Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | pj | 1 | /* @(#)s_atan.c 5.1 93/09/24 */ |
2 | /* |
||
3 | * ==================================================== |
||
4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
||
5 | * |
||
6 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
||
7 | * Permission to use, copy, modify, and distribute this |
||
8 | * software is freely granted, provided that this notice |
||
9 | * is preserved. |
||
10 | * ==================================================== |
||
11 | */ |
||
12 | |||
13 | #ifndef lint |
||
14 | static char rcsid[] = "$\Id: s_atan.c,v 1.2.6.1 1997/02/23 11:03:13 joerg Exp $"; |
||
15 | #endif |
||
16 | |||
17 | /* atan(x) |
||
18 | * Method |
||
19 | * 1. Reduce x to positive by atan(x) = -atan(-x). |
||
20 | * 2. According to the integer k=4t+0.25 chopped, t=x, the argument |
||
21 | * is further reduced to one of the following intervals and the |
||
22 | * arctangent of t is evaluated by the corresponding formula: |
||
23 | * |
||
24 | * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) |
||
25 | * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) |
||
26 | * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) |
||
27 | * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) |
||
28 | * [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) |
||
29 | * |
||
30 | * Constants: |
||
31 | * The hexadecimal values are the intended ones for the following |
||
32 | * constants. The decimal values may be used, provided that the |
||
33 | * compiler will convert from decimal to binary accurately enough |
||
34 | * to produce the hexadecimal values shown. |
||
35 | */ |
||
36 | |||
37 | #include "math.h" |
||
38 | #include "math_private.h" |
||
39 | |||
40 | #ifdef __STDC__ |
||
41 | static const double atanhi[] = { |
||
42 | #else |
||
43 | static double atanhi[] = { |
||
44 | #endif |
||
45 | 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */ |
||
46 | 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */ |
||
47 | 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */ |
||
48 | 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */ |
||
49 | }; |
||
50 | |||
51 | #ifdef __STDC__ |
||
52 | static const double atanlo[] = { |
||
53 | #else |
||
54 | static double atanlo[] = { |
||
55 | #endif |
||
56 | 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */ |
||
57 | 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */ |
||
58 | 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */ |
||
59 | 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */ |
||
60 | }; |
||
61 | |||
62 | #ifdef __STDC__ |
||
63 | static const double aT[] = { |
||
64 | #else |
||
65 | static double aT[] = { |
||
66 | #endif |
||
67 | 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */ |
||
68 | -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */ |
||
69 | 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */ |
||
70 | -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */ |
||
71 | 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */ |
||
72 | -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */ |
||
73 | 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */ |
||
74 | -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */ |
||
75 | 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */ |
||
76 | -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */ |
||
77 | 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */ |
||
78 | }; |
||
79 | |||
80 | #ifdef __STDC__ |
||
81 | static const double |
||
82 | #else |
||
83 | static double |
||
84 | #endif |
||
85 | one = 1.0, |
||
86 | huge = 1.0e300; |
||
87 | |||
88 | #ifdef __STDC__ |
||
89 | double __generic_atan(double x) |
||
90 | #else |
||
91 | double __generic_atan(x) |
||
92 | double x; |
||
93 | #endif |
||
94 | { |
||
95 | double w,s1,s2,z; |
||
96 | int32_t ix,hx,id; |
||
97 | |||
98 | GET_HIGH_WORD(hx,x); |
||
99 | ix = hx&0x7fffffff; |
||
100 | if(ix>=0x44100000) { /* if |x| >= 2^66 */ |
||
101 | u_int32_t low; |
||
102 | GET_LOW_WORD(low,x); |
||
103 | if(ix>0x7ff00000|| |
||
104 | (ix==0x7ff00000&&(low!=0))) |
||
105 | return x+x; /* NaN */ |
||
106 | if(hx>0) return atanhi[3]+atanlo[3]; |
||
107 | else return -atanhi[3]-atanlo[3]; |
||
108 | } if (ix < 0x3fdc0000) { /* |x| < 0.4375 */ |
||
109 | if (ix < 0x3e200000) { /* |x| < 2^-29 */ |
||
110 | if(huge+x>one) return x; /* raise inexact */ |
||
111 | } |
||
112 | id = -1; |
||
113 | } else { |
||
114 | x = fabs(x); |
||
115 | if (ix < 0x3ff30000) { /* |x| < 1.1875 */ |
||
116 | if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */ |
||
117 | id = 0; x = (2.0*x-one)/(2.0+x); |
||
118 | } else { /* 11/16<=|x|< 19/16 */ |
||
119 | id = 1; x = (x-one)/(x+one); |
||
120 | } |
||
121 | } else { |
||
122 | if (ix < 0x40038000) { /* |x| < 2.4375 */ |
||
123 | id = 2; x = (x-1.5)/(one+1.5*x); |
||
124 | } else { /* 2.4375 <= |x| < 2^66 */ |
||
125 | id = 3; x = -1.0/x; |
||
126 | } |
||
127 | }} |
||
128 | /* end of argument reduction */ |
||
129 | z = x*x; |
||
130 | w = z*z; |
||
131 | /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ |
||
132 | s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10]))))); |
||
133 | s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9])))); |
||
134 | if (id<0) return x - x*(s1+s2); |
||
135 | else { |
||
136 | z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x); |
||
137 | return (hx<0)? -z:z; |
||
138 | } |
||
139 | } |