Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | pj | 1 | /* @(#)k_cos.c 5.1 93/09/24 */ |
2 | /* |
||
3 | * ==================================================== |
||
4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
||
5 | * |
||
6 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
||
7 | * Permission to use, copy, modify, and distribute this |
||
8 | * software is freely granted, provided that this notice |
||
9 | * is preserved. |
||
10 | * ==================================================== |
||
11 | */ |
||
12 | |||
13 | #ifndef lint |
||
14 | static char rcsid[] = "$\Id: k_cos.c,v 1.2 1995/05/30 05:48:53 rgrimes Exp $"; |
||
15 | #endif |
||
16 | |||
17 | /* |
||
18 | * __kernel_cos( x, y ) |
||
19 | * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 |
||
20 | * Input x is assumed to be bounded by ~pi/4 in magnitude. |
||
21 | * Input y is the tail of x. |
||
22 | * |
||
23 | * Algorithm |
||
24 | * 1. Since cos(-x) = cos(x), we need only to consider positive x. |
||
25 | * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0. |
||
26 | * 3. cos(x) is approximated by a polynomial of degree 14 on |
||
27 | * [0,pi/4] |
||
28 | * 4 14 |
||
29 | * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x |
||
30 | * where the remez error is |
||
31 | * |
||
32 | * | 2 4 6 8 10 12 14 | -58 |
||
33 | * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 |
||
34 | * | | |
||
35 | * |
||
36 | * 4 6 8 10 12 14 |
||
37 | * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then |
||
38 | * cos(x) = 1 - x*x/2 + r |
||
39 | * since cos(x+y) ~ cos(x) - sin(x)*y |
||
40 | * ~ cos(x) - x*y, |
||
41 | * a correction term is necessary in cos(x) and hence |
||
42 | * cos(x+y) = 1 - (x*x/2 - (r - x*y)) |
||
43 | * For better accuracy when x > 0.3, let qx = |x|/4 with |
||
44 | * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. |
||
45 | * Then |
||
46 | * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)). |
||
47 | * Note that 1-qx and (x*x/2-qx) is EXACT here, and the |
||
48 | * magnitude of the latter is at least a quarter of x*x/2, |
||
49 | * thus, reducing the rounding error in the subtraction. |
||
50 | */ |
||
51 | |||
52 | #include "math.h" |
||
53 | #include "math_private.h" |
||
54 | |||
55 | #ifdef __STDC__ |
||
56 | static const double |
||
57 | #else |
||
58 | static double |
||
59 | #endif |
||
60 | one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ |
||
61 | C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */ |
||
62 | C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */ |
||
63 | C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */ |
||
64 | C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */ |
||
65 | C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */ |
||
66 | C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */ |
||
67 | |||
68 | #ifdef __STDC__ |
||
69 | double __kernel_cos(double x, double y) |
||
70 | #else |
||
71 | double __kernel_cos(x, y) |
||
72 | double x,y; |
||
73 | #endif |
||
74 | { |
||
75 | double a,hz,z,r,qx; |
||
76 | int32_t ix; |
||
77 | GET_HIGH_WORD(ix,x); |
||
78 | ix &= 0x7fffffff; /* ix = |x|'s high word*/ |
||
79 | if(ix<0x3e400000) { /* if x < 2**27 */ |
||
80 | if(((int)x)==0) return one; /* generate inexact */ |
||
81 | } |
||
82 | z = x*x; |
||
83 | r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6))))); |
||
84 | if(ix < 0x3FD33333) /* if |x| < 0.3 */ |
||
85 | return one - (0.5*z - (z*r - x*y)); |
||
86 | else { |
||
87 | if(ix > 0x3fe90000) { /* x > 0.78125 */ |
||
88 | qx = 0.28125; |
||
89 | } else { |
||
90 | INSERT_WORDS(qx,ix-0x00200000,0); /* x/4 */ |
||
91 | } |
||
92 | hz = 0.5*z-qx; |
||
93 | a = one-qx; |
||
94 | return a - (hz - (z*r-x*y)); |
||
95 | } |
||
96 | } |