Rev 422 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
422 | giacomo | 1 | #ifndef _I386_PGTABLE_H |
2 | #define _I386_PGTABLE_H |
||
3 | |||
4 | #include <linux/config.h> |
||
5 | |||
6 | /* |
||
7 | * The Linux memory management assumes a three-level page table setup. On |
||
8 | * the i386, we use that, but "fold" the mid level into the top-level page |
||
9 | * table, so that we physically have the same two-level page table as the |
||
10 | * i386 mmu expects. |
||
11 | * |
||
12 | * This file contains the functions and defines necessary to modify and use |
||
13 | * the i386 page table tree. |
||
14 | */ |
||
15 | #ifndef __ASSEMBLY__ |
||
16 | #include <asm/processor.h> |
||
17 | #include <asm/fixmap.h> |
||
18 | #include <linux/threads.h> |
||
19 | |||
20 | #ifndef _I386_BITOPS_H |
||
21 | #include <asm/bitops.h> |
||
22 | #endif |
||
23 | |||
24 | #include <linux/slab.h> |
||
25 | #include <linux/list.h> |
||
26 | #include <linux/spinlock.h> |
||
27 | |||
28 | /* |
||
29 | * ZERO_PAGE is a global shared page that is always zero: used |
||
30 | * for zero-mapped memory areas etc.. |
||
31 | */ |
||
32 | #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) |
||
33 | extern unsigned long empty_zero_page[1024]; |
||
34 | extern pgd_t swapper_pg_dir[1024]; |
||
35 | extern kmem_cache_t *pgd_cache; |
||
36 | extern kmem_cache_t *pmd_cache; |
||
37 | extern spinlock_t pgd_lock; |
||
38 | extern struct list_head pgd_list; |
||
39 | |||
40 | void pmd_ctor(void *, kmem_cache_t *, unsigned long); |
||
41 | void pgd_ctor(void *, kmem_cache_t *, unsigned long); |
||
42 | void pgd_dtor(void *, kmem_cache_t *, unsigned long); |
||
43 | void pgtable_cache_init(void); |
||
44 | void paging_init(void); |
||
45 | |||
46 | #endif /* !__ASSEMBLY__ */ |
||
47 | |||
48 | /* |
||
49 | * The Linux x86 paging architecture is 'compile-time dual-mode', it |
||
50 | * implements both the traditional 2-level x86 page tables and the |
||
51 | * newer 3-level PAE-mode page tables. |
||
52 | */ |
||
53 | #ifndef __ASSEMBLY__ |
||
54 | #ifdef CONFIG_X86_PAE |
||
55 | # include <asm/pgtable-3level.h> |
||
56 | #else |
||
57 | # include <asm/pgtable-2level.h> |
||
58 | #endif |
||
59 | #endif |
||
60 | |||
61 | #define PMD_SIZE (1UL << PMD_SHIFT) |
||
62 | #define PMD_MASK (~(PMD_SIZE-1)) |
||
63 | #define PGDIR_SIZE (1UL << PGDIR_SHIFT) |
||
64 | #define PGDIR_MASK (~(PGDIR_SIZE-1)) |
||
65 | |||
66 | #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE) |
||
67 | #define FIRST_USER_PGD_NR 0 |
||
68 | |||
69 | #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) |
||
70 | #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS) |
||
71 | |||
72 | #define TWOLEVEL_PGDIR_SHIFT 22 |
||
73 | #define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT) |
||
74 | #define BOOT_KERNEL_PGD_PTRS (1024-BOOT_USER_PGD_PTRS) |
||
75 | |||
76 | |||
77 | #ifndef __ASSEMBLY__ |
||
78 | /* Just any arbitrary offset to the start of the vmalloc VM area: the |
||
79 | * current 8MB value just means that there will be a 8MB "hole" after the |
||
80 | * physical memory until the kernel virtual memory starts. That means that |
||
81 | * any out-of-bounds memory accesses will hopefully be caught. |
||
82 | * The vmalloc() routines leaves a hole of 4kB between each vmalloced |
||
83 | * area for the same reason. ;) |
||
84 | */ |
||
85 | #define VMALLOC_OFFSET (8*1024*1024) |
||
86 | #define VMALLOC_START (((unsigned long) high_memory + 2*VMALLOC_OFFSET-1) & \ |
||
87 | ~(VMALLOC_OFFSET-1)) |
||
88 | #ifdef CONFIG_HIGHMEM |
||
89 | # define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE) |
||
90 | #else |
||
91 | # define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE) |
||
92 | #endif |
||
93 | |||
94 | /* |
||
95 | * The 4MB page is guessing.. Detailed in the infamous "Chapter H" |
||
96 | * of the Pentium details, but assuming intel did the straightforward |
