Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | pj | 1 | /* @(#)e_pow.c 5.1 93/09/24 */ |
2 | /* |
||
3 | * ==================================================== |
||
4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
||
5 | * |
||
6 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
||
7 | * Permission to use, copy, modify, and distribute this |
||
8 | * software is freely granted, provided that this notice |
||
9 | * is preserved. |
||
10 | * ==================================================== |
||
11 | */ |
||
12 | |||
13 | #ifndef lint |
||
14 | static char rcsid[] = "$\Id: e_pow.c,v 1.2 1995/05/30 05:48:34 rgrimes Exp $"; |
||
15 | #endif |
||
16 | |||
17 | /* __ieee754_pow(x,y) return x**y |
||
18 | * |
||
19 | * n |
||
20 | * Method: Let x = 2 * (1+f) |
||
21 | * 1. Compute and return log2(x) in two pieces: |
||
22 | * log2(x) = w1 + w2, |
||
23 | * where w1 has 53-24 = 29 bit trailing zeros. |
||
24 | * 2. Perform y*log2(x) = n+y' by simulating muti-precision |
||
25 | * arithmetic, where |y'|<=0.5. |
||
26 | * 3. Return x**y = 2**n*exp(y'*log2) |
||
27 | * |
||
28 | * Special cases: |
||
29 | * 1. (anything) ** 0 is 1 |
||
30 | * 2. (anything) ** 1 is itself |
||
31 | * 3. (anything) ** NAN is NAN |
||
32 | * 4. NAN ** (anything except 0) is NAN |
||
33 | * 5. +-(|x| > 1) ** +INF is +INF |
||
34 | * 6. +-(|x| > 1) ** -INF is +0 |
||
35 | * 7. +-(|x| < 1) ** +INF is +0 |
||
36 | * 8. +-(|x| < 1) ** -INF is +INF |
||
37 | * 9. +-1 ** +-INF is NAN |
||
38 | * 10. +0 ** (+anything except 0, NAN) is +0 |
||
39 | * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 |
||
40 | * 12. +0 ** (-anything except 0, NAN) is +INF |
||
41 | * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF |
||
42 | * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) |
||
43 | * 15. +INF ** (+anything except 0,NAN) is +INF |
||
44 | * 16. +INF ** (-anything except 0,NAN) is +0 |
||
45 | * 17. -INF ** (anything) = -0 ** (-anything) |
||
46 | * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) |
||
47 | * 19. (-anything except 0 and inf) ** (non-integer) is NAN |
||
48 | * |
||
49 | * Accuracy: |
||
50 | * pow(x,y) returns x**y nearly rounded. In particular |
||
51 | * pow(integer,integer) |
||
52 | * always returns the correct integer provided it is |
||
53 | * representable. |
||
54 | * |
||
55 | * Constants : |
||
56 | * The hexadecimal values are the intended ones for the following |
||
57 | * constants. The decimal values may be used, provided that the |
||
58 | * compiler will convert from decimal to binary accurately enough |
||
59 | * to produce the hexadecimal values shown. |
||
60 | */ |
||
61 | |||
62 | #include "math.h" |
||
63 | #include "math_private.h" |
||
64 | |||
65 | #ifdef __STDC__ |
||
66 | static const double |
||
67 | #else |
||
68 | static double |
||
69 | #endif |
||
70 | bp[] = {1.0, 1.5,}, |
||
71 | dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */ |
||
72 | dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */ |
||
73 | zero = 0.0, |
||
74 | one = 1.0, |
||
75 | two = 2.0, |
||
76 | two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */ |
||
77 | huge = 1.0e300, |
||
78 | tiny = 1.0e-300, |
||
79 | /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ |
||
80 | L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */ |
||
81 | L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */ |
||
82 | L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */ |
||
83 | L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */ |
||
84 | L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */ |
||
85 | L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */ |
||
86 | P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ |
||
87 | P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ |
||
88 | P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ |
||
89 | P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ |
||
90 | P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */ |
||
91 | lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ |
||
92 | lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */ |
