Subversion Repositories shark

Rev

Rev 422 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
422 giacomo 1
/*
2
 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details
3
 */
4
 
5
                                /* this file has an amazingly stupid
6
                                   name, yura please fix it to be
7
                                   reiserfs.h, and merge all the rest
8
                                   of our .h files that are in this
9
                                   directory into it.  */
10
 
11
 
12
#ifndef _LINUX_REISER_FS_H
13
#define _LINUX_REISER_FS_H
14
 
15
#include <linux/types.h>
16
#ifdef __KERNEL__
17
#include <linux/slab.h>
18
#include <linux/interrupt.h>
19
#include <linux/workqueue.h>
20
#include <asm/unaligned.h>
21
#include <linux/bitops.h>
22
#include <linux/proc_fs.h>
23
#include <linux/smp_lock.h>
24
#include <linux/buffer_head.h>
25
#include <linux/reiserfs_fs_i.h>
26
#include <linux/reiserfs_fs_sb.h>
27
#endif
28
 
29
/*
30
 *  include/linux/reiser_fs.h
31
 *
32
 *  Reiser File System constants and structures
33
 *
34
 */
35
 
36
/* in reading the #defines, it may help to understand that they employ
37
   the following abbreviations:
38
 
39
   B = Buffer
40
   I = Item header
41
   H = Height within the tree (should be changed to LEV)
42
   N = Number of the item in the node
43
   STAT = stat data
44
   DEH = Directory Entry Header
45
   EC = Entry Count
46
   E = Entry number
47
   UL = Unsigned Long
48
   BLKH = BLocK Header
49
   UNFM = UNForMatted node
50
   DC = Disk Child
51
   P = Path
52
 
53
   These #defines are named by concatenating these abbreviations,
54
   where first comes the arguments, and last comes the return value,
55
   of the macro.
56
 
57
*/
58
 
59
#define USE_INODE_GENERATION_COUNTER
60
 
61
#define REISERFS_PREALLOCATE
62
#define DISPLACE_NEW_PACKING_LOCALITIES
63
#define PREALLOCATION_SIZE 9
64
 
65
/* n must be power of 2 */
66
#define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
67
 
68
// to be ok for alpha and others we have to align structures to 8 byte
69
// boundary.
70
// FIXME: do not change 4 by anything else: there is code which relies on that
71
#define ROUND_UP(x) _ROUND_UP(x,8LL)
72
 
73
/* debug levels.  Right now, CONFIG_REISERFS_CHECK means print all debug
74
** messages.
75
*/
76
#define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */ 
77
 
78
/* assertions handling */
79
 
80
/** always check a condition and panic if it's false. */
81
#define RASSERT( cond, format, args... )                                        \
82
if( !( cond ) )                                                                 \
83
  reiserfs_panic( 0, "reiserfs[%i]: assertion " #cond " failed at "     \
84
                  __FILE__ ":%i:%s: " format "\n",              \
85
                  in_interrupt() ? -1 : current -> pid, __LINE__ , __FUNCTION__ , ##args )
86
 
87
#if defined( CONFIG_REISERFS_CHECK )
88
#define RFALSE( cond, format, args... ) RASSERT( !( cond ), format, ##args )
89
#else
90
#define RFALSE( cond, format, args... ) do {;} while( 0 )
91
#endif
92
 
93
#define CONSTF __attribute__( ( const ) )
94
/*
95
 * Disk Data Structures
96
 */
97
 
98
/***************************************************************************/
99
/*                             SUPER BLOCK                                 */
100
/***************************************************************************/
101
 
102
/*
103
 * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs
104
 * the version in RAM is part of a larger structure containing fields never written to disk.
105
 */
106
#define UNSET_HASH 0 // read_super will guess about, what hash names
107
                     // in directories were sorted with
108
#define TEA_HASH  1
109
#define YURA_HASH 2
110
#define R5_HASH   3
111
#define DEFAULT_HASH R5_HASH
112
 
113
 
114
struct journal_params {
115
    __u32 jp_journal_1st_block;       /* where does journal start from on its
116
                                       * device */
117
    __u32 jp_journal_dev;             /* journal device st_rdev */
118
    __u32 jp_journal_size;            /* size of the journal */
119
    __u32 jp_journal_trans_max;       /* max number of blocks in a transaction. */
120
    __u32 jp_journal_magic;           /* random value made on fs creation (this
121
                                       * was sb_journal_block_count) */
122
    __u32 jp_journal_max_batch;       /* max number of blocks to batch into a
123
                                       * trans */
124
    __u32 jp_journal_max_commit_age;  /* in seconds, how old can an async
125
                                       * commit be */
126
    __u32 jp_journal_max_trans_age;   /* in seconds, how old can a transaction
127
                                       * be */
128
};
129
 
