Rev 422 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
422 | giacomo | 1 | #ifndef _LINUX_MM_H |
2 | #define _LINUX_MM_H |
||
3 | |||
4 | #include <linux/sched.h> |
||
5 | #include <linux/errno.h> |
||
6 | |||
7 | #ifdef __KERNEL__ |
||
8 | |||
9 | #include <linux/config.h> |
||
10 | #include <linux/gfp.h> |
||
11 | #include <linux/list.h> |
||
12 | #include <linux/mmzone.h> |
||
13 | #include <linux/rbtree.h> |
||
14 | #include <linux/fs.h> |
||
15 | |||
16 | #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ |
||
17 | extern unsigned long max_mapnr; |
||
18 | #endif |
||
19 | |||
20 | extern unsigned long num_physpages; |
||
21 | extern void * high_memory; |
||
22 | extern int page_cluster; |
||
23 | |||
24 | #include <asm/page.h> |
||
25 | #include <asm/pgtable.h> |
||
26 | #include <asm/processor.h> |
||
27 | #include <asm/atomic.h> |
||
28 | |||
29 | #ifndef MM_VM_SIZE |
||
30 | #define MM_VM_SIZE(mm) TASK_SIZE |
||
31 | #endif |
||
32 | |||
33 | /* |
||
34 | * Linux kernel virtual memory manager primitives. |
||
35 | * The idea being to have a "virtual" mm in the same way |
||
36 | * we have a virtual fs - giving a cleaner interface to the |
||
37 | * mm details, and allowing different kinds of memory mappings |
||
38 | * (from shared memory to executable loading to arbitrary |
||
39 | * mmap() functions). |
||
40 | */ |
||
41 | |||
42 | /* |
||
43 | * This struct defines a memory VMM memory area. There is one of these |
||
44 | * per VM-area/task. A VM area is any part of the process virtual memory |
||
45 | * space that has a special rule for the page-fault handlers (ie a shared |
||
46 | * library, the executable area etc). |
||
47 | * |
||
48 | * This structure is exactly 64 bytes on ia32. Please think very, very hard |
||
49 | * before adding anything to it. |
||
50 | */ |
||
51 | struct vm_area_struct { |
||
52 | struct mm_struct * vm_mm; /* The address space we belong to. */ |
||
53 | unsigned long vm_start; /* Our start address within vm_mm. */ |
||
54 | unsigned long vm_end; /* The first byte after our end address |
||
55 | within vm_mm. */ |
||
56 | |||
57 | /* linked list of VM areas per task, sorted by address */ |
||
58 | struct vm_area_struct *vm_next; |
||
59 | |||
60 | pgprot_t vm_page_prot; /* Access permissions of this VMA. */ |
||
61 | unsigned long vm_flags; /* Flags, listed below. */ |
||
62 | |||
63 | struct rb_node vm_rb; |
||
64 | |||
65 | /* |
||
66 | * For areas with an address space and backing store, |
||
67 | * one of the address_space->i_mmap{,shared} lists, |
||
68 | * for shm areas, the list of attaches, otherwise unused. |
||
69 | */ |
||
70 | struct list_head shared; |
||
71 | |||
72 | /* Function pointers to deal with this struct. */ |
||
73 | struct vm_operations_struct * vm_ops; |
||
74 | |||
75 | /* Information about our backing store: */ |
||
76 | unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE |
||
77 | units, *not* PAGE_CACHE_SIZE */ |
||
78 | struct file * vm_file; /* File we map to (can be NULL). */ |
||
79 | void * vm_private_data; /* was vm_pte (shared mem) */ |
||
80 | }; |
||
81 | |||
82 | /* |
||
83 | * vm_flags.. |
||
84 | */ |
||
85 | #define VM_READ 0x00000001 /* currently active flags */ |
||
86 | #define VM_WRITE 0x00000002 |
||
87 | #define VM_EXEC 0x00000004 |
||
88 | #define VM_SHARED 0x00000008 |
||
89 | |||
90 | #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ |
||
91 | #define VM_MAYWRITE 0x00000020 |
||
92 | #define VM_MAYEXEC 0x00000040 |
||
93 | #define VM_MAYSHARE 0x00000080 |
||
94 | |||
95 | #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ |
||
96 | #define VM_GROWSUP 0x00000200 |
||
97 | #define VM_SHM 0x00000400 /* shared memory area, don't swap out */ |
||
98 | #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ |
||
99 | |||
100 | #define VM_EXECUTABLE 0x00001000 |
