Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | pj | 1 | /* @(#)e_jn.c 5.1 93/09/24 */ |
2 | /* |
||
3 | * ==================================================== |
||
4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
||
5 | * |
||
6 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
||
7 | * Permission to use, copy, modify, and distribute this |
||
8 | * software is freely granted, provided that this notice |
||
9 | * is preserved. |
||
10 | * ==================================================== |
||
11 | */ |
||
12 | |||
13 | #ifndef lint |
||
14 | static char rcsid[] = "$\Id: e_jn.c,v 1.3 1995/05/30 05:48:24 rgrimes Exp $"; |
||
15 | #endif |
||
16 | |||
17 | /* |
||
18 | * __ieee754_jn(n, x), __ieee754_yn(n, x) |
||
19 | * floating point Bessel's function of the 1st and 2nd kind |
||
20 | * of order n |
||
21 | * |
||
22 | * Special cases: |
||
23 | * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; |
||
24 | * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. |
||
25 | * Note 2. About jn(n,x), yn(n,x) |
||
26 | * For n=0, j0(x) is called, |
||
27 | * for n=1, j1(x) is called, |
||
28 | * for n<x, forward recursion us used starting |
||
29 | * from values of j0(x) and j1(x). |
||
30 | * for n>x, a continued fraction approximation to |
||
31 | * j(n,x)/j(n-1,x) is evaluated and then backward |
||
32 | * recursion is used starting from a supposed value |
||
33 | * for j(n,x). The resulting value of j(0,x) is |
||
34 | * compared with the actual value to correct the |
||
35 | * supposed value of j(n,x). |
||
36 | * |
||
37 | * yn(n,x) is similar in all respects, except |
||
38 | * that forward recursion is used for all |
||
39 | * values of n>1. |
||
40 | * |
||
41 | */ |
||
42 | |||
43 | #include "math.h" |
||
44 | #include "math_private.h" |
||
45 | |||
46 | #ifdef __STDC__ |
||
47 | static const double |
||
48 | #else |
||
49 | static double |
||
50 | #endif |
||
51 | invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */ |
||
52 | two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */ |
||
53 | one = 1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */ |
||
54 | |||
55 | #ifdef __STDC__ |
||
56 | static const double zero = 0.00000000000000000000e+00; |
||
57 | #else |
||
58 | static double zero = 0.00000000000000000000e+00; |
||
59 | #endif |
||
60 | |||
61 | #ifdef __STDC__ |
||
62 | double __ieee754_jn(int n, double x) |
||
63 | #else |
||
64 | double __ieee754_jn(n,x) |
||
65 | int n; double x; |
||
66 | #endif |
||
67 | { |
||
68 | int32_t i,hx,ix,lx, sgn; |
||
69 | double a, b, temp, di; |
||
70 | double z, w; |
||
71 | |||
72 | /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) |
||
73 | * Thus, J(-n,x) = J(n,-x) |
||
74 | */ |
||
75 | EXTRACT_WORDS(hx,lx,x); |
||
76 | ix = 0x7fffffff&hx; |
||
77 | /* if J(n,NaN) is NaN */ |
||
78 | if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x; |
||
79 | if(n<0){ |
||
80 | n = -n; |
||
81 | x = -x; |
||
82 | hx ^= 0x80000000; |
||
83 | } |
||
84 | if(n==0) return(__ieee754_j0(x)); |
||
85 | if(n==1) return(__ieee754_j1(x)); |
||
86 | sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */ |
||