130
/* this is the super from 3.5.X, where X >= 10 */
131
struct reiserfs_super_block_v1
132
{
133
    __u32 s_block_count;           /* blocks count         */
134
    __u32 s_free_blocks;           /* free blocks count    */
135
    __u32 s_root_block;            /* root block number    */
136
    struct journal_params s_journal;
137
    __u16 s_blocksize;             /* block size */
138
    __u16 s_oid_maxsize;           /* max size of object id array, see
139
                                    * get_objectid() commentary  */
140
    __u16 s_oid_cursize;           /* current size of object id array */
141
    __u16 s_umount_state;          /* this is set to 1 when filesystem was
142
                                    * umounted, to 2 - when not */    
143
    char s_magic[10];              /* reiserfs magic string indicates that
144
                                    * file system is reiserfs:
145
                                    * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */
146
    __u16 s_fs_state;              /* it is set to used by fsck to mark which
147
                                    * phase of rebuilding is done */
148
    __u32 s_hash_function_code;    /* indicate, what hash function is being use
149
                                    * to sort names in a directory*/
150
    __u16 s_tree_height;           /* height of disk tree */
151
    __u16 s_bmap_nr;               /* amount of bitmap blocks needed to address
152
                                    * each block of file system */
153
    __u16 s_version;               /* this field is only reliable on filesystem
154
                                    * with non-standard journal */
155
    __u16 s_reserved_for_journal;  /* size in blocks of journal area on main
156
                                    * device, we need to keep after
157
                                    * making fs with non-standard journal */   
158
} __attribute__ ((__packed__));
159
 
160
#define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
161
 
162
/* this is the on disk super block */
163
struct reiserfs_super_block
164
{
165
    struct reiserfs_super_block_v1 s_v1;
166
    __u32 s_inode_generation;
167
    __u32 s_flags;                  /* Right now used only by inode-attributes, if enabled */
168
    unsigned char s_uuid[16];       /* filesystem unique identifier */
169
    unsigned char s_label[16];      /* filesystem volume label */
170
    char s_unused[88] ;             /* zero filled by mkreiserfs and
171
                                     * reiserfs_convert_objectid_map_v1()
172
                                     * so any additions must be updated
173
                                     * there as well. */
174
}  __attribute__ ((__packed__));
175
 
176
#define SB_SIZE (sizeof(struct reiserfs_super_block))
177
 
178
#define REISERFS_VERSION_1 0
179
#define REISERFS_VERSION_2 2
180
 
181
 
182
// on-disk super block fields converted to cpu form
183
#define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
184
#define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
185
#define SB_BLOCKSIZE(s) \
186
        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
187
#define SB_BLOCK_COUNT(s) \
188
        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
189
#define SB_FREE_BLOCKS(s) \
190
        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
191
#define SB_REISERFS_MAGIC(s) \
192
        (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
193
#define SB_ROOT_BLOCK(s) \
194
        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
195
#define SB_TREE_HEIGHT(s) \
196
        le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
197
#define SB_REISERFS_STATE(s) \
198
        le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
199
#define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
200
#define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
201
 
202
#define PUT_SB_BLOCK_COUNT(s, val) \
203
   do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
204
#define PUT_SB_FREE_BLOCKS(s, val) \
205
   do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
206
#define PUT_SB_ROOT_BLOCK(s, val) \
207
   do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
208
#define PUT_SB_TREE_HEIGHT(s, val) \
209
   do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
210
#define PUT_SB_REISERFS_STATE(s, val) \
211
   do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0) 
212
#define PUT_SB_VERSION(s, val) \
213
   do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
214
#define PUT_SB_BMAP_NR(s, val) \
215
   do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
216
 
217
 
218
#define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
219
#define SB_ONDISK_JOURNAL_SIZE(s) \
220
         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
221
#define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
222
         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
223
#define SB_ONDISK_JOURNAL_DEVICE(s) \
224
         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
225
#define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
226
         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
227
 
