Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | pj | 1 | /* @(#)k_tan.c 5.1 93/09/24 */ |
2 | /* |
||
3 | * ==================================================== |
||
4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
||
5 | * |
||
6 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
||
7 | * Permission to use, copy, modify, and distribute this |
||
8 | * software is freely granted, provided that this notice |
||
9 | * is preserved. |
||
10 | * ==================================================== |
||
11 | */ |
||
12 | |||
13 | #ifndef lint |
||
14 | static char rcsid[] = "$\Id: k_tan.c,v 1.2 1995/05/30 05:49:14 rgrimes Exp $"; |
||
15 | #endif |
||
16 | |||
17 | /* __kernel_tan( x, y, k ) |
||
18 | * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 |
||
19 | * Input x is assumed to be bounded by ~pi/4 in magnitude. |
||
20 | * Input y is the tail of x. |
||
21 | * Input k indicates whether tan (if k=1) or |
||
22 | * -1/tan (if k= -1) is returned. |
||
23 | * |
||
24 | * Algorithm |
||
25 | * 1. Since tan(-x) = -tan(x), we need only to consider positive x. |
||
26 | * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. |
||
27 | * 3. tan(x) is approximated by a odd polynomial of degree 27 on |
||
28 | * [0,0.67434] |
||
29 | * 3 27 |
||
30 | * tan(x) ~ x + T1*x + ... + T13*x |
||
31 | * where |
||
32 | * |
||
33 | * |tan(x) 2 4 26 | -59.2 |
||
34 | * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 |
||
35 | * | x | |
||
36 | * |
||
37 | * Note: tan(x+y) = tan(x) + tan'(x)*y |
||
38 | * ~ tan(x) + (1+x*x)*y |
||
39 | * Therefore, for better accuracy in computing tan(x+y), let |
||
40 | * 3 2 2 2 2 |
||
41 | * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) |
||
42 | * then |
||
43 | * 3 2 |
||
44 | * tan(x+y) = x + (T1*x + (x *(r+y)+y)) |
||
45 | * |
||
46 | * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then |
||
47 | * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) |
||
48 | * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) |
||
49 | */ |
||
50 | |||
51 | #include "math.h" |
||
52 | #include "math_private.h" |
||
53 | #ifdef __STDC__ |
||
54 | static const double |
||
55 | #else |
||
56 | static double |
||
57 | #endif |
||
58 | one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ |
||
59 | pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ |
||
60 | pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */ |
||
61 | T[] = { |
||
62 | 3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */ |
||
63 | 1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */ |
||
64 | 5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */ |
||
65 | 2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */ |
||
66 | 8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */ |
||
67 | 3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */ |
||
68 | 1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */ |
||
69 | 5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */ |
||
70 | 2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */ |
||
71 | 7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */ |
||
72 | 7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */ |
||
73 | -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */ |
||
74 | 2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */ |
||
75 | }; |
||
76 | |||
77 | #ifdef __STDC__ |
||
78 | double __kernel_tan(double x, double y, int iy) |
||
79 | #else |
||
80 | double __kernel_tan(x, y, iy) |
||
81 | double x,y; int iy; |
||
82 | #endif |
||
83 | { |
||
84 | double z,r,v,w,s; |
||
85 | int32_t ix,hx; |
||
86 | GET_HIGH_WORD(hx,x); |
||
87 | ix = hx&0x7fffffff; /* high word of |x| */ |
||
88 | if(ix<0x3e300000) /* x < 2**-28 */ |
||
89 | {if((int)x==0) { /* generate inexact */ |
||
90 | u_int32_t low; |
||
91 | GET_LOW_WORD(low,x); |
||
92 | if(((ix|low)|(iy+1))==0) return one/fabs(x); |
||
93 | else return (iy==1)? x: -one/x; |
||
94 | } |
||
95 | } |
||
96 | if(ix>=0x3FE59428) { /* |x|>=0.6744 */ |
||
97 | if(hx<0) {x = -x; y = -y;} |
||
98 | z = pio4-x; |
||
99 | w = pio4lo-y; |
||
100 | x = z+w; y = 0.0; |
||
101 | } |
||
102 | z = x*x; |
||
103 | w = z*z; |
||
104 | /* Break x^5*(T[1]+x^2*T[2]+...) into |
||
105 | * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + |
||
106 | * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) |
||
107 | */ |
||
108 | r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11])))); |
||
109 | v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12]))))); |
||
110 | s = z*x; |
||
111 | r = y + z*(s*(r+v)+y); |
||
112 | r += T[0]*s; |
||
113 | w = x+r; |
||
114 | if(ix>=0x3FE59428) { |
||
115 | v = (double)iy; |
||
116 | return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r))); |
||
117 | } |
||
118 | if(iy==1) return w; |
||
119 | else { /* if allow error up to 2 ulp, |
||
120 | simply return -1.0/(x+r) here */ |
||
121 | /* compute -1.0/(x+r) accurately */ |
||
122 | double a,t; |
||
123 | z = w; |
||
124 | SET_LOW_WORD(z,0); |
||
125 | v = r-(z - x); /* z+v = r+x */ |
||
126 | t = a = -1.0/w; /* a = -1.0/w */ |
||
127 | SET_LOW_WORD(t,0); |
||
128 | s = 1.0+t*z; |
||
129 | return t+a*(s+t*v); |
||
130 | } |
||
131 | } |