||
101 | #define VM_LOCKED 0x00002000 |
||
102 | #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ |
||
103 | |||
104 | /* Used by sys_madvise() */ |
||
105 | #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ |
||
106 | #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ |
||
107 | |||
108 | #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ |
||
109 | #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ |
||
110 | #define VM_RESERVED 0x00080000 /* Don't unmap it from swap_out */ |
||
111 | #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ |
||
112 | #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ |
||
113 | #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ |
||
114 | |||
115 | #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ |
||
116 | #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS |
||
117 | #endif |
||
118 | |||
119 | #ifdef CONFIG_STACK_GROWSUP |
||
120 | #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) |
||
121 | #else |
||
122 | #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) |
||
123 | #endif |
||
124 | |||
125 | #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) |
||
126 | #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK |
||
127 | #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) |
||
128 | #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) |
||
129 | #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) |
||
130 | |||
131 | /* |
||
132 | * mapping from the currently active vm_flags protection bits (the |
||
133 | * low four bits) to a page protection mask.. |
||
134 | */ |
||
135 | extern pgprot_t protection_map[16]; |
||
136 | |||
137 | |||
138 | /* |
||
139 | * These are the virtual MM functions - opening of an area, closing and |
||
140 | * unmapping it (needed to keep files on disk up-to-date etc), pointer |
||
141 | * to the functions called when a no-page or a wp-page exception occurs. |
||
142 | */ |
||
143 | struct vm_operations_struct { |
||
144 | void (*open)(struct vm_area_struct * area); |
||
145 | void (*close)(struct vm_area_struct * area); |
||
146 | struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int unused); |
||
147 | int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock); |
||
148 | }; |
||
149 | |||
150 | /* forward declaration; pte_chain is meant to be internal to rmap.c */ |
||
151 | struct pte_chain; |
||
152 | struct mmu_gather; |
||
153 | struct inode; |
||
154 | |||
155 | /* |
||
156 | * Each physical page in the system has a struct page associated with |
||
157 | * it to keep track of whatever it is we are using the page for at the |
||
158 | * moment. Note that we have no way to track which tasks are using |
||
159 | * a page. |
||
160 | * |
||
161 | * Try to keep the most commonly accessed fields in single cache lines |
||
162 | * here (16 bytes or greater). This ordering should be particularly |
||
163 | * beneficial on 32-bit processors. |
||
164 | * |
||
165 | * The first line is data used in page cache lookup, the second line |
||
166 | * is used for linear searches (eg. clock algorithm scans). |
||
167 | * |
||
168 | * TODO: make this structure smaller, it could be as small as 32 bytes. |
||
169 | */ |
||
170 | struct page { |
||
171 | unsigned long flags; /* atomic flags, some possibly |
||
172 | updated asynchronously */ |
||
173 | atomic_t count; /* Usage count, see below. */ |
||
174 | struct list_head list; /* ->mapping has some page lists. */ |
||
175 | struct address_space *mapping; /* The inode (or ...) we belong to. */ |
||
176 | unsigned long index; /* Our offset within mapping. */ |
||
177 | struct list_head lru; /* Pageout list, eg. active_list; |
||
178 | protected by zone->lru_lock !! */ |
||
179 | union { |
||
180 | struct pte_chain *chain;/* Reverse pte mapping pointer. |
||