228
#define is_block_in_log_or_reserved_area(s, block) \
229
         block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
230
         && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) +  \
231
         ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
232
         SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s))) 
233
 
234
 
235
 
236
                                /* used by gcc */
237
#define REISERFS_SUPER_MAGIC 0x52654973
238
                                /* used by file system utilities that
239
                                   look at the superblock, etc. */
240
#define REISERFS_SUPER_MAGIC_STRING "ReIsErFs"
241
#define REISER2FS_SUPER_MAGIC_STRING "ReIsEr2Fs"
242
#define REISER2FS_JR_SUPER_MAGIC_STRING "ReIsEr3Fs"
243
 
244
extern const char reiserfs_3_5_magic_string[];
245
extern const char reiserfs_3_6_magic_string[];
246
extern const char reiserfs_jr_magic_string[];
247
 
248
int is_reiserfs_3_5 (struct reiserfs_super_block * rs);
249
int is_reiserfs_3_6 (struct reiserfs_super_block * rs);
250
int is_reiserfs_jr (struct reiserfs_super_block * rs);
251
 
252
/* ReiserFS leaves the first 64k unused, so that partition labels have
253
   enough space.  If someone wants to write a fancy bootloader that
254
   needs more than 64k, let us know, and this will be increased in size.
255
   This number must be larger than than the largest block size on any
256
   platform, or code will break.  -Hans */
257
#define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
258
#define REISERFS_FIRST_BLOCK unused_define
259
#define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
260
 
261
/* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
262
#define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
263
 
264
// reiserfs internal error code (used by search_by_key adn fix_nodes))
265
#define CARRY_ON      0
266
#define REPEAT_SEARCH -1
267
#define IO_ERROR      -2
268
#define NO_DISK_SPACE -3
269
#define NO_BALANCING_NEEDED  (-4)
270
#define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
271
 
272
typedef __u32 b_blocknr_t;
273
typedef __u32 unp_t;
274
 
275
struct unfm_nodeinfo {
276
    unp_t unfm_nodenum;
277
    unsigned short unfm_freespace;
278
};
279
 
280
/* there are two formats of keys: 3.5 and 3.6
281
 */
282
#define KEY_FORMAT_3_5 0
283
#define KEY_FORMAT_3_6 1
284
 
285
/* there are two stat datas */
286
#define STAT_DATA_V1 0
287
#define STAT_DATA_V2 1
288
 
289
 
290
static inline struct reiserfs_inode_info *REISERFS_I(struct inode *inode)
291
{
292
        return container_of(inode, struct reiserfs_inode_info, vfs_inode);
293
}
294
 
295
static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
296
{
297
        return sb->s_fs_info;
298
}
299
 
300
/** this says about version of key of all items (but stat data) the
301
    object consists of */
302
#define get_inode_item_key_version( inode )                                    \
303
    ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
304
 
305
#define set_inode_item_key_version( inode, version )                           \
306
         ({ if((version)==KEY_FORMAT_3_6)                                      \
307
                REISERFS_I(inode)->i_flags |= i_item_key_version_mask;      \
308
            else                                                               \
309
                REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
310
 
311
#define get_inode_sd_version(inode)                                            \
312
    ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
313
 
314
#define set_inode_sd_version(inode, version)                                   \
315
         ({ if((version)==STAT_DATA_V2)                                        \
316
                REISERFS_I(inode)->i_flags |= i_stat_data_version_mask;     \
317
            else                                                               \
318
                REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
319
 
320
/* This is an aggressive tail suppression policy, I am hoping it
321
   improves our benchmarks. The principle behind it is that percentage
322
   space saving is what matters, not absolute space saving.  This is
323
   non-intuitive, but it helps to understand it if you consider that the
324
   cost to access 4 blocks is not much more than the cost to access 1
325
   block, if you have to do a seek and rotate.  A tail risks a
326
   non-linear disk access that is significant as a percentage of total
327
   time cost for a 4 block file and saves an amount of space that is
328
   less significant as a percentage of space, or so goes the hypothesis.
329
   -Hans */
330
#define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
331
(\
332
  (!(n_tail_size)) || \
333
  (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
334
   ( (n_file_size) >= (n_block_size) * 4 ) || \
335
   ( ( (n_file_size) >= (n_block_size) * 3 ) && \
336
     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
337
   ( ( (n_file_size) >= (n_block_size) * 2 ) && \
338
     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
339
   ( ( (n_file_size) >= (n_block_size) ) && \
340
     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
341
)
342
 
