378793335e+02, /* 0x42cf936c */ |
||
257 | }; |
||
258 | |||
259 | #ifdef __STDC__ |
||
260 | static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
||
261 | #else |
||
262 | static float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
||
263 | #endif |
||
264 | 1.0771083225e-07, /* 0x33e74ea8 */ |
||
265 | 1.1717621982e-01, /* 0x3deffa16 */ |
||
266 | 2.3685150146e+00, /* 0x401795c0 */ |
||
267 | 1.2242610931e+01, /* 0x4143e1bc */ |
||
268 | 1.7693971634e+01, /* 0x418d8d41 */ |
||
269 | 5.0735230446e+00, /* 0x40a25a4d */ |
||
270 | }; |
||
271 | #ifdef __STDC__ |
||
272 | static const float ps2[5] = { |
||
273 | #else |
||
274 | static float ps2[5] = { |
||
275 | #endif |
||
276 | 2.1436485291e+01, /* 0x41ab7dec */ |
||
277 | 1.2529022980e+02, /* 0x42fa9499 */ |
||
278 | 2.3227647400e+02, /* 0x436846c7 */ |
||
279 | 1.1767937469e+02, /* 0x42eb5bd7 */ |
||
280 | 8.3646392822e+00, /* 0x4105d590 */ |
||
281 | }; |
||
282 | |||
283 | #ifdef __STDC__ |
||
284 | static float ponef(float x) |
||
285 | #else |
||
286 | static float ponef(x) |
||
287 | float x; |
||
288 | #endif |
||
289 | { |
||
290 | #ifdef __STDC__ |
||
291 | const float *p,*q; |
||
292 | #else |
||
293 | float *p,*q; |
||
294 | #endif |
||
295 | float z,r,s; |
||
296 | int32_t ix; |
||
297 | GET_FLOAT_WORD(ix,x); |
||
298 | ix &= 0x7fffffff; |
||
299 | if(ix>=0x41000000) {p = pr8; q= ps8;} |
||
300 | else if(ix>=0x40f71c58){p = pr5; q= ps5;} |
||
301 | else if(ix>=0x4036db68){p = pr3; q= ps3;} |
||
302 | else if(ix>=0x40000000){p = pr2; q= ps2;} |
||
303 | z = one/(x*x); |
||
304 | r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); |
||
305 | s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); |
||
306 | return one+ r/s; |
||
307 | } |
||
308 | |||
309 | |||
310 | /* For x >= 8, the asymptotic expansions of qone is |
||
311 | * 3/8 s - 105/1024 s^3 - ..., where s = 1/x. |
||
312 | * We approximate pone by |
||
313 | * qone(x) = s*(0.375 + (R/S)) |
||
314 | * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10 |
||
315 | * S = 1 + qs1*s^2 + ... + qs6*s^12 |
||
316 | * and |
||
317 | * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13) |
||
318 | */ |
||
319 | |||
320 | #ifdef __STDC__ |
||
321 | static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
||
322 | #else |
||
323 | static float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
||
324 | #endif |
||
325 | 0.0000000000e+00, /* 0x00000000 */ |
||
326 | -1.0253906250e-01, /* 0xbdd20000 */ |
||
327 | -1.6271753311e+01, /* 0xc1822c8d */ |
||
328 | -7.5960174561e+02, /* 0xc43de683 */ |
||
329 | -1.1849806641e+04, /* 0xc639273a */ |
||
330 | -4.8438511719e+04, /* 0xc73d3683 */ |
||
331 | }; |
||
332 | #ifdef __STDC__ |
||
333 | static const float qs8[6] = { |
||
334 | #else |
||
335 | static float qs8[6] = { |
||
336 | #endif |
||
337 | 1.6139537048e+02, /* 0x43216537 */ |
||
338 | 7.8253862305e+03, /* 0x45f48b17 */ |
||
339 | 1.3387534375e+05, /* 0x4802bcd6 */ |
||
340 | 7.1965775000e+05, /* 0x492fb29c */ |
||
341 | 6.6660125000e+05, /* 0x4922be94 */ |
||
342 | -2.9449025000e+05, /* 0xc88fcb48 */ |
||
343 | }; |
||
344 | |||
345 | #ifdef __STDC__ |
||
346 | static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
||
347 | #else |
||
348 | static float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
||
349 | #endif |
||
350 | -2.0897993405e-11, /* 0xadb7d219 */ |
