Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | pj | 1 | /* @(#)e_sqrt.c 5.1 93/09/24 */ |
2 | /* |
||
3 | * ==================================================== |
||
4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
||
5 | * |
||
6 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
||
7 | * Permission to use, copy, modify, and distribute this |
||
8 | * software is freely granted, provided that this notice |
||
9 | * is preserved. |
||
10 | * ==================================================== |
||
11 | */ |
||
12 | |||
13 | #ifndef lint |
||
14 | static char rcsid[] = "$\Id: e_sqrt.c,v 1.2.6.1 1997/02/23 11:03:09 joerg Exp $"; |
||
15 | #endif |
||
16 | |||
17 | /* __ieee754_sqrt(x) |
||
18 | * Return correctly rounded sqrt. |
||
19 | * ------------------------------------------ |
||
20 | * | Use the hardware sqrt if you have one | |
||
21 | * ------------------------------------------ |
||
22 | * Method: |
||
23 | * Bit by bit method using integer arithmetic. (Slow, but portable) |
||
24 | * 1. Normalization |
||
25 | * Scale x to y in [1,4) with even powers of 2: |
||
26 | * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then |
||
27 | * sqrt(x) = 2^k * sqrt(y) |
||
28 | * 2. Bit by bit computation |
||
29 | * Let q = sqrt(y) truncated to i bit after binary point (q = 1), |
||
30 | * i 0 |
||
31 | * i+1 2 |
||
32 | * s = 2*q , and y = 2 * ( y - q ). (1) |
||
33 | * i i i i |
||
34 | * |
||
35 | * To compute q from q , one checks whether |
||
36 | * i+1 i |
||
37 | * |
||
38 | * -(i+1) 2 |
||
39 | * (q + 2 ) <= y. (2) |
||
40 | * i |
||
41 | * -(i+1) |
||
42 | * If (2) is false, then q = q ; otherwise q = q + 2 . |
||
43 | * i+1 i i+1 i |
||
44 | * |
||
45 | * With some algebric manipulation, it is not difficult to see |
||
46 | * that (2) is equivalent to |
||
47 | * -(i+1) |
||
48 | * s + 2 <= y (3) |
||
49 | * i i |
||
50 | * |
||
51 | * The advantage of (3) is that s and y can be computed by |
||
52 | * i i |
||
53 | * the following recurrence formula: |
||
54 | * if (3) is false |
||
55 | * |
||
56 | * s = s , y = y ; (4) |
||
57 | * i+1 i i+1 i |
||
58 | * |
||
59 | * otherwise, |
||
60 | * -i -(i+1) |
||
61 | * s = s + 2 , y = y - s - 2 (5) |
||
62 | * i+1 i i+1 i i |
||
63 | * |
||
64 | * One may easily use induction to prove (4) and (5). |
||
65 | * Note. Since the left hand side of (3) contain only i+2 bits, |
||
66 | * it does not necessary to do a full (53-bit) comparison |
||
67 | * in (3). |
||
68 | * 3. Final rounding |
||
69 | * After generating the 53 bits result, we compute one more bit. |
||
70 | * Together with the remainder, we can decide whether the |
||
71 | * result is exact, bigger than 1/2ulp, or less than 1/2ulp |
||
72 | * (it will never equal to 1/2ulp). |
||
73 | * The rounding mode can be detected by checking whether |
||
74 | * huge + tiny is equal to huge, and whether huge - tiny is |
||
75 | * equal to huge for some floating point number "huge" and "tiny". |
||
76 | * |
||
77 | * Special cases: |
||
78 | * sqrt(+-0) = +-0 ... exact |
||
79 | * sqrt(inf) = inf |
||
80 | * sqrt(-ve) = NaN ... with invalid signal |
||
81 | * sqrt(NaN) = NaN ... with invalid signal for signaling NaN |
||
82 | * |
||
83 | * Other methods : see the appended file at the end of the program below. |
||
84 | *--------------- |
||
85 | */ |
||
86 | |||
87 | #include "math.h" |
||
88 | #include "math_private.h" |
||
89 | |||
90 | #ifdef __STDC__ |
||
91 | static const double one = 1.0, tiny=1.0e-300; |
||
92 | #else |
||
93 | static double one = 1.0, tiny=1.0e-300; |