181 | * protected by PG_chainlock */ |
||
182 | pte_addr_t direct; |
||
183 | } pte; |
||
184 | unsigned long private; /* mapping-private opaque data */ |
||
185 | |||
186 | /* |
||
187 | * On machines where all RAM is mapped into kernel address space, |
||
188 | * we can simply calculate the virtual address. On machines with |
||
189 | * highmem some memory is mapped into kernel virtual memory |
||
190 | * dynamically, so we need a place to store that address. |
||
191 | * Note that this field could be 16 bits on x86 ... ;) |
||
192 | * |
||
193 | * Architectures with slow multiplication can define |
||
194 | * WANT_PAGE_VIRTUAL in asm/page.h |
||
195 | */ |
||
196 | #if defined(WANT_PAGE_VIRTUAL) |
||
197 | void *virtual; /* Kernel virtual address (NULL if |
||
198 | not kmapped, ie. highmem) */ |
||
199 | #endif /* WANT_PAGE_VIRTUAL */ |
||
200 | }; |
||
201 | |||
202 | /* |
||
203 | * FIXME: take this include out, include page-flags.h in |
||
204 | * files which need it (119 of them) |
||
205 | */ |
||
206 | #include <linux/page-flags.h> |
||
207 | |||
208 | /* |
||
209 | * Methods to modify the page usage count. |
||
210 | * |
||
211 | * What counts for a page usage: |
||
212 | * - cache mapping (page->mapping) |
||
213 | * - private data (page->private) |
||
214 | * - page mapped in a task's page tables, each mapping |
||
215 | * is counted separately |
||
216 | * |
||
217 | * Also, many kernel routines increase the page count before a critical |
||
218 | * routine so they can be sure the page doesn't go away from under them. |
||
219 | */ |
||
220 | #define put_page_testzero(p) \ |
||
221 | ({ \ |
||
222 | BUG_ON(page_count(p) == 0); \ |
||
223 | atomic_dec_and_test(&(p)->count); \ |
||
224 | }) |
||
225 | |||
226 | #define page_count(p) atomic_read(&(p)->count) |
||
227 | #define set_page_count(p,v) atomic_set(&(p)->count, v) |
||
228 | #define __put_page(p) atomic_dec(&(p)->count) |
||
229 | |||
230 | extern void FASTCALL(__page_cache_release(struct page *)); |
||
231 | |||
232 | #ifdef CONFIG_HUGETLB_PAGE |
||
233 | |||
234 | static inline void get_page(struct page *page) |
||
235 | { |
||
236 | if (PageCompound(page)) |
||
237 | page = (struct page *)page->lru.next; |
||
238 | atomic_inc(&page->count); |
||
239 | } |
||
240 | |||
241 | static inline void put_page(struct page *page) |
||
242 | { |
||
243 | if (PageCompound(page)) { |
||
244 | page = (struct page *)page->lru.next; |
||
245 | if (put_page_testzero(page)) { |
||
246 | if (page->lru.prev) { /* destructor? */ |
||
247 | (*(void (*)(struct page *))page->lru.prev)(page); |
||
248 | } else { |
||
249 | __page_cache_release(page); |
||
250 | } |
||
251 | } |
||
252 | return; |
||
253 | } |
||
254 | if (!PageReserved(page) && put_page_testzero(page)) |
||
255 | __page_cache_release(page); |
||
256 | } |
||
257 | |||
258 | #else /* CONFIG_HUGETLB_PAGE */ |
||
259 | |||
260 | static inline void get_page(struct page *page) |
||
261 | { |
||
262 | atomic_inc(&page->count); |
||
263 | } |
||
264 | |||
265 | static inline void put_page(struct page *page) |
||
266 | { |
||
267 | if (!PageReserved(page) && put_page_testzero(page)) |
||
268 | __page_cache_release(page); |
||
269 | } |
||
270 | |||
271 | #endif /* CONFIG_HUGETLB_PAGE */ |
||
272 | |||
273 | /* |
||
274 | * Multiple processes may "see" the same page. E.g. for untouched |
||
275 | * mappings of /dev/null, all processes see the same page full of |
||
276 | * zeroes, and text pages of executables and shared libraries have |
||
277 | * only one copy in memory, at most, normally. |
||
278 | * |
||
279 | * For the non-reserved pages, page->count denotes a reference count. |
||
280 | * page->count == 0 means the page is free. |
||
281 | * page->count == 1 means the page is used for exactly one purpose |
||
282 | * (e.g. a private data page of one process). |