87 | x = fabs(x); |
||
88 | if((ix|lx)==0||ix>=0x7ff00000) /* if x is 0 or inf */ |
||
89 | b = zero; |
||
90 | else if((double)n<=x) { |
||
91 | /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ |
||
92 | if(ix>=0x52D00000) { /* x > 2**302 */ |
||
93 | /* (x >> n**2) |
||
94 | * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
||
95 | * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
||
96 | * Let s=sin(x), c=cos(x), |
||
97 | * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then |
||
98 | * |
||
99 | * n sin(xn)*sqt2 cos(xn)*sqt2 |
||
100 | * ---------------------------------- |
||
101 | * 0 s-c c+s |
||
102 | * 1 -s-c -c+s |
||
103 | * 2 -s+c -c-s |
||
104 | * 3 s+c c-s |
||
105 | */ |
||
106 | switch(n&3) { |
||
107 | case 0: temp = cos(x)+sin(x); break; |
||
108 | case 1: temp = -cos(x)+sin(x); break; |
||
109 | case 2: temp = -cos(x)-sin(x); break; |
||
110 | case 3: temp = cos(x)-sin(x); break; |
||
111 | } |
||
112 | b = invsqrtpi*temp/sqrt(x); |
||
113 | } else { |
||
114 | a = __ieee754_j0(x); |
||
115 | b = __ieee754_j1(x); |
||
116 | for(i=1;i<n;i++){ |
||
117 | temp = b; |
||
118 | b = b*((double)(i+i)/x) - a; /* avoid underflow */ |
||
119 | a = temp; |
||
120 | } |
||
121 | } |
||
122 | } else { |
||
123 | if(ix<0x3e100000) { /* x < 2**-29 */ |
||
124 | /* x is tiny, return the first Taylor expansion of J(n,x) |
||
125 | * J(n,x) = 1/n!*(x/2)^n - ... |
||
126 | */ |
||
127 | if(n>33) /* underflow */ |
||
128 | b = zero; |
||
129 | else { |
||
130 | temp = x*0.5; b = temp; |
||
131 | for (a=one,i=2;i<=n;i++) { |
||
132 | a *= (double)i; /* a = n! */ |
||
133 | b *= temp; /* b = (x/2)^n */ |
||
134 | } |
||
135 | b = b/a; |
||
136 | } |
||
137 | } else { |
||
138 | /* use backward recurrence */ |
||
139 | /* x x^2 x^2 |
||
140 | * J(n,x)/J(n-1,x) = ---- ------ ------ ..... |
||
141 | * 2n - 2(n+1) - 2(n+2) |
||
142 | * |
||
143 | * 1 1 1 |
||
144 | * (for large x) = ---- ------ ------ ..... |
||
145 | * 2n 2(n+1) 2(n+2) |
||
146 | * -- - ------ - ------ - |
||
147 | * x x x |
||
148 | * |
||
149 | * Let w = 2n/x and h=2/x, then the above quotient |
||
150 | * is equal to the continued fraction: |
||
151 | * 1 |
||
152 | * = ----------------------- |
||
153 | * 1 |
||
154 | * w - ----------------- |
||
155 | * 1 |
||
156 | * w+h - --------- |
||
157 | * w+2h - ... |
||
158 | * |
||
159 | * To determine how many terms needed, let |
||
160 | * Q(0) = w, Q(1) = w(w+h) - 1, |
||
161 | * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), |
||
162 | * When Q(k) > 1e4 good for single |
||
163 | * When Q(k) > 1e9 good for double |
||
164 | * When Q(k) > 1e17 good for quadruple |
||
165 | */ |
||
166 | /* determine k */ |
||
167 | double t,v; |
||
168 | double q0,q1,h,tmp; int32_t k,m; |
||
169 | w = (n+n)/(double)x; h = 2.0/(double)x; |
||
170 | q0 = w; z = w+h; q1 = w*z - 1.0; k=1; |
||
171 | while(q1<1.0e9) { |
||
172 | k += 1; z += h; |
||
173 | tmp = z*q1 - q0; |
||
174 | q0 = q1; |
||
175 | q1 = tmp; |
||
176 | } |
||
177 | m = n+n; |
||
178 | for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t); |
||
179 | a = t; |
||
180 | b = one; |
||
