Subversion Repositories shark

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 pj 1
/* @(#)er_lgamma.c 5.1 93/09/24 */
2
/*
3
 * ====================================================
4
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5
 *
6
 * Developed at SunPro, a Sun Microsystems, Inc. business.
7
 * Permission to use, copy, modify, and distribute this
8
 * software is freely granted, provided that this notice
9
 * is preserved.
10
 * ====================================================
11
 */
12
 
13
#ifndef lint
14
static char rcsid[] = "$\Id: e_lgamma_r.c,v 1.2 1995/05/30 05:48:27 rgrimes Exp $";
15
#endif
16
 
17
/* __ieee754_lgamma_r(x, signgamp)
18
 * Reentrant version of the logarithm of the Gamma function
19
 * with user provide pointer for the sign of Gamma(x).
20
 *
21
 * Method:
22
 *   1. Argument Reduction for 0 < x <= 8
23
 *      Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
24
 *      reduce x to a number in [1.5,2.5] by
25
 *              lgamma(1+s) = log(s) + lgamma(s)
26
 *      for example,
27
 *              lgamma(7.3) = log(6.3) + lgamma(6.3)
28
 *                          = log(6.3*5.3) + lgamma(5.3)
29
 *                          = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
30
 *   2. Polynomial approximation of lgamma around its
31
 *      minimun ymin=1.461632144968362245 to maintain monotonicity.
32
 *      On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
33
 *              Let z = x-ymin;
34
 *              lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
35
 *      where
36
 *              poly(z) is a 14 degree polynomial.
37
 *   2. Rational approximation in the primary interval [2,3]
38
 *      We use the following approximation:
39
 *              s = x-2.0;
40
 *              lgamma(x) = 0.5*s + s*P(s)/Q(s)
41
 *      with accuracy
42
 *              |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
43
 *      Our algorithms are based on the following observation
44
 *
45
 *                             zeta(2)-1    2    zeta(3)-1    3
46
 * lgamma(2+s) = s*(1-Euler) + --------- * s  -  --------- * s  + ...
47
 *                                 2                 3
48
 *
49
 *      where Euler = 0.5771... is the Euler constant, which is very
50
 *      close to 0.5.
51
 *
52
 *   3. For x>=8, we have
53
 *      lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
54
 *      (better formula:
55
 *         lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
56
 *      Let z = 1/x, then we approximation
57
 *              f(z) = lgamma(x) - (x-0.5)(log(x)-1)
58
 *      by
59
 *                                  3       5             11
60
 *              w = w0 + w1*z + w2*z  + w3*z  + ... + w6*z
61
 *      where
62
 *              |w - f(z)| < 2**-58.74
63
 *
64
 *   4. For negative x, since (G is gamma function)
65
 *              -x*G(-x)*G(x) = pi/sin(pi*x),
66
 *      we have
67
 *              G(x) = pi/(sin(pi*x)*(-x)*G(-x))
68
 *      since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
69
 *      Hence, for x<0, signgam = sign(sin(pi*x)) and
70
 *              lgamma(x) = log(|Gamma(x)|)
71
 *                        = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
72
 *      Note: one should avoid compute pi*(-x) directly in the
73
 *            computation of sin(pi*(-x)).
74
 *
75
 *   5. Special Cases
76
 *              lgamma(2+s) ~ s*(1-Euler) for tiny s
77
 *              lgamma(1)=lgamma(2)=0
78
 *              lgamma(x) ~ -log(x) for tiny x
79
 *              lgamma(0) = lgamma(inf) = inf
80
 *              lgamma(-integer) = +-inf
81
 *
82
 */
83
 
84
#include "math.h"
85
#include "math_private.h"
86
 
87
#ifdef __STDC__
88
static const double
89
#else
90
static double
91
#endif
92
two52=  4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
93
half=  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
94
one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
95
pi  =  3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
96
a0  =  7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */
97
a1  =  3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */
98
a2  =  6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */
99
a3  =  2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */
100
a4  =  7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */
101
a5  =  2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */
102
a6  =  1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */
103
a7  =  5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */
104
a8  =  2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */
105
a9  =  1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */
106
a10 =  2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */
107
a11 =  4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */
108
tc  =  1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */
109
tf  = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */
110
/* tt = -(tail of tf) */
111
tt  = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */
112
t0  =  4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */
113
t1  = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */
114
t2  =  6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */
115
t3  = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */
116
t4  =  1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */
117
t5  = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */
118
t6  =  6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */
119
t7  = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */
120
t8  =  2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */
121
t9  = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */
122
t10 =  8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */
123
t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */
124
t12 =  3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */
125
t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */
126
t14 =  3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */
127
u0  = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
128
u1  =  6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */
129
u2  =  1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */
130
u3  =  9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */
131
u4  =  2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */
132
u5  =  1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */
133
v1  =  2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */
134
v2  =  2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */
135
v3  =  7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */
136
v4  =  1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */
137
v5  =  3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */
138
s0  = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
139
s1  =  2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */
140
s2  =  3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */
141
s3  =  1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */
142
s4  =  2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */
143
s5  =  1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */
144
s6  =  3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */
145
r1  =  1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */
146
r2  =  7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */
147
r3  =  1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */
148
r4  =  1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */
149
r5  =  7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */
150
r6  =  7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */
151
w0  =  4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */
152
w1  =  8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */
153
w2  = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */
154
w3  =  7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */
155
w4  = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */
156
w5  =  8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */
157
w6  = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */
158
 
159
#ifdef __STDC__
160
static const double zero=  0.00000000000000000000e+00;
161
#else
162
static double zero=  0.00000000000000000000e+00;
163
#endif
164
 