||
94 | #endif |
||
95 | |||
96 | #ifdef __STDC__ |
||
97 | double __generic___ieee754_sqrt(double x) |
||
98 | #else |
||
99 | double __generic___ieee754_sqrt(x) |
||
100 | double x; |
||
101 | #endif |
||
102 | { |
||
103 | double z; |
||
104 | int32_t sign = (int)0x80000000; |
||
105 | int32_t ix0,s0,q,m,t,i; |
||
106 | u_int32_t r,t1,s1,ix1,q1; |
||
107 | |||
108 | EXTRACT_WORDS(ix0,ix1,x); |
||
109 | |||
110 | /* take care of Inf and NaN */ |
||
111 | if((ix0&0x7ff00000)==0x7ff00000) { |
||
112 | return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf |
||
113 | sqrt(-inf)=sNaN */ |
||
114 | } |
||
115 | /* take care of zero */ |
||
116 | if(ix0<=0) { |
||
117 | if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */ |
||
118 | else if(ix0<0) |
||
119 | return (x-x)/(x-x); /* sqrt(-ve) = sNaN */ |
||
120 | } |
||
121 | /* normalize x */ |
||
122 | m = (ix0>>20); |
||
123 | if(m==0) { /* subnormal x */ |
||
124 | while(ix0==0) { |
||
125 | m -= 21; |
||
126 | ix0 |= (ix1>>11); ix1 <<= 21; |
||
127 | } |
||
128 | for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1; |
||
129 | m -= i-1; |
||
130 | ix0 |= (ix1>>(32-i)); |
||
131 | ix1 <<= i; |
||
132 | } |
||
133 | m -= 1023; /* unbias exponent */ |
||
134 | ix0 = (ix0&0x000fffff)|0x00100000; |
||
135 | if(m&1){ /* odd m, double x to make it even */ |
||
136 | ix0 += ix0 + ((ix1&sign)>>31); |
||
137 | ix1 += ix1; |
||
138 | } |
||
139 | m >>= 1; /* m = [m/2] */ |
||
140 | |||
141 | /* generate sqrt(x) bit by bit */ |
||
142 | ix0 += ix0 + ((ix1&sign)>>31); |
||
143 | ix1 += ix1; |
||
144 | q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */ |
||
145 | r = 0x00200000; /* r = moving bit from right to left */ |
||
146 | |||
147 | while(r!=0) { |
||
148 | t = s0+r; |
||
149 | if(t<=ix0) { |
||
150 | s0 = t+r; |
||
151 | ix0 -= t; |
||
152 | q += r; |
||
153 | } |
||
154 | ix0 += ix0 + ((ix1&sign)>>31); |
||
155 | ix1 += ix1; |
||
156 | r>>=1; |
||
157 | } |
||
158 | |||
159 | r = sign; |
||
160 | while(r!=0) { |
||
161 | t1 = s1+r; |
||
162 | t = s0; |
||
163 | if((t<ix0)||((t==ix0)&&(t1<=ix1))) { |
||
164 | s1 = t1+r; |
||
165 | if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1; |
||
166 | ix0 -= t; |
||
167 | if (ix1 < t1) ix0 -= 1; |
||
168 | ix1 -= t1; |
||
169 | q1 += r; |
||
170 | } |
||
171 | ix0 += ix0 + ((ix1&sign)>>31); |
||
172 | ix1 += ix1; |
||
173 | r>>=1; |
||
174 | } |
||
175 | |||
176 | /* use floating add to find out rounding direction */ |
||
177 | if((ix0|ix1)!=0) { |
||
178 | z = one-tiny; /* trigger inexact flag */ |
||
179 | if (z>=one) { |
||
180 | z = one+tiny; |
||
181 | if (q1==(u_int32_t)0xffffffff) { q1=0; q += 1;} |
||
182 | else if (z>one) { |
||
183 | if (q1==(u_int32_t)0xfffffffe) q+=1; |
||
184 | q1+=2; |
||
185 | } else |
||
186 | q1 += (q1&1); |
||
187 | } |
||
188 | } |
||
189 | ix0 = (q>>1)+0x3fe00000; |
||
190 | ix1 = q1>>1; |
||
191 | if ((q&1)==1) ix1 |= sign; |
||
192 | ix0 += (m <<20); |
||
193 | INSERT_WORDS(z,ix0,ix1); |
||
194 | return z; |
||
195 | } |
||
196 | |||
197 | /* |
||
198 | Other methods (use floating-point arithmetic) |
||
199 | ------------- |
||
200 | (This is a copy of a drafted paper by Prof W. Kahan |
||
201 | and K.C. Ng, written in May, 1986) |
||
202 | |||
203 | Two algorithms are given here to implement sqrt(x) |
||
204 | (IEEE double precision arithmetic) in software. |
||
205 | Both supply sqrt(x) correctly rounded. The first algorithm (in |
||
206 | Section A) uses newton iterations and involves four divisions. |
||