||
97 | * thing, this bit set in the page directory entry just means that |
||
98 | * the page directory entry points directly to a 4MB-aligned block of |
||
99 | * memory. |
||
100 | */ |
||
101 | #define _PAGE_BIT_PRESENT 0 |
||
102 | #define _PAGE_BIT_RW 1 |
||
103 | #define _PAGE_BIT_USER 2 |
||
104 | #define _PAGE_BIT_PWT 3 |
||
105 | #define _PAGE_BIT_PCD 4 |
||
106 | #define _PAGE_BIT_ACCESSED 5 |
||
107 | #define _PAGE_BIT_DIRTY 6 |
||
108 | #define _PAGE_BIT_PSE 7 /* 4 MB (or 2MB) page, Pentium+, if present.. */ |
||
109 | #define _PAGE_BIT_GLOBAL 8 /* Global TLB entry PPro+ */ |
||
110 | |||
111 | #define _PAGE_PRESENT 0x001 |
||
112 | #define _PAGE_RW 0x002 |
||
113 | #define _PAGE_USER 0x004 |
||
114 | #define _PAGE_PWT 0x008 |
||
115 | #define _PAGE_PCD 0x010 |
||
116 | #define _PAGE_ACCESSED 0x020 |
||
117 | #define _PAGE_DIRTY 0x040 |
||
118 | #define _PAGE_PSE 0x080 /* 4 MB (or 2MB) page, Pentium+, if present.. */ |
||
119 | #define _PAGE_GLOBAL 0x100 /* Global TLB entry PPro+ */ |
||
120 | |||
121 | #define _PAGE_FILE 0x040 /* set:pagecache unset:swap */ |
||
122 | #define _PAGE_PROTNONE 0x080 /* If not present */ |
||
123 | |||
124 | #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY) |
||
125 | #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY) |
||
126 | #define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) |
||
127 | |||
128 | #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED) |
||
129 | #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED) |
||
130 | #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) |
||
131 | #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) |
||
132 | |||
133 | #define _PAGE_KERNEL \ |
||
134 | (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED) |
||
135 | |||
136 | extern unsigned long __PAGE_KERNEL; |
||
137 | #define __PAGE_KERNEL_RO (__PAGE_KERNEL & ~_PAGE_RW) |
||
138 | #define __PAGE_KERNEL_NOCACHE (__PAGE_KERNEL | _PAGE_PCD) |
||
139 | #define __PAGE_KERNEL_LARGE (__PAGE_KERNEL | _PAGE_PSE) |
||
140 | |||
141 | #define PAGE_KERNEL __pgprot(__PAGE_KERNEL) |
||
142 | #define PAGE_KERNEL_RO __pgprot(__PAGE_KERNEL_RO) |
||
143 | #define PAGE_KERNEL_NOCACHE __pgprot(__PAGE_KERNEL_NOCACHE) |
||
144 | #define PAGE_KERNEL_LARGE __pgprot(__PAGE_KERNEL_LARGE) |
||
145 | |||
146 | /* |
||
147 | * The i386 can't do page protection for execute, and considers that |
||
148 | * the same are read. Also, write permissions imply read permissions. |
||
149 | * This is the closest we can get.. |
||
150 | */ |
||
151 | #define __P000 PAGE_NONE |
||
152 | #define __P001 PAGE_READONLY |
||
153 | #define __P010 PAGE_COPY |
||
154 | #define __P011 PAGE_COPY |
||
155 | #define __P100 PAGE_READONLY |
||
156 | #define __P101 PAGE_READONLY |
||
157 | #define __P110 PAGE_COPY |
||
158 | #define __P111 PAGE_COPY |
||
159 | |||
160 | #define __S000 PAGE_NONE |
||
161 | #define __S001 PAGE_READONLY |
||
162 | #define __S010 PAGE_SHARED |
||
163 | #define __S011 PAGE_SHARED |
||
164 | #define __S100 PAGE_READONLY |
||
165 | #define __S101 PAGE_READONLY |
||
166 | #define __S110 PAGE_SHARED |
||
167 | #define __S111 PAGE_SHARED |
||
168 | |||
169 | /* |
||
170 | * Define this if things work differently on an i386 and an i486: |
||
171 | * it will (on an i486) warn about kernel memory accesses that are |
||
172 | * done without a 'verify_area(VERIFY_WRITE,..)' |
||
173 | */ |
||
174 | #undef TEST_VERIFY_AREA |
||
175 | |||
176 | /* page table for 0-4MB for everybody */ |
||
177 | extern unsigned long pg0[1024]; |
||
178 | |||
179 | #define pte_present(x) ((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE)) |
||
180 | #define pte_clear(xp) do { set_pte(xp, __pte(0)); } while (0) |
||
181 | |||
182 | #define pmd_none(x) (!pmd_val(x)) |
||
183 | #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) |
||