343
/* Another strategy for tails, this one means only create a tail if all the
344
   file would fit into one DIRECT item.
345
   Primary intention for this one is to increase performance by decreasing
346
   seeking.
347
*/  
348
#define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
349
(\
350
  (!(n_tail_size)) || \
351
  (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
352
)
353
 
354
 
355
 
356
/*
357
 * values for s_umount_state field
358
 */
359
#define REISERFS_VALID_FS    1
360
#define REISERFS_ERROR_FS    2
361
 
362
//
363
// there are 5 item types currently
364
//
365
#define TYPE_STAT_DATA 0
366
#define TYPE_INDIRECT 1
367
#define TYPE_DIRECT 2
368
#define TYPE_DIRENTRY 3 
369
#define TYPE_MAXTYPE 3 
370
#define TYPE_ANY 15 // FIXME: comment is required
371
 
372
/***************************************************************************/
373
/*                       KEY & ITEM HEAD                                   */
374
/***************************************************************************/
375
 
376
//
377
// directories use this key as well as old files
378
//
379
struct offset_v1 {
380
    __u32 k_offset;
381
    __u32 k_uniqueness;
382
} __attribute__ ((__packed__));
383
 
384
struct offset_v2 {
385
#ifdef __LITTLE_ENDIAN
386
            /* little endian version */
387
            __u64 k_offset:60;
388
            __u64 k_type: 4;
389
#else
390
            /* big endian version */
391
            __u64 k_type: 4;
392
            __u64 k_offset:60;
393
#endif
394
} __attribute__ ((__packed__));
395
 
396
#ifndef __LITTLE_ENDIAN
397
typedef union {
398
    struct offset_v2 offset_v2;
399
    __u64 linear;
400
} __attribute__ ((__packed__)) offset_v2_esafe_overlay;
401
 
402
static inline __u16 offset_v2_k_type( const struct offset_v2 *v2 )
403
{
404
    offset_v2_esafe_overlay tmp = *(const offset_v2_esafe_overlay *)v2;
405
    tmp.linear = le64_to_cpu( tmp.linear );
406
    return (tmp.offset_v2.k_type <= TYPE_MAXTYPE)?tmp.offset_v2.k_type:TYPE_ANY;
407
}
408
 
409
static inline void set_offset_v2_k_type( struct offset_v2 *v2, int type )
410
{
411
    offset_v2_esafe_overlay *tmp = (offset_v2_esafe_overlay *)v2;
412
    tmp->linear = le64_to_cpu(tmp->linear);
413
    tmp->offset_v2.k_type = type;
414
    tmp->linear = cpu_to_le64(tmp->linear);
415
}
416
 
417
static inline loff_t offset_v2_k_offset( const struct offset_v2 *v2 )
418
{
419
    offset_v2_esafe_overlay tmp = *(const offset_v2_esafe_overlay *)v2;
420
    tmp.linear = le64_to_cpu( tmp.linear );
421
    return tmp.offset_v2.k_offset;
422
}
423
 
424
static inline void set_offset_v2_k_offset( struct offset_v2 *v2, loff_t offset ){
425
    offset_v2_esafe_overlay *tmp = (offset_v2_esafe_overlay *)v2;
426
    tmp->linear = le64_to_cpu(tmp->linear);
427
    tmp->offset_v2.k_offset = offset;
428
    tmp->linear = cpu_to_le64(tmp->linear);
429
}
430
#else
431
# define offset_v2_k_type(v2)           ((v2)->k_type)
432
# define set_offset_v2_k_type(v2,val)   (offset_v2_k_type(v2) = (val))
433
# define offset_v2_k_offset(v2)         ((v2)->k_offset)
434
# define set_offset_v2_k_offset(v2,val) (offset_v2_k_offset(v2) = (val))
435
#endif
436
 
437
/* Key of an item determines its location in the S+tree, and
438
   is composed of 4 components */
439
struct key {
440
    __u32 k_dir_id;    /* packing locality: by default parent
441
                          directory object id */
442
    __u32 k_objectid;  /* object identifier */
443
    union {
444
        struct offset_v1 k_offset_v1;
445
        struct offset_v2 k_offset_v2;
446
    } __attribute__ ((__packed__)) u;
447
} __attribute__ ((__packed__));
448
 