||
283 | * |
||
284 | * A page may be used for kmalloc() or anyone else who does a |
||
285 | * __get_free_page(). In this case the page->count is at least 1, and |
||
286 | * all other fields are unused but should be 0 or NULL. The |
||
287 | * management of this page is the responsibility of the one who uses |
||
288 | * it. |
||
289 | * |
||
290 | * The other pages (we may call them "process pages") are completely |
||
291 | * managed by the Linux memory manager: I/O, buffers, swapping etc. |
||
292 | * The following discussion applies only to them. |
||
293 | * |
||
294 | * A page may belong to an inode's memory mapping. In this case, |
||
295 | * page->mapping is the pointer to the inode, and page->index is the |
||
296 | * file offset of the page, in units of PAGE_CACHE_SIZE. |
||
297 | * |
||
298 | * A page contains an opaque `private' member, which belongs to the |
||
299 | * page's address_space. Usually, this is the address of a circular |
||
300 | * list of the page's disk buffers. |
||
301 | * |
||
302 | * For pages belonging to inodes, the page->count is the number of |
||
303 | * attaches, plus 1 if `private' contains something, plus one for |
||
304 | * the page cache itself. |
||
305 | * |
||
306 | * All pages belonging to an inode are in these doubly linked lists: |
||
307 | * mapping->clean_pages, mapping->dirty_pages and mapping->locked_pages; |
||
308 | * using the page->list list_head. These fields are also used for |
||
309 | * freelist managemet (when page->count==0). |
||
310 | * |
||
311 | * There is also a per-mapping radix tree mapping index to the page |
||
312 | * in memory if present. The tree is rooted at mapping->root. |
||
313 | * |
||
314 | * All process pages can do I/O: |
||
315 | * - inode pages may need to be read from disk, |
||
316 | * - inode pages which have been modified and are MAP_SHARED may need |
||
317 | * to be written to disk, |
||
318 | * - private pages which have been modified may need to be swapped out |
||
319 | * to swap space and (later) to be read back into memory. |
||
320 | */ |
||
321 | |||
322 | /* |
||
323 | * The zone field is never updated after free_area_init_core() |
||
324 | * sets it, so none of the operations on it need to be atomic. |
||
325 | */ |
||
326 | #define ZONE_SHIFT (BITS_PER_LONG - 8) |
||
327 | |||
328 | struct zone; |
||
329 | extern struct zone *zone_table[]; |
||
330 | |||
331 | static inline struct zone *page_zone(struct page *page) |
||
332 | { |
||
333 | return zone_table[page->flags >> ZONE_SHIFT]; |
||
334 | } |
||
335 | |||
336 | static inline void set_page_zone(struct page *page, unsigned long zone_num) |
||
337 | { |
||
338 | page->flags &= ~(~0UL << ZONE_SHIFT); |
||
339 | page->flags |= zone_num << ZONE_SHIFT; |
||
340 | } |
||
341 | |||
342 | #ifndef CONFIG_DISCONTIGMEM |
||
343 | /* The array of struct pages - for discontigmem use pgdat->lmem_map */ |
||
344 | extern struct page *mem_map; |
||
345 | #endif |
||
346 | |||
347 | static inline void *lowmem_page_address(struct page *page) |
||
348 | { |
||
349 | return __va(page_to_pfn(page) << PAGE_SHIFT); |
||
350 | } |
||
351 | |||
352 | #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) |
||
353 | #define HASHED_PAGE_VIRTUAL |
||
354 | #endif |
||
355 | |||
356 | #if defined(WANT_PAGE_VIRTUAL) |
||
357 | #define page_address(page) ((page)->virtual) |
||
358 | #define set_page_address(page, address) \ |
||
359 | do { \ |
||
360 | (page)->virtual = (address); \ |
||
361 | } while(0) |
||
362 | #define page_address_init() do { } while(0) |
||
363 | #endif |
||
364 | |||
365 | #if defined(HASHED_PAGE_VIRTUAL) |
||
366 | void *page_address(struct page *page); |
||
367 | void set_page_address(struct page *page, void *virtual); |
||
368 | void page_address_init(void); |
||
369 | #endif |
||
370 | |||
