Subversion Repositories shark

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 pj 1
/* @(#)e_jn.c 5.1 93/09/24 */
2
/*
3
 * ====================================================
4
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5
 *
6
 * Developed at SunPro, a Sun Microsystems, Inc. business.
7
 * Permission to use, copy, modify, and distribute this
8
 * software is freely granted, provided that this notice
9
 * is preserved.
10
 * ====================================================
11
 */
12
 
13
#ifndef lint
14
static char rcsid[] = "$\Id: e_jn.c,v 1.3 1995/05/30 05:48:24 rgrimes Exp $";
15
#endif
16
 
17
/*
18
 * __ieee754_jn(n, x), __ieee754_yn(n, x)
19
 * floating point Bessel's function of the 1st and 2nd kind
20
 * of order n
21
 *
22
 * Special cases:
23
 *      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
24
 *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
25
 * Note 2. About jn(n,x), yn(n,x)
26
 *      For n=0, j0(x) is called,
27
 *      for n=1, j1(x) is called,
28
 *      for n<x, forward recursion us used starting
29
 *      from values of j0(x) and j1(x).
30
 *      for n>x, a continued fraction approximation to
31
 *      j(n,x)/j(n-1,x) is evaluated and then backward
32
 *      recursion is used starting from a supposed value
33
 *      for j(n,x). The resulting value of j(0,x) is
34
 *      compared with the actual value to correct the
35
 *      supposed value of j(n,x).
36
 *
37
 *      yn(n,x) is similar in all respects, except
38
 *      that forward recursion is used for all
39
 *      values of n>1.
40
 *
41
 */
42
 
43
#include "math.h"
44
#include "math_private.h"
45
 
46
#ifdef __STDC__
47
static const double
48
#else
49
static double
50
#endif
51
invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
52
two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
53
one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
54
 
55
#ifdef __STDC__
56
static const double zero  =  0.00000000000000000000e+00;
57
#else
58
static double zero  =  0.00000000000000000000e+00;
59
#endif
60
 
61
#ifdef __STDC__
62
        double __ieee754_jn(int n, double x)
63
#else
64
        double __ieee754_jn(n,x)
65
        int n; double x;
66
#endif
67
{
68
        int32_t i,hx,ix,lx, sgn;
69
        double a, b, temp, di;
70
        double z, w;
71
 