449
 
450
struct cpu_key {
451
    struct key on_disk_key;
452
    int version;
453
    int key_length; /* 3 in all cases but direct2indirect and
454
                       indirect2direct conversion */
455
};
456
 
457
/* Our function for comparing keys can compare keys of different
458
   lengths.  It takes as a parameter the length of the keys it is to
459
   compare.  These defines are used in determining what is to be passed
460
   to it as that parameter. */
461
#define REISERFS_FULL_KEY_LEN     4
462
#define REISERFS_SHORT_KEY_LEN    2
463
 
464
/* The result of the key compare */
465
#define FIRST_GREATER 1
466
#define SECOND_GREATER -1
467
#define KEYS_IDENTICAL 0
468
#define KEY_FOUND 1
469
#define KEY_NOT_FOUND 0
470
 
471
#define KEY_SIZE (sizeof(struct key))
472
#define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
473
 
474
/* return values for search_by_key and clones */
475
#define ITEM_FOUND 1
476
#define ITEM_NOT_FOUND 0
477
#define ENTRY_FOUND 1
478
#define ENTRY_NOT_FOUND 0
479
#define DIRECTORY_NOT_FOUND -1
480
#define REGULAR_FILE_FOUND -2
481
#define DIRECTORY_FOUND -3
482
#define BYTE_FOUND 1
483
#define BYTE_NOT_FOUND 0
484
#define FILE_NOT_FOUND -1
485
 
486
#define POSITION_FOUND 1
487
#define POSITION_NOT_FOUND 0
488
 
489
// return values for reiserfs_find_entry and search_by_entry_key
490
#define NAME_FOUND 1
491
#define NAME_NOT_FOUND 0
492
#define GOTO_PREVIOUS_ITEM 2
493
#define NAME_FOUND_INVISIBLE 3
494
 
495
/*  Everything in the filesystem is stored as a set of items.  The
496
    item head contains the key of the item, its free space (for
497
    indirect items) and specifies the location of the item itself
498
    within the block.  */
499
 
500
struct item_head
501
{
502
        /* Everything in the tree is found by searching for it based on
503
         * its key.*/
504
        struct key ih_key;      
505
        union {
506
                /* The free space in the last unformatted node of an
507
                   indirect item if this is an indirect item.  This
508
                   equals 0xFFFF iff this is a direct item or stat data
509
                   item. Note that the key, not this field, is used to
510
                   determine the item type, and thus which field this
511
                   union contains. */
512
                __u16 ih_free_space_reserved;
513
                /* Iff this is a directory item, this field equals the
514
                   number of directory entries in the directory item. */
515
                __u16 ih_entry_count;
516
        } __attribute__ ((__packed__)) u;
517
        __u16 ih_item_len;           /* total size of the item body */
518
        __u16 ih_item_location;      /* an offset to the item body
519
                                      * within the block */
520
        __u16 ih_version;            /* 0 for all old items, 2 for new
521
                                        ones. Highest bit is set by fsck
522
                                        temporary, cleaned after all
523
                                        done */
524
} __attribute__ ((__packed__));
525
/* size of item header     */
526
#define IH_SIZE (sizeof(struct item_head))
527
 
528
#define ih_free_space(ih)            le16_to_cpu((ih)->u.ih_free_space_reserved)
529
#define ih_version(ih)               le16_to_cpu((ih)->ih_version)
530
#define ih_entry_count(ih)           le16_to_cpu((ih)->u.ih_entry_count)
531
#define ih_location(ih)              le16_to_cpu((ih)->ih_item_location)
532
#define ih_item_len(ih)              le16_to_cpu((ih)->ih_item_len)
533
 
534
#define put_ih_free_space(ih, val)   do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
535
#define put_ih_version(ih, val)      do { (ih)->ih_version = cpu_to_le16(val); } while (0)
536
#define put_ih_entry_count(ih, val)  do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
537
#define put_ih_location(ih, val)     do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
538
#define put_ih_item_len(ih, val)     do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
539
 
540
 
541
#define unreachable_item(ih) (ih_version(ih) & (1 << 15))
542
 
543
#define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
544
#define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
545
 
546
/* these operate on indirect items, where you've got an array of ints
547
** at a possibly unaligned location.  These are a noop on ia32
548
**
549
** p is the array of __u32, i is the index into the array, v is the value
550
** to store there.
551
*/
552
#define get_block_num(p, i) le32_to_cpu(get_unaligned((p) + (i)))
553
#define put_block_num(p, i, v) put_unaligned(cpu_to_le32(v), (p) + (i))
554
 