184 | #define pmd_clear(xp) do { set_pmd(xp, __pmd(0)); } while (0) |
||
185 | #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE) |
||
186 | |||
187 | |||
188 | #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT)) |
||
189 | |||
190 | /* |
||
191 | * The following only work if pte_present() is true. |
||
192 | * Undefined behaviour if not.. |
||
193 | */ |
||
194 | static inline int pte_user(pte_t pte) { return (pte).pte_low & _PAGE_USER; } |
||
195 | static inline int pte_read(pte_t pte) { return (pte).pte_low & _PAGE_USER; } |
||
196 | static inline int pte_exec(pte_t pte) { return (pte).pte_low & _PAGE_USER; } |
||
197 | static inline int pte_dirty(pte_t pte) { return (pte).pte_low & _PAGE_DIRTY; } |
||
198 | static inline int pte_young(pte_t pte) { return (pte).pte_low & _PAGE_ACCESSED; } |
||
199 | static inline int pte_write(pte_t pte) { return (pte).pte_low & _PAGE_RW; } |
||
200 | |||
201 | /* |
||
202 | * The following only works if pte_present() is not true. |
||
203 | */ |
||
204 | static inline int pte_file(pte_t pte) { return (pte).pte_low & _PAGE_FILE; } |
||
205 | |||
206 | static inline pte_t pte_rdprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_USER; return pte; } |
||
207 | static inline pte_t pte_exprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_USER; return pte; } |
||
208 | static inline pte_t pte_mkclean(pte_t pte) { (pte).pte_low &= ~_PAGE_DIRTY; return pte; } |
||
209 | static inline pte_t pte_mkold(pte_t pte) { (pte).pte_low &= ~_PAGE_ACCESSED; return pte; } |
||
210 | static inline pte_t pte_wrprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_RW; return pte; } |
||
211 | static inline pte_t pte_mkread(pte_t pte) { (pte).pte_low |= _PAGE_USER; return pte; } |
||
212 | static inline pte_t pte_mkexec(pte_t pte) { (pte).pte_low |= _PAGE_USER; return pte; } |
||
213 | static inline pte_t pte_mkdirty(pte_t pte) { (pte).pte_low |= _PAGE_DIRTY; return pte; } |
||
214 | static inline pte_t pte_mkyoung(pte_t pte) { (pte).pte_low |= _PAGE_ACCESSED; return pte; } |
||
215 | static inline pte_t pte_mkwrite(pte_t pte) { (pte).pte_low |= _PAGE_RW; return pte; } |
||
216 | |||
217 | static inline int ptep_test_and_clear_dirty(pte_t *ptep) { return test_and_clear_bit(_PAGE_BIT_DIRTY, &ptep->pte_low); } |
||
218 | static inline int ptep_test_and_clear_young(pte_t *ptep) { return test_and_clear_bit(_PAGE_BIT_ACCESSED, &ptep->pte_low); } |
||
219 | static inline void ptep_set_wrprotect(pte_t *ptep) { clear_bit(_PAGE_BIT_RW, &ptep->pte_low); } |
||
220 | static inline void ptep_mkdirty(pte_t *ptep) { set_bit(_PAGE_BIT_DIRTY, &ptep->pte_low); } |
||
221 | |||
222 | /* |
||
223 | * Macro to mark a page protection value as "uncacheable". On processors which do not support |
||
224 | * it, this is a no-op. |
||
225 | */ |
||
226 | #define pgprot_noncached(prot) ((boot_cpu_data.x86 > 3) \ |
||
227 | ? (__pgprot(pgprot_val(prot) | _PAGE_PCD | _PAGE_PWT)) : (prot)) |
||
228 | |||
229 | /* |
||
230 | * Conversion functions: convert a page and protection to a page entry, |
||
231 | * and a page entry and page directory to the page they refer to. |
||
232 | */ |
||
233 | |||
234 | #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) |
||
235 | #define mk_pte_huge(entry) ((entry).pte_low |= _PAGE_PRESENT | _PAGE_PSE) |
||
236 | |||
237 | static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) |
||
238 | { |
||
239 | pte.pte_low &= _PAGE_CHG_MASK; |
||
240 | pte.pte_low |= pgprot_val(newprot); |
||
241 | return pte; |
||
242 | } |
||
243 | |||
244 | #define page_pte(page) page_pte_prot(page, __pgprot(0)) |
||
245 | |||
246 | #define pmd_page_kernel(pmd) \ |
||
247 | ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) |
||
248 | |||
249 | #ifndef CONFIG_DISCONTIGMEM |
||
250 | #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) |
||
251 | #endif /* !CONFIG_DISCONTIGMEM */ |
||
252 | |||