207 | The second one uses reciproot iterations to avoid division, but |
||
208 | requires more multiplications. Both algorithms need the ability |
||
209 | to chop results of arithmetic operations instead of round them, |
||
210 | and the INEXACT flag to indicate when an arithmetic operation |
||
211 | is executed exactly with no roundoff error, all part of the |
||
212 | standard (IEEE 754-1985). The ability to perform shift, add, |
||
213 | subtract and logical AND operations upon 32-bit words is needed |
||
214 | too, though not part of the standard. |
||
215 | |||
216 | A. sqrt(x) by Newton Iteration |
||
217 | |||
218 | (1) Initial approximation |
||
219 | |||
220 | Let x0 and x1 be the leading and the trailing 32-bit words of |
||
221 | a floating point number x (in IEEE double format) respectively |
||
222 | |||
223 | 1 11 52 ...widths |
||
224 | ------------------------------------------------------ |
||
225 | x: |s| e | f | |
||
226 | ------------------------------------------------------ |
||
227 | msb lsb msb lsb ...order |
||
228 | |||
229 | |||
230 | ------------------------ ------------------------ |
||
231 | x0: |s| e | f1 | x1: | f2 | |
||
232 | ------------------------ ------------------------ |
||
233 | |||
234 | By performing shifts and subtracts on x0 and x1 (both regarded |
||
235 | as integers), we obtain an 8-bit approximation of sqrt(x) as |
||
236 | follows. |
||
237 | |||
238 | k := (x0>>1) + 0x1ff80000; |
||
239 | y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits |
||
240 | Here k is a 32-bit integer and T1[] is an integer array containing |
||
241 | correction terms. Now magically the floating value of y (y's |
||
242 | leading 32-bit word is y0, the value of its trailing word is 0) |
||
243 | approximates sqrt(x) to almost 8-bit. |
||
244 | |||
245 | Value of T1: |
||
246 | static int T1[32]= { |
||
247 | 0, 1024, 3062, 5746, 9193, 13348, 18162, 23592, |
||
248 | 29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215, |
||
249 | 83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581, |
||
250 | 16499, 12183, 8588, 5674, 3403, 1742, 661, 130,}; |
||
251 | |||
252 | (2) Iterative refinement |
||
253 | |||
254 | Apply Heron's rule three times to y, we have y approximates |
||
255 | sqrt(x) to within 1 ulp (Unit in the Last Place): |
||
256 | |||
257 | y := (y+x/y)/2 ... almost 17 sig. bits |
||
258 | y := (y+x/y)/2 ... almost 35 sig. bits |
||
259 | y := y-(y-x/y)/2 ... within 1 ulp |
||
260 | |||
261 | |||
262 | Remark 1. |
||
263 | Another way to improve y to within 1 ulp is: |
||
264 | |||
265 | y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x) |
||
266 | y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x) |
||
267 | |||
268 | 2 |
||
269 | (x-y )*y |
||
270 | y := y + 2* ---------- ...within 1 ulp |
||
271 | 2 |
||
272 | 3y + x |
||
273 | |||
274 | |||
275 | This formula has one division fewer than the one above; however, |
||
276 | it requires more multiplications and additions. Also x must be |
||
277 | scaled in advance to avoid spurious overflow in evaluating the |
||
278 | expression 3y*y+x. Hence it is not recommended uless division |
||
279 | is slow. If division is very slow, then one should use the |
||
280 | reciproot algorithm given in section B. |
||
281 | |||
282 | (3) Final adjustment |
||
283 | |||
284 | By twiddling y's last bit it is possible to force y to be |
||
285 | correctly rounded according to the prevailing rounding mode |
||
286 | as follows. Let r and i be copies of the rounding mode and |
||