||
93 | lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ |
||
94 | ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */ |
||
95 | cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */ |
||
96 | cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */ |
||
97 | cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/ |
||
98 | ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ |
||
99 | ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/ |
||
100 | ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/ |
||
101 | |||
102 | #ifdef __STDC__ |
||
103 | double __ieee754_pow(double x, double y) |
||
104 | #else |
||
105 | double __ieee754_pow(x,y) |
||
106 | double x, y; |
||
107 | #endif |
||
108 | { |
||
109 | double z,ax,z_h,z_l,p_h,p_l; |
||
110 | double y1,t1,t2,r,s,t,u,v,w; |
||
111 | int32_t i,j,k,yisint,n; |
||
112 | int32_t hx,hy,ix,iy; |
||
113 | u_int32_t lx,ly; |
||
114 | |||
115 | EXTRACT_WORDS(hx,lx,x); |
||
116 | EXTRACT_WORDS(hy,ly,y); |
||
117 | ix = hx&0x7fffffff; iy = hy&0x7fffffff; |
||
118 | |||
119 | /* y==zero: x**0 = 1 */ |
||
120 | if((iy|ly)==0) return one; |
||
121 | |||
122 | /* +-NaN return x+y */ |
||
123 | if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) || |
||
124 | iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) |
||
125 | return x+y; |
||
126 | |||
127 | /* determine if y is an odd int when x < 0 |
||
128 | * yisint = 0 ... y is not an integer |
||
129 | * yisint = 1 ... y is an odd int |
||
130 | * yisint = 2 ... y is an even int |
||
131 | */ |
||
132 | yisint = 0; |
||
133 | if(hx<0) { |
||
134 | if(iy>=0x43400000) yisint = 2; /* even integer y */ |
||
135 | else if(iy>=0x3ff00000) { |
||
136 | k = (iy>>20)-0x3ff; /* exponent */ |
||
137 | if(k>20) { |
||
138 | j = ly>>(52-k); |
||
139 | if((j<<(52-k))==ly) yisint = 2-(j&1); |
||
140 | } else if(ly==0) { |
||
141 | j = iy>>(20-k); |
||
142 | if((j<<(20-k))==iy) yisint = 2-(j&1); |
||
143 | } |
||
144 | } |
||
145 | } |
||
146 | |||
147 | /* special value of y */ |
||
148 | if(ly==0) { |
||
149 | if (iy==0x7ff00000) { /* y is +-inf */ |
||
150 | if(((ix-0x3ff00000)|lx)==0) |
||
151 | return y - y; /* inf**+-1 is NaN */ |
||
152 | else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */ |
||
153 | return (hy>=0)? y: zero; |
||
154 | else /* (|x|<1)**-,+inf = inf,0 */ |
||
155 | return (hy<0)?-y: zero; |
||
156 | } |
||
157 | if(iy==0x3ff00000) { /* y is +-1 */ |
||
158 | if(hy<0) return one/x; else return x; |
||
159 | } |
||
160 | if(hy==0x40000000) return x*x; /* y is 2 */ |
||
161 | if(hy==0x3fe00000) { /* y is 0.5 */ |
||
162 | if(hx>=0) /* x >= +0 */ |
||
163 | return sqrt(x); |
||
164 | } |
||
165 | } |
||
166 | |||
167 | ax = fabs(x); |
||
168 | /* special value of x */ |
||
169 | if(lx==0) { |
||
170 | if(ix==0x7ff00000||ix==0||ix==0x3ff00000){ |
||
171 | z = ax; /*x is +-0,+-inf,+-1*/ |
||
172 | if(hy<0) z = one/z; /* z = (1/|x|) */ |
||
173 | if(hx<0) { |
||
174 | if(((ix-0x3ff00000)|yisint)==0) { |
||
175 | z = (z-z)/(z-z); /* (-1)**non-int is NaN */ |
||
176 | } else if(yisint==1) |
||
177 | z = -z; /* (x<0)**odd = -(|x|**odd) */ |
||
178 | } |
||
179 | return z; |
||
180 | } |
||
181 | } |
||
182 | |||
183 | /* (x<0)**(non-int) is NaN */ |
||
184 | /* CYGNUS LOCAL: This used to be |
||
185 | if((((hx>>31)+1)|yisint)==0) return (x-x)/(x-x); |
||
186 | but ANSI C says a right shift of a signed negative quantity is |
||
187 | implementation defined. */ |
||
188 | if(((((u_int32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x); |
||
189 | |||
190 | /* |y| is huge */ |
||
191 | if(iy>0x41e00000) { /* if |y| > 2**31 */ |
||
192 | if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */ |
||
193 | if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; |
||
194 | if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; |
||
195 | } |
||
196 | /* over/underflow if x is not close to one */ |
||
197 | if(ix<0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; |
||
198 | if(ix>0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; |
||
199 | /* now |1-x| is tiny <= 2**-20, suffice to compute |
||