253 | #define pmd_large(pmd) \ |
||
254 | ((pmd_val(pmd) & (_PAGE_PSE|_PAGE_PRESENT)) == (_PAGE_PSE|_PAGE_PRESENT)) |
||
255 | |||
256 | /* |
||
257 | * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] |
||
258 | * |
||
259 | * this macro returns the index of the entry in the pgd page which would |
||
260 | * control the given virtual address |
||
261 | */ |
||
262 | #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) |
||
263 | |||
264 | /* |
||
265 | * pgd_offset() returns a (pgd_t *) |
||
266 | * pgd_index() is used get the offset into the pgd page's array of pgd_t's; |
||
267 | */ |
||
268 | #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) |
||
269 | |||
270 | /* |
||
271 | * a shortcut which implies the use of the kernel's pgd, instead |
||
272 | * of a process's |
||
273 | */ |
||
274 | #define pgd_offset_k(address) pgd_offset(&init_mm, address) |
||
275 | |||
276 | /* |
||
277 | * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD] |
||
278 | * |
||
279 | * this macro returns the index of the entry in the pmd page which would |
||
280 | * control the given virtual address |
||
281 | */ |
||
282 | #define pmd_index(address) \ |
||
283 | (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) |
||
284 | |||
285 | /* |
||
286 | * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] |
||
287 | * |
||
288 | * this macro returns the index of the entry in the pte page which would |
||
289 | * control the given virtual address |
||
290 | */ |
||
291 | #define pte_index(address) \ |
||
292 | (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) |
||
293 | #define pte_offset_kernel(dir, address) \ |
||
294 | ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(address)) |
||
295 | |||
296 | #if defined(CONFIG_HIGHPTE) |
||
297 | #define pte_offset_map(dir, address) \ |
||
298 | ((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE0) + pte_index(address)) |
||
299 | #define pte_offset_map_nested(dir, address) \ |
||
300 | ((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE1) + pte_index(address)) |
||
301 | #define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0) |
||
302 | #define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1) |
||
303 | #else |
||
304 | #define pte_offset_map(dir, address) \ |
||
305 | ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address)) |
||
306 | #define pte_offset_map_nested(dir, address) pte_offset_map(dir, address) |
||
307 | #define pte_unmap(pte) do { } while (0) |
||
308 | #define pte_unmap_nested(pte) do { } while (0) |
||
309 | #endif |
||
310 | |||
311 | #if defined(CONFIG_HIGHPTE) && defined(CONFIG_HIGHMEM4G) |
||
312 | typedef u32 pte_addr_t; |
||
313 | #endif |
||
314 | |||
315 | #if defined(CONFIG_HIGHPTE) && defined(CONFIG_HIGHMEM64G) |
||
316 | typedef u64 pte_addr_t; |
||
317 | #endif |
||
318 | |||
319 | #if !defined(CONFIG_HIGHPTE) |
||
320 | typedef pte_t *pte_addr_t; |
||
321 | #endif |
||
322 | |||
323 | /* |
||
324 | * The i386 doesn't have any external MMU info: the kernel page |
||
325 | * tables contain all the necessary information. |
||
326 | */ |
||
327 | #define update_mmu_cache(vma,address,pte) do { } while (0) |
||
328 | |||
329 | /* Encode and de-code a swap entry */ |
||
330 | #define __swp_type(x) (((x).val >> 1) & 0x1f) |
||
331 | #define __swp_offset(x) ((x).val >> 8) |
||
332 | #define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 1) | ((offset) << 8) }) |
||
333 | #define __pte_to_swp_entry(pte) ((swp_entry_t) { (pte).pte_low }) |
||
334 | #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) |
||
335 | |||
336 | #endif /* !__ASSEMBLY__ */ |
||
337 | |||
338 | #ifndef CONFIG_DISCONTIGMEM |
||
339 | #define kern_addr_valid(addr) (1) |
||
340 | #endif /* !CONFIG_DISCONTIGMEM */ |
||
341 | |||
342 | #define io_remap_page_range remap_page_range |
||
343 | |||
344 | #endif /* _I386_PGTABLE_H */ |