181 | /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) |
||
182 | * Hence, if n*(log(2n/x)) > ... |
||
183 | * single 8.8722839355e+01 |
||
184 | * double 7.09782712893383973096e+02 |
||
185 | * long double 1.1356523406294143949491931077970765006170e+04 |
||
186 | * then recurrent value may overflow and the result is |
||
187 | * likely underflow to zero |
||
188 | */ |
||
189 | tmp = n; |
||
190 | v = two/x; |
||
191 | tmp = tmp*__ieee754_log(fabs(v*tmp)); |
||
192 | if(tmp<7.09782712893383973096e+02) { |
||
193 | for(i=n-1,di=(double)(i+i);i>0;i--){ |
||
194 | temp = b; |
||
195 | b *= di; |
||
196 | b = b/x - a; |
||
197 | a = temp; |
||
198 | di -= two; |
||
199 | } |
||
200 | } else { |
||
201 | for(i=n-1,di=(double)(i+i);i>0;i--){ |
||
202 | temp = b; |
||
203 | b *= di; |
||
204 | b = b/x - a; |
||
205 | a = temp; |
||
206 | di -= two; |
||
207 | /* scale b to avoid spurious overflow */ |
||
208 | if(b>1e100) { |
||
209 | a /= b; |
||
210 | t /= b; |
||
211 | b = one; |
||
212 | } |
||
213 | } |
||
214 | } |
||
215 | b = (t*__ieee754_j0(x)/b); |
||
216 | } |
||
217 | } |
||
218 | if(sgn==1) return -b; else return b; |
||
219 | } |
||
220 | |||
221 | #ifdef __STDC__ |
||
222 | double __ieee754_yn(int n, double x) |
||
223 | #else |
||
224 | double __ieee754_yn(n,x) |
||
225 | int n; double x; |
||
226 | #endif |
||
227 | { |
||
228 | int32_t i,hx,ix,lx; |
||
229 | int32_t sign; |
||
230 | double a, b, temp; |
||
231 | |||
232 | EXTRACT_WORDS(hx,lx,x); |
||
233 | ix = 0x7fffffff&hx; |
||
234 | /* if Y(n,NaN) is NaN */ |
||
235 | if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x; |
||
236 | if((ix|lx)==0) return -one/zero; |
||
237 | if(hx<0) return zero/zero; |
||
238 | sign = 1; |
||
239 | if(n<0){ |
||
240 | n = -n; |
||
241 | sign = 1 - ((n&1)<<1); |
||
242 | } |
||
243 | if(n==0) return(__ieee754_y0(x)); |
||
244 | if(n==1) return(sign*__ieee754_y1(x)); |
||
245 | if(ix==0x7ff00000) return zero; |
||
246 | if(ix>=0x52D00000) { /* x > 2**302 */ |
||
247 | /* (x >> n**2) |
||
248 | * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
||
249 | * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
||
250 | * Let s=sin(x), c=cos(x), |
||
251 | * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then |
||
252 | * |
||
253 | * n sin(xn)*sqt2 cos(xn)*sqt2 |
||
254 | * ---------------------------------- |
||
255 | * 0 s-c c+s |
||
256 | * 1 -s-c -c+s |
||
257 | * 2 -s+c -c-s |
||
258 | * 3 s+c c-s |
||
259 | */ |
||
260 | switch(n&3) { |
||
261 | case 0: temp = sin(x)-cos(x); break; |
||
262 | case 1: temp = -sin(x)-cos(x); break; |
||
263 | case 2: temp = -sin(x)+cos(x); break; |
||
264 | case 3: temp = sin(x)+cos(x); break; |
||
265 | } |
||
266 | b = invsqrtpi*temp/sqrt(x); |
||
267 | } else { |
||
268 | u_int32_t high; |
||
269 | a = __ieee754_y0(x); |
||
270 | b = __ieee754_y1(x); |
||
271 | /* quit if b is -inf */ |
||
272 | GET_HIGH_WORD(high,b); |
||
273 | for(i=1;i<n&&high!=0xfff00000;i++){ |
||
274 | temp = b; |
||
275 | b = ((double)(i+i)/x)*b - a; |
||
276 | GET_HIGH_WORD(high,b); |
||
277 | a = temp; |
||
278 | } |
||
279 | } |
||
280 | if(sign>0) return b; else return -b; |
||
281 | } |