Subversion Repositories shark

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 pj 1
/* @(#)k_cos.c 5.1 93/09/24 */
2
/*
3
 * ====================================================
4
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5
 *
6
 * Developed at SunPro, a Sun Microsystems, Inc. business.
7
 * Permission to use, copy, modify, and distribute this
8
 * software is freely granted, provided that this notice
9
 * is preserved.
10
 * ====================================================
11
 */
12
 
13
#ifndef lint
14
static char rcsid[] = "$\Id: k_cos.c,v 1.2 1995/05/30 05:48:53 rgrimes Exp $";
15
#endif
16
 
17
/*
18
 * __kernel_cos( x,  y )
19
 * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
20
 * Input x is assumed to be bounded by ~pi/4 in magnitude.
21
 * Input y is the tail of x.
22
 *
23
 * Algorithm
24
 *      1. Since cos(-x) = cos(x), we need only to consider positive x.
25
 *      2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
26
 *      3. cos(x) is approximated by a polynomial of degree 14 on
27
 *         [0,pi/4]
28
 *                                       4            14
29
 *              cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
30
 *         where the remez error is
31
 *
32
 *      |              2     4     6     8     10    12     14 |     -58
33
 *      |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  )| <= 2
34
 *      |                                                      |
35
 *
36
 *                     4     6     8     10    12     14
37
 *      4. let r = C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  , then
38
 *             cos(x) = 1 - x*x/2 + r
39
 *         since cos(x+y) ~ cos(x) - sin(x)*y
40
 *                        ~ cos(x) - x*y,
41
 *         a correction term is necessary in cos(x) and hence
42
 *              cos(x+y) = 1 - (x*x/2 - (r - x*y))
43
 *         For better accuracy when x > 0.3, let qx = |x|/4 with
44
 *         the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
45
 *         Then
46
 *              cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
47
 *         Note that 1-qx and (x*x/2-qx) is EXACT here, and the
48
 *         magnitude of the latter is at least a quarter of x*x/2,
49
 *         thus, reducing the rounding error in the subtraction.
50
 */
51
 
52
#include "math.h"
53
#include "math_private.h"
54
 
55
#ifdef __STDC__
56
static const double
57
#else
58
static double
59
#endif
60
one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
61
C1  =  4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
62
C2  = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
63
C3  =  2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
64
C4  = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
65
C5  =  2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
66
C6  = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
67
 
68
#ifdef __STDC__
69
        double __kernel_cos(double x, double y)
70
#else
71
        double __kernel_cos(x, y)
72
        double x,y;
73
#endif
74
{
75
        double a,hz,z,r,qx;
76
        int32_t ix;
77
        GET_HIGH_WORD(ix,x);
78
        ix &= 0x7fffffff;                       /* ix = |x|'s high word*/
79
        if(ix<0x3e400000) {                     /* if x < 2**27 */
80
            if(((int)x)==0) return one;         /* generate inexact */
81
        }
82
        z  = x*x;
83
        r  = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
84
        if(ix < 0x3FD33333)                     /* if |x| < 0.3 */
85
            return one - (0.5*z - (z*r - x*y));
86
        else {
87
            if(ix > 0x3fe90000) {               /* x > 0.78125 */
88
                qx = 0.28125;
89
            } else {
90
                INSERT_WORDS(qx,ix-0x00200000,0);       /* x/4 */
91
            }
92
            hz = 0.5*z-qx;
93
            a  = one-qx;
94
            return a - (hz - (z*r-x*y));
95
        }
96
}