287 | inexact flag before entering the square root program. Also we |
||
288 | use the expression y+-ulp for the next representable floating |
||
289 | numbers (up and down) of y. Note that y+-ulp = either fixed |
||
290 | point y+-1, or multiply y by nextafter(1,+-inf) in chopped |
||
291 | mode. |
||
292 | |||
293 | I := FALSE; ... reset INEXACT flag I |
||
294 | R := RZ; ... set rounding mode to round-toward-zero |
||
295 | z := x/y; ... chopped quotient, possibly inexact |
||
296 | If(not I) then { ... if the quotient is exact |
||
297 | if(z=y) { |
||
298 | I := i; ... restore inexact flag |
||
299 | R := r; ... restore rounded mode |
||
300 | return sqrt(x):=y. |
||
301 | } else { |
||
302 | z := z - ulp; ... special rounding |
||
303 | } |
||
304 | } |
||
305 | i := TRUE; ... sqrt(x) is inexact |
||
306 | If (r=RN) then z=z+ulp ... rounded-to-nearest |
||
307 | If (r=RP) then { ... round-toward-+inf |
||
308 | y = y+ulp; z=z+ulp; |
||
309 | } |
||
310 | y := y+z; ... chopped sum |
||
311 | y0:=y0-0x00100000; ... y := y/2 is correctly rounded. |
||
312 | I := i; ... restore inexact flag |
||
313 | R := r; ... restore rounded mode |
||
314 | return sqrt(x):=y. |
||
315 | |||
316 | (4) Special cases |
||
317 | |||
318 | Square root of +inf, +-0, or NaN is itself; |
||
319 | Square root of a negative number is NaN with invalid signal. |
||
320 | |||
321 | |||
322 | B. sqrt(x) by Reciproot Iteration |
||
323 | |||
324 | (1) Initial approximation |
||
325 | |||
326 | Let x0 and x1 be the leading and the trailing 32-bit words of |
||
327 | a floating point number x (in IEEE double format) respectively |
||
328 | (see section A). By performing shifs and subtracts on x0 and y0, |
||
329 | we obtain a 7.8-bit approximation of 1/sqrt(x) as follows. |
||
330 | |||
331 | k := 0x5fe80000 - (x0>>1); |
||
332 | y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits |
||
333 | |||
334 | Here k is a 32-bit integer and T2[] is an integer array |
||
335 | containing correction terms. Now magically the floating |
||
336 | value of y (y's leading 32-bit word is y0, the value of |
||
337 | its trailing word y1 is set to zero) approximates 1/sqrt(x) |
||
338 | to almost 7.8-bit. |
||
339 | |||
340 | Value of T2: |
||
341 | static int T2[64]= { |
||
342 | 0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866, |
||
343 | 0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f, |
||
344 | 0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d, |
||
345 | 0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0, |
||
346 | 0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989, |
||
347 | 0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd, |
||
348 | 0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e, |
||
349 | 0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,}; |
||
350 | |||
351 | (2) Iterative refinement |
||
352 | |||
353 | Apply Reciproot iteration three times to y and multiply the |
||
354 | result by x to get an approximation z that matches sqrt(x) |
||
355 | to about 1 ulp. To be exact, we will have |
||
356 | -1ulp < sqrt(x)-z<1.0625ulp. |
||
357 | |||
358 | ... set rounding mode to Round-to-nearest |
||
359 | y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x) |
||
360 | y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x) |
||
361 | ... special arrangement for better accuracy |
||
362 | z := x*y ... 29 bits to sqrt(x), with z*y<1 |
||
363 | z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x) |
||
364 | |||
365 | Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that |
||