555
//
556
// in old version uniqueness field shows key type
557
//
558
#define V1_SD_UNIQUENESS 0
559
#define V1_INDIRECT_UNIQUENESS 0xfffffffe
560
#define V1_DIRECT_UNIQUENESS 0xffffffff
561
#define V1_DIRENTRY_UNIQUENESS 500
562
#define V1_ANY_UNIQUENESS 555 // FIXME: comment is required
563
 
564
extern void reiserfs_warning (const char * fmt, ...);
565
/* __attribute__( ( format ( printf, 1, 2 ) ) ); */
566
 
567
//
568
// here are conversion routines
569
//
570
static inline int uniqueness2type (__u32 uniqueness) CONSTF;
571
static inline int uniqueness2type (__u32 uniqueness)
572
{
573
    switch ((int)uniqueness) {
574
    case V1_SD_UNIQUENESS: return TYPE_STAT_DATA;
575
    case V1_INDIRECT_UNIQUENESS: return TYPE_INDIRECT;
576
    case V1_DIRECT_UNIQUENESS: return TYPE_DIRECT;
577
    case V1_DIRENTRY_UNIQUENESS: return TYPE_DIRENTRY;
578
    default:
579
            reiserfs_warning( "vs-500: unknown uniqueness %d\n", uniqueness);
580
        case V1_ANY_UNIQUENESS:
581
            return TYPE_ANY;
582
    }
583
}
584
 
585
static inline __u32 type2uniqueness (int type) CONSTF;
586
static inline __u32 type2uniqueness (int type)
587
{
588
    switch (type) {
589
    case TYPE_STAT_DATA: return V1_SD_UNIQUENESS;
590
    case TYPE_INDIRECT: return V1_INDIRECT_UNIQUENESS;
591
    case TYPE_DIRECT: return V1_DIRECT_UNIQUENESS;
592
    case TYPE_DIRENTRY: return V1_DIRENTRY_UNIQUENESS;
593
    default:
594
            reiserfs_warning( "vs-501: unknown type %d\n", type);
595
        case TYPE_ANY:
596
            return V1_ANY_UNIQUENESS;
597
    }
598
}
599
 
600
//
601
// key is pointer to on disk key which is stored in le, result is cpu,
602
// there is no way to get version of object from key, so, provide
603
// version to these defines
604
//
605
static inline loff_t le_key_k_offset (int version, const struct key * key)
606
{
607
    return (version == KEY_FORMAT_3_5) ?
608
        le32_to_cpu( key->u.k_offset_v1.k_offset ) :
609
        offset_v2_k_offset( &(key->u.k_offset_v2) );
610
}
611
 
612
static inline loff_t le_ih_k_offset (const struct item_head * ih)
613
{
614
    return le_key_k_offset (ih_version (ih), &(ih->ih_key));
615
}
616
 
617
static inline loff_t le_key_k_type (int version, const struct key * key)
618
{
619
    return (version == KEY_FORMAT_3_5) ?
620
        uniqueness2type( le32_to_cpu( key->u.k_offset_v1.k_uniqueness)) :
621
        offset_v2_k_type( &(key->u.k_offset_v2) );
622
}
623
 
624
static inline loff_t le_ih_k_type (const struct item_head * ih)
625
{
626
    return le_key_k_type (ih_version (ih), &(ih->ih_key));
627
}
628
 
629
 
630
static inline void set_le_key_k_offset (int version, struct key * key, loff_t offset)
631
{
632
    (version == KEY_FORMAT_3_5) ?
633
        (key->u.k_offset_v1.k_offset = cpu_to_le32 (offset)) : /* jdm check */
634
        (set_offset_v2_k_offset( &(key->u.k_offset_v2), offset ));
635
}
636
 
637
 
638
static inline void set_le_ih_k_offset (struct item_head * ih, loff_t offset)
639
{
640
    set_le_key_k_offset (ih_version (ih), &(ih->ih_key), offset);
641
}
642
 