||
351 | -1.0253904760e-01, /* 0xbdd1fffe */ |
||
352 | -8.0564479828e+00, /* 0xc100e736 */ |
||
353 | -1.8366960144e+02, /* 0xc337ab6b */ |
||
354 | -1.3731937256e+03, /* 0xc4aba633 */ |
||
355 | -2.6124443359e+03, /* 0xc523471c */ |
||
356 | }; |
||
357 | #ifdef __STDC__ |
||
358 | static const float qs5[6] = { |
||
359 | #else |
||
360 | static float qs5[6] = { |
||
361 | #endif |
||
362 | 8.1276550293e+01, /* 0x42a28d98 */ |
||
363 | 1.9917987061e+03, /* 0x44f8f98f */ |
||
364 | 1.7468484375e+04, /* 0x468878f8 */ |
||
365 | 4.9851425781e+04, /* 0x4742bb6d */ |
||
366 | 2.7948074219e+04, /* 0x46da5826 */ |
||
367 | -4.7191835938e+03, /* 0xc5937978 */ |
||
368 | }; |
||
369 | |||
370 | #ifdef __STDC__ |
||
371 | static const float qr3[6] = { |
||
372 | #else |
||
373 | static float qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ |
||
374 | #endif |
||
375 | -5.0783124372e-09, /* 0xb1ae7d4f */ |
||
376 | -1.0253783315e-01, /* 0xbdd1ff5b */ |
||
377 | -4.6101160049e+00, /* 0xc0938612 */ |
||
378 | -5.7847221375e+01, /* 0xc267638e */ |
||
379 | -2.2824453735e+02, /* 0xc3643e9a */ |
||
380 | -2.1921012878e+02, /* 0xc35b35cb */ |
||
381 | }; |
||
382 | #ifdef __STDC__ |
||
383 | static const float qs3[6] = { |
||
384 | #else |
||
385 | static float qs3[6] = { |
||
386 | #endif |
||
387 | 4.7665153503e+01, /* 0x423ea91e */ |
||
388 | 6.7386511230e+02, /* 0x4428775e */ |
||
389 | 3.3801528320e+03, /* 0x45534272 */ |
||
390 | 5.5477290039e+03, /* 0x45ad5dd5 */ |
||
391 | 1.9031191406e+03, /* 0x44ede3d0 */ |
||
392 | -1.3520118713e+02, /* 0xc3073381 */ |
||
393 | }; |
||
394 | |||
395 | #ifdef __STDC__ |
||
396 | static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
||
397 | #else |
||
398 | static float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
||
399 | #endif |
||
400 | -1.7838172539e-07, /* 0xb43f8932 */ |
||
401 | -1.0251704603e-01, /* 0xbdd1f475 */ |
||
402 | -2.7522056103e+00, /* 0xc0302423 */ |
||
403 | -1.9663616180e+01, /* 0xc19d4f16 */ |
||
404 | -4.2325313568e+01, /* 0xc2294d1f */ |
||
405 | -2.1371921539e+01, /* 0xc1aaf9b2 */ |
||
406 | }; |
||
407 | #ifdef __STDC__ |
||
408 | static const float qs2[6] = { |
||
409 | #else |
||
410 | static float qs2[6] = { |
||
411 | #endif |
||
412 | 2.9533363342e+01, /* 0x41ec4454 */ |
||
413 | 2.5298155212e+02, /* 0x437cfb47 */ |
||
414 | 7.5750280762e+02, /* 0x443d602e */ |
||
415 | 7.3939318848e+02, /* 0x4438d92a */ |
||
416 | 1.5594900513e+02, /* 0x431bf2f2 */ |
||
417 | -4.9594988823e+00, /* 0xc09eb437 */ |
||
418 | }; |
||
419 | |||
420 | #ifdef __STDC__ |
||
421 | static float qonef(float x) |
||
422 | #else |
||
423 | static float qonef(x) |
||
424 | float x; |
||
425 | #endif |
||
426 | { |
||
427 | #ifdef __STDC__ |
||
428 | const float *p,*q; |
||
429 | #else |
||
430 | float *p,*q; |
||
431 | #endif |
||
432 | float s,r,z; |
||
433 | int32_t ix; |
||
434 | GET_FLOAT_WORD(ix,x); |
||
435 | ix &= 0x7fffffff; |
||
436 | if(ix>=0x40200000) {p = qr8; q= qs8;} |
||
437 | else if(ix>=0x40f71c58){p = qr5; q= qs5;} |
||
438 | else if(ix>=0x4036db68){p = qr3; q= qs3;} |
||
439 | else if(ix>=0x40000000){p = qr2; q= qs2;} |
||
440 | z = one/(x*x); |
||
441 | r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); |
||
442 | s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); |
||
443 | return ((float).375 + r/s)/x; |
||
444 | } |