Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | pj | 1 | /* @(#)e_log.c 5.1 93/09/24 */ |
2 | /* |
||
3 | * ==================================================== |
||
4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
||
5 | * |
||
6 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
||
7 | * Permission to use, copy, modify, and distribute this |
||
8 | * software is freely granted, provided that this notice |
||
9 | * is preserved. |
||
10 | * ==================================================== |
||
11 | */ |
||
12 | |||
13 | #ifndef lint |
||
14 | static char rcsid[] = "$\Id: e_log.c,v 1.2.6.1 1997/02/23 11:03:05 joerg Exp $"; |
||
15 | #endif |
||
16 | |||
17 | /* __ieee754_log(x) |
||
18 | * Return the logrithm of x |
||
19 | * |
||
20 | * Method : |
||
21 | * 1. Argument Reduction: find k and f such that |
||
22 | * x = 2^k * (1+f), |
||
23 | * where sqrt(2)/2 < 1+f < sqrt(2) . |
||
24 | * |
||
25 | * 2. Approximation of log(1+f). |
||
26 | * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) |
||
27 | * = 2s + 2/3 s**3 + 2/5 s**5 + ....., |
||
28 | * = 2s + s*R |
||
29 | * We use a special Reme algorithm on [0,0.1716] to generate |
||
30 | * a polynomial of degree 14 to approximate R The maximum error |
||
31 | * of this polynomial approximation is bounded by 2**-58.45. In |
||
32 | * other words, |
||
33 | * 2 4 6 8 10 12 14 |
||
34 | * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s |
||
35 | * (the values of Lg1 to Lg7 are listed in the program) |
||
36 | * and |
||
37 | * | 2 14 | -58.45 |
||
38 | * | Lg1*s +...+Lg7*s - R(z) | <= 2 |
||
39 | * | | |
||
40 | * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. |
||
41 | * In order to guarantee error in log below 1ulp, we compute log |
||
42 | * by |
||
43 | * log(1+f) = f - s*(f - R) (if f is not too large) |
||
44 | * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) |
||
45 | * |
||
46 | * 3. Finally, log(x) = k*ln2 + log(1+f). |
||
47 | * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) |
||
48 | * Here ln2 is split into two floating point number: |
||
49 | * ln2_hi + ln2_lo, |
||
50 | * where n*ln2_hi is always exact for |n| < 2000. |
||
51 | * |
||
52 | * Special cases: |
||
53 | * log(x) is NaN with signal if x < 0 (including -INF) ; |
||
54 | * log(+INF) is +INF; log(0) is -INF with signal; |
||
55 | * log(NaN) is that NaN with no signal. |
||
56 | * |
||
57 | * Accuracy: |
||
58 | * according to an error analysis, the error is always less than |
||
59 | * 1 ulp (unit in the last place). |
||
60 | * |
||
61 | * Constants: |
||
62 | * The hexadecimal values are the intended ones for the following |
||
63 | * constants. The decimal values may be used, provided that the |
||
64 | * compiler will convert from decimal to binary accurately enough |
||
65 | * to produce the hexadecimal values shown. |
||
66 | */ |
||
67 | |||
68 | #include "math.h" |
||
69 | #include "math_private.h" |
||
70 | |||
71 | #ifdef __STDC__ |
||
72 | static const double |
||
73 | #else |
||
74 | static double |
||
75 | #endif |
||
76 | ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ |
||
77 | ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ |
||
78 | two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ |
||
79 | Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ |
||
80 | Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ |
||
81 | Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ |
||
82 | Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ |
||
83 | Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ |
||
84 | Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ |
||
85 | Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ |
||
86 | |||
87 | #ifdef __STDC__ |
||
88 | static const double zero = 0.0; |
||
89 | #else |
||
90 | static double zero = 0.0; |
||
91 | #endif |
||
92 | |||
93 | #ifdef __STDC__ |
||
94 | double __generic___ieee754_log(double x) |
||
95 | #else |
||
96 | double __generic___ieee754_log(x) |
||
97 | double x; |
||
98 | #endif |
||
99 | { |
||
100 | double hfsq,f,s,z,R,w,t1,t2,dk; |
||
101 | int32_t k,hx,i,j; |
||
102 | u_int32_t lx; |
||
103 | |||
104 | EXTRACT_WORDS(hx,lx,x); |
||
105 | |||
106 | k=0; |
||
107 | if (hx < 0x00100000) { /* x < 2**-1022 */ |
||
108 | if (((hx&0x7fffffff)|lx)==0) |
||
109 | return -two54/zero; /* log(+-0)=-inf */ |
||
110 | if (hx<0) return (x-x)/zero; /* log(-#) = NaN */ |
||
111 | k -= 54; x *= two54; /* subnormal number, scale up x */ |
||
112 | GET_HIGH_WORD(hx,x); |
||
113 | } |
||
114 | if (hx >= 0x7ff00000) return x+x; |
||
115 | k += (hx>>20)-1023; |
||
116 | hx &= 0x000fffff; |
||
117 | i = (hx+0x95f64)&0x100000; |
||
118 | SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */ |
||
119 | k += (i>>20); |
||
120 | f = x-1.0; |
||
121 | if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */ |
||
122 | if(f==zero) if(k==0) return zero; else {dk=(double)k; |
||
123 | return dk*ln2_hi+dk*ln2_lo;} |
||
124 | R = f*f*(0.5-0.33333333333333333*f); |
||
125 | if(k==0) return f-R; else {dk=(double)k; |
||
126 | return dk*ln2_hi-((R-dk*ln2_lo)-f);} |
||
127 | } |
||
128 | s = f/(2.0+f); |
||
129 | dk = (double)k; |
||
130 | z = s*s; |
||
131 | i = hx-0x6147a; |
||
132 | w = z*z; |
||
133 | j = 0x6b851-hx; |
||
134 | t1= w*(Lg2+w*(Lg4+w*Lg6)); |
||
135 | t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); |
||
136 | i |= j; |
||
137 | R = t2+t1; |
||
138 | if(i>0) { |
||
139 | hfsq=0.5*f*f; |
||
140 | if(k==0) return f-(hfsq-s*(hfsq+R)); else |
||
141 | return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f); |
||
142 | } else { |
||
143 | if(k==0) return f-s*(f-R); else |
||
144 | return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f); |
||
145 | } |
||
146 | } |