72
    /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
73
     * Thus, J(-n,x) = J(n,-x)
74
     */
75
        EXTRACT_WORDS(hx,lx,x);
76
        ix = 0x7fffffff&hx;
77
    /* if J(n,NaN) is NaN */
78
        if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
79
        if(n<0){
80
                n = -n;
81
                x = -x;
82
                hx ^= 0x80000000;
83
        }
84
        if(n==0) return(__ieee754_j0(x));
85
        if(n==1) return(__ieee754_j1(x));
86
        sgn = (n&1)&(hx>>31);   /* even n -- 0, odd n -- sign(x) */
87
        x = fabs(x);
88
        if((ix|lx)==0||ix>=0x7ff00000)  /* if x is 0 or inf */
89
            b = zero;
90
        else if((double)n<=x) {
91
                /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
92
            if(ix>=0x52D00000) { /* x > 2**302 */
93
    /* (x >> n**2)
94
     *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
95
     *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
96
     *      Let s=sin(x), c=cos(x),
97
     *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
98
     *
99
     *             n    sin(xn)*sqt2    cos(xn)*sqt2
100
     *          ----------------------------------
101
     *             0     s-c             c+s
102
     *             1    -s-c            -c+s
103
     *             2    -s+c            -c-s
104
     *             3     s+c             c-s
105
     */
106
                switch(n&3) {
107
                    case 0: temp =  cos(x)+sin(x); break;
108
                    case 1: temp = -cos(x)+sin(x); break;
109
                    case 2: temp = -cos(x)-sin(x); break;
110
                    case 3: temp =  cos(x)-sin(x); break;
111
                }
112
                b = invsqrtpi*temp/sqrt(x);
113
            } else {
114
                a = __ieee754_j0(x);
115
                b = __ieee754_j1(x);
116
                for(i=1;i<n;i++){
117
                    temp = b;
118
                    b = b*((double)(i+i)/x) - a; /* avoid underflow */
119
                    a = temp;
120
                }
121
            }
122
        } else {
123
            if(ix<0x3e100000) { /* x < 2**-29 */
124
    /* x is tiny, return the first Taylor expansion of J(n,x)
125
     * J(n,x) = 1/n!*(x/2)^n  - ...
126
     */
127
                if(n>33)        /* underflow */
128
                    b = zero;
129
                else {
130
                    temp = x*0.5; b = temp;
131
                    for (a=one,i=2;i<=n;i++) {
132
                        a *= (double)i;         /* a = n! */
133
                        b *= temp;              /* b = (x/2)^n */
134
                    }
135
                    b = b/a;
136
                }
137
            } else {
138
                /* use backward recurrence */
139
                /*                      x      x^2      x^2
140
                 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
141
                 *                      2n  - 2(n+1) - 2(n+2)
142
                 *
143
                 *                      1      1        1
144
                 *  (for large x)   =  ----  ------   ------   .....
145
                 *                      2n   2(n+1)   2(n+2)
146
                 *                      -- - ------ - ------ -
147
                 *                       x     x         x
148
                 *
149
                 * Let w = 2n/x and h=2/x, then the above quotient
150
                 * is equal to the continued fraction:
151
                 *                  1
152
                 *      = -----------------------
153
                 *                     1
154
                 *         w - -----------------
155
                 *                        1
156
                 *              w+h - ---------
157
                 *                     w+2h - ...
158
                 *
159
                 * To determine how many terms needed, let
160
                 * Q(0) = w, Q(1) = w(w+h) - 1,
161
                 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
162
                 * When Q(k) > 1e4      good for single
163
                 * When Q(k) > 1e9      good for double
164
                 * When Q(k) > 1e17     good for quadruple
165
                 */
166
            /* determine k */
167
                double t,v;
168
                double q0,q1,h,tmp; int32_t k,m;
169
                w  = (n+n)/(double)x; h = 2.0/(double)x;
170
                q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
171
                while(q1<1.0e9) {
172
                        k += 1; z += h;
173
                        tmp = z*q1 - q0;
174
                        q0 = q1;
175
                        q1 = tmp;
176
                }
177
                m = n+n;
178
                for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
179
                a = t;
180
                b = one;
181
                /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
182
                 *  Hence, if n*(log(2n/x)) > ...
183
                 *  single 8.8722839355e+01
184
                 *  double 7.09782712893383973096e+02
185
                 *  long double 1.1356523406294143949491931077970765006170e+04
186
                 *  then recurrent value may overflow and the result is
187
                 *  likely underflow to zero
188
                 */
189
                tmp = n;
190
                v = two/x;
191
                tmp = tmp*__ieee754_log(fabs(v*tmp));
192
                if(tmp<7.09782712893383973096e+02) {
193
                    for(i=n-1,di=(double)(i+i);i>0;i--){
194
                        temp = b;
195
                        b *= di;
196
                        b  = b/x - a;
197
                        a = temp;
198
                        di -= two;
199
                    }
200
                } else {
201
                    for(i=n-1,di=(double)(i+i);i>0;i--){
202
                        temp = b;
203
                        b *= di;
204
                        b  = b/x - a;
205
                        a = temp;
206
                        di -= two;
207
                    /* scale b to avoid spurious overflow */
208
                        if(b>1e100) {
209
                            a /= b;
210
                            t /= b;
211
                            b  = one;
212
                        }
213
                    }
214
                }
215
                b = (t*__ieee754_j0(x)/b);
216
            }
217
        }
218
        if(sgn==1) return -b; else return b;
219
}
220
 
221
#ifdef __STDC__
222
        double __ieee754_yn(int n, double x)
223
#else
224
        double __ieee754_yn(n,x)
225
        int n; double x;
226
#endif
227
{
228
        int32_t i,hx,ix,lx;
229
        int32_t sign;
230
        double a, b, temp;
231
 
232
        EXTRACT_WORDS(hx,lx,x);
233
        ix = 0x7fffffff&hx;
234
    /* if Y(n,NaN) is NaN */
235
        if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
236
        if((ix|lx)==0) return -one/zero;
237
        if(hx<0) return zero/zero;
238
        sign = 1;
239
        if(n<0){
240
                n = -n;
241
                sign = 1 - ((n&1)<<1);
242
        }
243
        if(n==0) return(__ieee754_y0(x));
244
        if(n==1) return(sign*__ieee754_y1(x));
245
        if(ix==0x7ff00000) return zero;
246
        if(ix>=0x52D00000) { /* x > 2**302 */
247
    /* (x >> n**2)
248
     *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
249
     *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
250
     *      Let s=sin(x), c=cos(x),
251
     *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
252
     *
253
     *             n    sin(xn)*sqt2    cos(xn)*sqt2
254
     *          ----------------------------------
255
     *             0     s-c             c+s
256
     *             1    -s-c            -c+s
257
     *             2    -s+c            -c-s
258
     *             3     s+c             c-s
259
     */
260
                switch(n&3) {
261
                    case 0: temp =  sin(x)-cos(x); break;
262
                    case 1: temp = -sin(x)-cos(x); break;
263
                    case 2: temp = -sin(x)+cos(x); break;
264
                    case 3: temp =  sin(x)+cos(x); break;
265
                }
266
                b = invsqrtpi*temp/sqrt(x);
267
        } else {
268
            u_int32_t high;
269
            a = __ieee754_y0(x);
270
            b = __ieee754_y1(x);
271
        /* quit if b is -inf */
272
            GET_HIGH_WORD(high,b);
273
            for(i=1;i<n&&high!=0xfff00000;i++){
274
                temp = b;
275
                b = ((double)(i+i)/x)*b - a;
276
                GET_HIGH_WORD(high,b);
277
                a = temp;
278
            }
279
        }
280
        if(sign>0) return b; else return -b;
281
}