371 | #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) |
||
372 | #define page_address(page) lowmem_page_address(page) |
||
373 | #define set_page_address(page, address) do { } while(0) |
||
374 | #define page_address_init() do { } while(0) |
||
375 | #endif |
||
376 | |||
377 | /* |
||
378 | * Return true if this page is mapped into pagetables. Subtle: test pte.direct |
||
379 | * rather than pte.chain. Because sometimes pte.direct is 64-bit, and .chain |
||
380 | * is only 32-bit. |
||
381 | */ |
||
382 | static inline int page_mapped(struct page *page) |
||
383 | { |
||
384 | return page->pte.direct != 0; |
||
385 | } |
||
386 | |||
387 | /* |
||
388 | * Error return values for the *_nopage functions |
||
389 | */ |
||
390 | #define NOPAGE_SIGBUS (NULL) |
||
391 | #define NOPAGE_OOM ((struct page *) (-1)) |
||
392 | |||
393 | /* |
||
394 | * Different kinds of faults, as returned by handle_mm_fault(). |
||
395 | * Used to decide whether a process gets delivered SIGBUS or |
||
396 | * just gets major/minor fault counters bumped up. |
||
397 | */ |
||
398 | #define VM_FAULT_OOM (-1) |
||
399 | #define VM_FAULT_SIGBUS 0 |
||
400 | #define VM_FAULT_MINOR 1 |
||
401 | #define VM_FAULT_MAJOR 2 |
||
402 | |||
403 | #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) |
||
404 | |||
405 | extern void show_free_areas(void); |
||
406 | |||
407 | struct page *shmem_nopage(struct vm_area_struct * vma, |
||
408 | unsigned long address, int unused); |
||
409 | struct file *shmem_file_setup(char * name, loff_t size, unsigned long flags); |
||
410 | void shmem_lock(struct file * file, int lock); |
||
411 | int shmem_zero_setup(struct vm_area_struct *); |
||
412 | |||
413 | void zap_page_range(struct vm_area_struct *vma, unsigned long address, |
||
414 | unsigned long size); |
||
415 | int unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm, |
||
416 | struct vm_area_struct *start_vma, unsigned long start_addr, |
||
417 | unsigned long end_addr, unsigned long *nr_accounted); |
||
418 | void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma, |
||
419 | unsigned long address, unsigned long size); |
||
420 | void clear_page_tables(struct mmu_gather *tlb, unsigned long first, int nr); |
||
421 | int copy_page_range(struct mm_struct *dst, struct mm_struct *src, |
||
422 | struct vm_area_struct *vma); |
||
423 | int zeromap_page_range(struct vm_area_struct *vma, unsigned long from, |
||
424 | unsigned long size, pgprot_t prot); |
||
425 | |||
426 | extern void invalidate_mmap_range(struct address_space *mapping, |
||
427 | loff_t const holebegin, |
||
428 | loff_t const holelen); |
||
429 | extern int vmtruncate(struct inode * inode, loff_t offset); |
||
430 | extern pmd_t *FASTCALL(__pmd_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)); |
||
431 | extern pte_t *FASTCALL(pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)); |
||
432 | extern pte_t *FASTCALL(pte_alloc_map(struct mm_struct *mm, pmd_t *pmd, unsigned long address)); |
||
433 | extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot); |
||
434 | extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot); |
||
435 | extern int handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma, unsigned long address, int write_access); |
||
436 | extern int make_pages_present(unsigned long addr, unsigned long end); |
||
437 | extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); |
||
438 | extern long sys_remap_file_pages(unsigned long start, unsigned long size, unsigned long prot, unsigned long pgoff, unsigned long nonblock); |
||
439 | extern long sys_fadvise64_64(int fd, loff_t offset, loff_t len, int advice); |
||
440 | void put_dirty_page(struct task_struct *tsk, struct page *page, |
||
441 | unsigned long address, pgprot_t prot); |
||
442 | |||
443 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, |