165
#ifdef __STDC__
166
        static double sin_pi(double x)
167
#else
168
        static double sin_pi(x)
169
        double x;
170
#endif
171
{
172
        double y,z;
173
        int n,ix;
174
 
175
        GET_HIGH_WORD(ix,x);
176
        ix &= 0x7fffffff;
177
 
178
        if(ix<0x3fd00000) return __kernel_sin(pi*x,zero,0);
179
        y = -x;         /* x is assume negative */
180
 
181
    /*
182
     * argument reduction, make sure inexact flag not raised if input
183
     * is an integer
184
     */
185
        z = floor(y);
186
        if(z!=y) {                              /* inexact anyway */
187
            y  *= 0.5;
188
            y   = 2.0*(y - floor(y));           /* y = |x| mod 2.0 */
189
            n   = (int) (y*4.0);
190
        } else {
191
            if(ix>=0x43400000) {
192
                y = zero; n = 0;                 /* y must be even */
193
            } else {
194
                if(ix<0x43300000) z = y+two52;  /* exact */
195
                GET_LOW_WORD(n,z);
196
                n &= 1;
197
                y  = n;
198
                n<<= 2;
199
            }
200
        }
201
        switch (n) {
202
            case 0:   y =  __kernel_sin(pi*y,zero,0); break;
203
            case 1:
204
            case 2:   y =  __kernel_cos(pi*(0.5-y),zero); break;
205
            case 3:
206
            case 4:   y =  __kernel_sin(pi*(one-y),zero,0); break;
207
            case 5:
208
            case 6:   y = -__kernel_cos(pi*(y-1.5),zero); break;
209
            default:  y =  __kernel_sin(pi*(y-2.0),zero,0); break;
210
            }
211
        return -y;
212
}
213
 
214
 
215
#ifdef __STDC__
216
        double __ieee754_lgamma_r(double x, int *signgamp)
217
#else
218
        double __ieee754_lgamma_r(x,signgamp)
219
        double x; int *signgamp;
220
#endif
221
{
222
        double t,y,z,nadj,p,p1,p2,p3,q,r,w;
223
        int i,hx,lx,ix;
224
 
225
        EXTRACT_WORDS(hx,lx,x);
226
 
227
    /* purge off +-inf, NaN, +-0, and negative arguments */
228
        *signgamp = 1;
229
        ix = hx&0x7fffffff;
230
        if(ix>=0x7ff00000) return x*x;
231
        if((ix|lx)==0) return one/zero;
232
        if(ix<0x3b900000) {     /* |x|<2**-70, return -log(|x|) */
233
            if(hx<0) {
234
                *signgamp = -1;
235
                return -__ieee754_log(-x);
236
            } else return -__ieee754_log(x);
237
        }
238
        if(hx<0) {
239
            if(ix>=0x43300000)  /* |x|>=2**52, must be -integer */
240
                return one/zero;
241
            t = sin_pi(x);
242
            if(t==zero) return one/zero; /* -integer */
243
            nadj = __ieee754_log(pi/fabs(t*x));
244
            if(t<zero) *signgamp = -1;
245
            x = -x;
246
        }
247
 
248
    /* purge off 1 and 2 */
249
        if((((ix-0x3ff00000)|lx)==0)||(((ix-0x40000000)|lx)==0)) r = 0;
250
    /* for x < 2.0 */
251
        else if(ix<0x40000000) {
252
            if(ix<=0x3feccccc) {        /* lgamma(x) = lgamma(x+1)-log(x) */
253
                r = -__ieee754_log(x);
254
                if(ix>=0x3FE76944) {y = one-x; i= 0;}
255
                else if(ix>=0x3FCDA661) {y= x-(tc-one); i=1;}
256
                else {y = x; i=2;}
257
            } else {
258
                r = zero;
259
                if(ix>=0x3FFBB4C3) {y=2.0-x;i=0;} /* [1.7316,2] */
260
                else if(ix>=0x3FF3B4C4) {y=x-tc;i=1;} /* [1.23,1.73] */
261
                else {y=x-one;i=2;}
262
            }
263
            switch(i) {
264
              case 0:
265
                z = y*y;
266
                p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
267
                p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
268
                p  = y*p1+p2;
269
                r  += (p-0.5*y); break;
270
              case 1:
271
                z = y*y;
272
                w = z*y;
273
                p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12)));    /* parallel comp */
274
                p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
275
                p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
276
                p  = z*p1-(tt-w*(p2+y*p3));
277
                r += (tf + p); break;
278
              case 2:
279
                p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
280
                p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
281
                r += (-0.5*y + p1/p2);
282
            }
283
        }
284
        else if(ix<0x40200000) {                        /* x < 8.0 */
285
            i = (int)x;
286
            t = zero;
287
            y = x-(double)i;
288
            p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
289
            q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
290
            r = half*y+p/q;
291
            z = one;    /* lgamma(1+s) = log(s) + lgamma(s) */
292
            switch(i) {
293
            case 7: z *= (y+6.0);       /* FALLTHRU */
294
            case 6: z *= (y+5.0);       /* FALLTHRU */
295
            case 5: z *= (y+4.0);       /* FALLTHRU */
296
            case 4: z *= (y+3.0);       /* FALLTHRU */
297
            case 3: z *= (y+2.0);       /* FALLTHRU */
298
                    r += __ieee754_log(z); break;
299
            }
300
    /* 8.0 <= x < 2**58 */
301
        } else if (ix < 0x43900000) {
302
            t = __ieee754_log(x);
303
            z = one/x;
304
            y = z*z;
305
            w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
306
            r = (x-half)*(t-one)+w;
307
        } else
308
    /* 2**58 <= x <= inf */
309
            r =  x*(__ieee754_log(x)-one);
310
        if(hx<0) r = nadj - r;
311
        return r;
312
}