Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | pj | 1 | /* @(#)s_tan.c 5.1 93/09/24 */ |
2 | /* |
||
3 | * ==================================================== |
||
4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
||
5 | * |
||
6 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
||
7 | * Permission to use, copy, modify, and distribute this |
||
8 | * software is freely granted, provided that this notice |
||
9 | * is preserved. |
||
10 | * ==================================================== |
||
11 | */ |
||
12 | |||
13 | #ifndef lint |
||
14 | static char rcsid[] = "$\Id: s_tan.c,v 1.2.6.1 1997/02/23 11:03:23 joerg Exp $"; |
||
15 | #endif |
||
16 | |||
17 | /* tan(x) |
||
18 | * Return tangent function of x. |
||
19 | * |
||
20 | * kernel function: |
||
21 | * __kernel_tan ... tangent function on [-pi/4,pi/4] |
||
22 | * __ieee754_rem_pio2 ... argument reduction routine |
||
23 | * |
||
24 | * Method. |
||
25 | * Let S,C and T denote the sin, cos and tan respectively on |
||
26 | * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 |
||
27 | * in [-pi/4 , +pi/4], and let n = k mod 4. |
||
28 | * We have |
||
29 | * |
||
30 | * n sin(x) cos(x) tan(x) |
||
31 | * ---------------------------------------------------------- |
||
32 | * 0 S C T |
||
33 | * 1 C -S -1/T |
||
34 | * 2 -S -C T |
||
35 | * 3 -C S -1/T |
||
36 | * ---------------------------------------------------------- |
||
37 | * |
||
38 | * Special cases: |
||
39 | * Let trig be any of sin, cos, or tan. |
||
40 | * trig(+-INF) is NaN, with signals; |
||
41 | * trig(NaN) is that NaN; |
||
42 | * |
||
43 | * Accuracy: |
||
44 | * TRIG(x) returns trig(x) nearly rounded |
||
45 | */ |
||
46 | |||
47 | #include "math.h" |
||
48 | #include "math_private.h" |
||
49 | |||
50 | #ifdef __STDC__ |
||
51 | double __generic_tan(double x) |
||
52 | #else |
||
53 | double __generic_tan(x) |
||
54 | double x; |
||
55 | #endif |
||
56 | { |
||
57 | double y[2],z=0.0; |
||
58 | int32_t n, ix; |
||
59 | |||
60 | /* High word of x. */ |
||
61 | GET_HIGH_WORD(ix,x); |
||
62 | |||
63 | /* |x| ~< pi/4 */ |
||
64 | ix &= 0x7fffffff; |
||
65 | if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1); |
||
66 | |||
67 | /* tan(Inf or NaN) is NaN */ |
||
68 | else if (ix>=0x7ff00000) return x-x; /* NaN */ |
||
69 | |||
70 | /* argument reduction needed */ |
||
71 | else { |
||
72 | n = __ieee754_rem_pio2(x,y); |
||
73 | return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even |
||
74 | -1 -- n odd */ |
||
75 | } |
||
76 | } |