||
444 | int len, int write, int force, struct page **pages, struct vm_area_struct **vmas); |
||
445 | |||
446 | int __set_page_dirty_buffers(struct page *page); |
||
447 | int __set_page_dirty_nobuffers(struct page *page); |
||
448 | int set_page_dirty_lock(struct page *page); |
||
449 | |||
450 | /* |
||
451 | * Prototype to add a shrinker callback for ageable caches. |
||
452 | * |
||
453 | * These functions are passed a count `nr_to_scan' and a gfpmask. They should |
||
454 | * scan `nr_to_scan' objects, attempting to free them. |
||
455 | * |
||
456 | * The callback must the number of objects which remain in the cache. |
||
457 | * |
||
458 | * The callback will be passes nr_to_scan == 0 when the VM is querying the |
||
459 | * cache size, so a fastpath for that case is appropriate. |
||
460 | */ |
||
461 | typedef int (*shrinker_t)(int nr_to_scan, unsigned int gfp_mask); |
||
462 | |||
463 | /* |
||
464 | * Add an aging callback. The int is the number of 'seeks' it takes |
||
465 | * to recreate one of the objects that these functions age. |
||
466 | */ |
||
467 | |||
468 | #define DEFAULT_SEEKS 2 |
||
469 | struct shrinker; |
||
470 | extern struct shrinker *set_shrinker(int, shrinker_t); |
||
471 | extern void remove_shrinker(struct shrinker *shrinker); |
||
472 | |||
473 | /* |
||
474 | * If the mapping doesn't provide a set_page_dirty a_op, then |
||
475 | * just fall through and assume that it wants buffer_heads. |
||
476 | * FIXME: make the method unconditional. |
||
477 | */ |
||
478 | static inline int set_page_dirty(struct page *page) |
||
479 | { |
||
480 | if (page->mapping) { |
||
481 | int (*spd)(struct page *); |
||
482 | |||
483 | spd = page->mapping->a_ops->set_page_dirty; |
||
484 | if (spd) |
||
485 | return (*spd)(page); |
||
486 | } |
||
487 | return __set_page_dirty_buffers(page); |
||
488 | } |
||
489 | |||
490 | /* |
||
491 | * On a two-level page table, this ends up being trivial. Thus the |
||
492 | * inlining and the symmetry break with pte_alloc_map() that does all |
||
493 | * of this out-of-line. |
||
494 | */ |
||
495 | static inline pmd_t *pmd_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) |
||
496 | { |
||
497 | if (pgd_none(*pgd)) |
||
498 | return __pmd_alloc(mm, pgd, address); |
||
499 | return pmd_offset(pgd, address); |
||
500 | } |
||
501 | |||
502 | extern void free_area_init(unsigned long * zones_size); |
||
503 | extern void free_area_init_node(int nid, pg_data_t *pgdat, struct page *pmap, |
||
504 | unsigned long * zones_size, unsigned long zone_start_pfn, |
||
505 | unsigned long *zholes_size); |
||
506 | extern void memmap_init_zone(struct page *, unsigned long, int, |
||
507 | unsigned long, unsigned long); |
||
508 | extern void mem_init(void); |
||
509 | extern void show_mem(void); |
||
510 | extern void si_meminfo(struct sysinfo * val); |
||
511 | extern void si_meminfo_node(struct sysinfo *val, int nid); |
||
512 | |||
513 | /* mmap.c */ |
||
514 | extern void insert_vm_struct(struct mm_struct *, struct vm_area_struct *); |
||
515 | extern void build_mmap_rb(struct mm_struct *); |
||
516 | extern void exit_mmap(struct mm_struct *); |
||
517 | |||
518 | extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); |
||
519 | |||
520 | extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, |
||
521 | unsigned long len, unsigned long prot, |
||
522 | unsigned long flag, unsigned long pgoff); |
||
523 | |||
524 | static inline unsigned long do_mmap(struct file *file, unsigned long addr, |
||
525 | unsigned long len, unsigned long prot, |
||
526 | unsigned long flag, unsigned long offset) |
||
527 | { |
||
528 | unsigned long ret = -EINVAL; |
||
529 | if ((offset + PAGE_ALIGN(len)) < offset) |
||
530 | goto out; |
||
531 | if (!(offset & ~PAGE_MASK)) |
||
532 | ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); |