366 | (a) the term z*y in the final iteration is always less than 1; |
||
367 | (b) the error in the final result is biased upward so that |
||
368 | -1 ulp < sqrt(x) - z < 1.0625 ulp |
||
369 | instead of |sqrt(x)-z|<1.03125ulp. |
||
370 | |||
371 | (3) Final adjustment |
||
372 | |||
373 | By twiddling y's last bit it is possible to force y to be |
||
374 | correctly rounded according to the prevailing rounding mode |
||
375 | as follows. Let r and i be copies of the rounding mode and |
||
376 | inexact flag before entering the square root program. Also we |
||
377 | use the expression y+-ulp for the next representable floating |
||
378 | numbers (up and down) of y. Note that y+-ulp = either fixed |
||
379 | point y+-1, or multiply y by nextafter(1,+-inf) in chopped |
||
380 | mode. |
||
381 | |||
382 | R := RZ; ... set rounding mode to round-toward-zero |
||
383 | switch(r) { |
||
384 | case RN: ... round-to-nearest |
||
385 | if(x<= z*(z-ulp)...chopped) z = z - ulp; else |
||
386 | if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp; |
||
387 | break; |
||
388 | case RZ:case RM: ... round-to-zero or round-to--inf |
||
389 | R:=RP; ... reset rounding mod to round-to-+inf |
||
390 | if(x<z*z ... rounded up) z = z - ulp; else |
||
391 | if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp; |
||
392 | break; |
||
393 | case RP: ... round-to-+inf |
||
394 | if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else |
||
395 | if(x>z*z ...chopped) z = z+ulp; |
||
396 | break; |
||
397 | } |
||
398 | |||
399 | Remark 3. The above comparisons can be done in fixed point. For |
||
400 | example, to compare x and w=z*z chopped, it suffices to compare |
||
401 | x1 and w1 (the trailing parts of x and w), regarding them as |
||
402 | two's complement integers. |
||
403 | |||
404 | ...Is z an exact square root? |
||
405 | To determine whether z is an exact square root of x, let z1 be the |
||
406 | trailing part of z, and also let x0 and x1 be the leading and |
||
407 | trailing parts of x. |
||
408 | |||
409 | If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0 |
||
410 | I := 1; ... Raise Inexact flag: z is not exact |
||
411 | else { |
||
412 | j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2 |
||
413 | k := z1 >> 26; ... get z's 25-th and 26-th |
||
414 | fraction bits |
||
415 | I := i or (k&j) or ((k&(j+j+1))!=(x1&3)); |
||
416 | } |
||
417 | R:= r ... restore rounded mode |
||
418 | return sqrt(x):=z. |
||
419 | |||
420 | If multiplication is cheaper then the foregoing red tape, the |
||
421 | Inexact flag can be evaluated by |
||
422 | |||
423 | I := i; |
||
424 | I := (z*z!=x) or I. |
||
425 | |||
426 | Note that z*z can overwrite I; this value must be sensed if it is |
||
427 | True. |
||
428 | |||
429 | Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be |
||
430 | zero. |
||
431 | |||
432 | -------------------- |
||
433 | z1: | f2 | |
||
434 | -------------------- |
||
435 | bit 31 bit 0 |
||
436 | |||
437 | Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd |
||
438 | or even of logb(x) have the following relations: |
||
439 | |||
440 | ------------------------------------------------- |
||
441 | bit 27,26 of z1 bit 1,0 of x1 logb(x) |
||
442 | ------------------------------------------------- |
||
443 | 00 00 odd and even |
||
444 | 01 01 even |
||
445 | 10 10 odd |
||
446 | 10 00 even |
||
447 | 11 01 even |
||
448 | ------------------------------------------------- |
||
449 | |||
450 | (4) Special cases (see (4) of Section A). |
||
451 | |||
452 | */ |
||
453 |