200 | log(x) by x-x^2/2+x^3/3-x^4/4 */ |
||
201 | t = x-1; /* t has 20 trailing zeros */ |
||
202 | w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25)); |
||
203 | u = ivln2_h*t; /* ivln2_h has 21 sig. bits */ |
||
204 | v = t*ivln2_l-w*ivln2; |
||
205 | t1 = u+v; |
||
206 | SET_LOW_WORD(t1,0); |
||
207 | t2 = v-(t1-u); |
||
208 | } else { |
||
209 | double s2,s_h,s_l,t_h,t_l; |
||
210 | n = 0; |
||
211 | /* take care subnormal number */ |
||
212 | if(ix<0x00100000) |
||
213 | {ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); } |
||
214 | n += ((ix)>>20)-0x3ff; |
||
215 | j = ix&0x000fffff; |
||
216 | /* determine interval */ |
||
217 | ix = j|0x3ff00000; /* normalize ix */ |
||
218 | if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */ |
||
219 | else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */ |
||
220 | else {k=0;n+=1;ix -= 0x00100000;} |
||
221 | SET_HIGH_WORD(ax,ix); |
||
222 | |||
223 | /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ |
||
224 | u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ |
||
225 | v = one/(ax+bp[k]); |
||
226 | s = u*v; |
||
227 | s_h = s; |
||
228 | SET_LOW_WORD(s_h,0); |
||
229 | /* t_h=ax+bp[k] High */ |
||
230 | t_h = zero; |
||
231 | SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18)); |
||
232 | t_l = ax - (t_h-bp[k]); |
||
233 | s_l = v*((u-s_h*t_h)-s_h*t_l); |
||
234 | /* compute log(ax) */ |
||
235 | s2 = s*s; |
||
236 | r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6))))); |
||
237 | r += s_l*(s_h+s); |
||
238 | s2 = s_h*s_h; |
||
239 | t_h = 3.0+s2+r; |
||
240 | SET_LOW_WORD(t_h,0); |
||
241 | t_l = r-((t_h-3.0)-s2); |
||
242 | /* u+v = s*(1+...) */ |
||
243 | u = s_h*t_h; |
||
244 | v = s_l*t_h+t_l*s; |
||
245 | /* 2/(3log2)*(s+...) */ |
||
246 | p_h = u+v; |
||
247 | SET_LOW_WORD(p_h,0); |
||
248 | p_l = v-(p_h-u); |
||
249 | z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */ |
||
250 | z_l = cp_l*p_h+p_l*cp+dp_l[k]; |
||
251 | /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */ |
||
252 | t = (double)n; |
||
253 | t1 = (((z_h+z_l)+dp_h[k])+t); |
||
254 | SET_LOW_WORD(t1,0); |
||
255 | t2 = z_l-(((t1-t)-dp_h[k])-z_h); |
||
256 | } |
||
257 | |||
258 | s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ |
||
259 | if(((((u_int32_t)hx>>31)-1)|(yisint-1))==0) |
||
260 | s = -one;/* (-ve)**(odd int) */ |
||
261 | |||
262 | /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ |
||
263 | y1 = y; |
||
264 | SET_LOW_WORD(y1,0); |
||
265 | p_l = (y-y1)*t1+y*t2; |
||
266 | p_h = y1*t1; |
||
267 | z = p_l+p_h; |
||
268 | EXTRACT_WORDS(j,i,z); |
||
269 | if (j>=0x40900000) { /* z >= 1024 */ |
||
270 | if(((j-0x40900000)|i)!=0) /* if z > 1024 */ |
||
271 | return s*huge*huge; /* overflow */ |
||
272 | else { |
||
273 | if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */ |
||
274 | } |
||
275 | } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */ |
||
276 | if(((j-0xc090cc00)|i)!=0) /* z < -1075 */ |
||
277 | return s*tiny*tiny; /* underflow */ |
||
278 | else { |
||
279 | if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */ |
||
280 | } |
||
281 | } |
||
282 | /* |
||
283 | * compute 2**(p_h+p_l) |
||
284 | */ |
||
285 | i = j&0x7fffffff; |
||
286 | k = (i>>20)-0x3ff; |
||
287 | n = 0; |
||
288 | if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */ |
||
289 | n = j+(0x00100000>>(k+1)); |
||
290 | k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */ |
||
291 | t = zero; |
||
292 | SET_HIGH_WORD(t,n&~(0x000fffff>>k)); |
||
293 | n = ((n&0x000fffff)|0x00100000)>>(20-k); |
||
294 | if(j<0) n = -n; |
||
295 | p_h -= t; |
||
296 | } |
||
297 | t = p_l+p_h; |
||
298 | SET_LOW_WORD(t,0); |
||
299 | u = t*lg2_h; |
||
300 | v = (p_l-(t-p_h))*lg2+t*lg2_l; |
||
301 | z = u+v; |
||
302 | w = v-(z-u); |
||
303 | t = z*z; |
||
304 | t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); |
||
305 | r = (z*t1)/(t1-two)-(w+z*w); |
||
306 | z = one-(r-z); |
||
307 | GET_HIGH_WORD(j,z); |
||
308 | j += (n<<20); |
||
309 | if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */ |
||
310 | else SET_HIGH_WORD(z,j); |
||
311 | return s*z; |
||
312 | } |