||
533 | out: |
||
534 | return ret; |
||
535 | } |
||
536 | |||
537 | extern int do_munmap(struct mm_struct *, unsigned long, size_t); |
||
538 | |||
539 | extern unsigned long do_brk(unsigned long, unsigned long); |
||
540 | |||
541 | static inline void |
||
542 | __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, |
||
543 | struct vm_area_struct *prev) |
||
544 | { |
||
545 | prev->vm_next = vma->vm_next; |
||
546 | rb_erase(&vma->vm_rb, &mm->mm_rb); |
||
547 | if (mm->mmap_cache == vma) |
||
548 | mm->mmap_cache = prev; |
||
549 | } |
||
550 | |||
551 | static inline int |
||
552 | can_vma_merge(struct vm_area_struct *vma, unsigned long vm_flags) |
||
553 | { |
||
554 | #ifdef CONFIG_MMU |
||
555 | if (!vma->vm_file && vma->vm_flags == vm_flags) |
||
556 | return 1; |
||
557 | #endif |
||
558 | return 0; |
||
559 | } |
||
560 | |||
561 | /* filemap.c */ |
||
562 | extern unsigned long page_unuse(struct page *); |
||
563 | extern void truncate_inode_pages(struct address_space *, loff_t); |
||
564 | |||
565 | /* generic vm_area_ops exported for stackable file systems */ |
||
566 | extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int); |
||
567 | |||
568 | /* mm/page-writeback.c */ |
||
569 | int write_one_page(struct page *page, int wait); |
||
570 | |||
571 | /* readahead.c */ |
||
572 | #define VM_MAX_READAHEAD 128 /* kbytes */ |
||
573 | #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ |
||
574 | |||
575 | int do_page_cache_readahead(struct address_space *mapping, struct file *filp, |
||
576 | unsigned long offset, unsigned long nr_to_read); |
||
577 | int force_page_cache_readahead(struct address_space *mapping, struct file *filp, |
||
578 | unsigned long offset, unsigned long nr_to_read); |
||
579 | void page_cache_readahead(struct address_space *mapping, |
||
580 | struct file_ra_state *ra, |
||
581 | struct file *filp, |
||
582 | unsigned long offset); |
||
583 | void handle_ra_miss(struct address_space *mapping, |
||
584 | struct file_ra_state *ra, pgoff_t offset); |
||
585 | unsigned long max_sane_readahead(unsigned long nr); |
||
586 | |||
587 | /* Do stack extension */ |
||
588 | extern int expand_stack(struct vm_area_struct * vma, unsigned long address); |
||
589 | |||
590 | /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ |
||
591 | extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); |
||
592 | extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, |
||
593 | struct vm_area_struct **pprev); |
||
594 | extern int split_vma(struct mm_struct * mm, struct vm_area_struct * vma, |
||
595 | unsigned long addr, int new_below); |
||
596 | |||
597 | /* Look up the first VMA which intersects the interval start_addr..end_addr-1, |
||
598 | NULL if none. Assume start_addr < end_addr. */ |
||
599 | static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) |
||
600 | { |
||
601 | struct vm_area_struct * vma = find_vma(mm,start_addr); |
||
602 | |||
603 | if (vma && end_addr <= vma->vm_start) |
||
604 | vma = NULL; |
||
605 | return vma; |
||
606 | } |
||
607 | |||
608 | extern struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr); |
||
609 | |||
610 | extern unsigned int nr_used_zone_pages(void); |
||
611 | |||
612 | extern struct page * vmalloc_to_page(void *addr); |
||
613 | extern struct page * follow_page(struct mm_struct *mm, unsigned long address, |
||
614 | int write); |
||
615 | extern int remap_page_range(struct vm_area_struct *vma, unsigned long from, |
||
616 | unsigned long to, unsigned long size, pgprot_t prot); |
||
617 | |||
618 | #ifndef CONFIG_DEBUG_PAGEALLOC |
||
619 | static inline void |
||
620 | kernel_map_pages(struct page *page, int numpages, int enable) |
||
621 | { |
||
622 | } |
||
623 | #endif |
||
624 | |||
625 | #endif /* __KERNEL__ */ |
||
626 | #endif /* _LINUX_MM_H */ |