643
 
644
static inline void set_le_key_k_type (int version, struct key * key, int type)
645
{
646
    (version == KEY_FORMAT_3_5) ?
647
        (key->u.k_offset_v1.k_uniqueness = cpu_to_le32(type2uniqueness(type))):
648
        (set_offset_v2_k_type( &(key->u.k_offset_v2), type ));
649
}
650
static inline void set_le_ih_k_type (struct item_head * ih, int type)
651
{
652
    set_le_key_k_type (ih_version (ih), &(ih->ih_key), type);
653
}
654
 
655
 
656
#define is_direntry_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRENTRY)
657
#define is_direct_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRECT)
658
#define is_indirect_le_key(version,key) (le_key_k_type (version, key) == TYPE_INDIRECT)
659
#define is_statdata_le_key(version,key) (le_key_k_type (version, key) == TYPE_STAT_DATA)
660
 
661
//
662
// item header has version.
663
//
664
#define is_direntry_le_ih(ih) is_direntry_le_key (ih_version (ih), &((ih)->ih_key))
665
#define is_direct_le_ih(ih) is_direct_le_key (ih_version (ih), &((ih)->ih_key))
666
#define is_indirect_le_ih(ih) is_indirect_le_key (ih_version(ih), &((ih)->ih_key))
667
#define is_statdata_le_ih(ih) is_statdata_le_key (ih_version (ih), &((ih)->ih_key))
668
 
669
 
670
 
671
//
672
// key is pointer to cpu key, result is cpu
673
//
674
static inline loff_t cpu_key_k_offset (const struct cpu_key * key)
675
{
676
    return (key->version == KEY_FORMAT_3_5) ?
677
        key->on_disk_key.u.k_offset_v1.k_offset :
678
        key->on_disk_key.u.k_offset_v2.k_offset;
679
}
680
 
681
static inline loff_t cpu_key_k_type (const struct cpu_key * key)
682
{
683
    return (key->version == KEY_FORMAT_3_5) ?
684
        uniqueness2type (key->on_disk_key.u.k_offset_v1.k_uniqueness) :
685
        key->on_disk_key.u.k_offset_v2.k_type;
686
}
687
 
688
static inline void set_cpu_key_k_offset (struct cpu_key * key, loff_t offset)
689
{
690
    (key->version == KEY_FORMAT_3_5) ?
691
        (key->on_disk_key.u.k_offset_v1.k_offset = offset) :
692
        (key->on_disk_key.u.k_offset_v2.k_offset = offset);
693
}
694
 
695
 
696
static inline void set_cpu_key_k_type (struct cpu_key * key, int type)
697
{
698
    (key->version == KEY_FORMAT_3_5) ?
699
        (key->on_disk_key.u.k_offset_v1.k_uniqueness = type2uniqueness (type)):
700
        (key->on_disk_key.u.k_offset_v2.k_type = type);
701
}
702
 
703
 
704
static inline void cpu_key_k_offset_dec (struct cpu_key * key)
705
{
706
    if (key->version == KEY_FORMAT_3_5)
707
        key->on_disk_key.u.k_offset_v1.k_offset --;
708
    else
709
        key->on_disk_key.u.k_offset_v2.k_offset --;
710
}
711
 
712
 
713
#define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
714
#define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
715
#define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
716
#define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
717
 
718
 
719
/* are these used ? */
720
#define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
721
#define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
722
#define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
723
#define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
724
 
725
 
726
 
727
 
728
 
729
#define I_K_KEY_IN_ITEM(p_s_ih, p_s_key, n_blocksize) \
730
    ( ! COMP_SHORT_KEYS(p_s_ih, p_s_key) && \
731
          I_OFF_BYTE_IN_ITEM(p_s_ih, k_offset (p_s_key), n_blocksize) )
732
 
733
/* maximal length of item */
734
#define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
735
#define MIN_ITEM_LEN 1
736
 
737
 
738
/* object identifier for root dir */
739
#define REISERFS_ROOT_OBJECTID 2
740
#define REISERFS_ROOT_PARENT_OBJECTID 1
741
extern struct key root_key;
742
 
743
 
744
 
745
 
746
/*
747
 * Picture represents a leaf of the S+tree
748
 *  ______________________________________________________
749
 * |      |  Array of     |                   |           |
750
 * |Block |  Object-Item  |      F r e e      |  Objects- |
751
 * | head |  Headers      |     S p a c e     |   Items   |
752
 * |______|_______________|___________________|___________|
753
 */
754
 
755
/* Header of a disk block.  More precisely, header of a formatted leaf
756
   or internal node, and not the header of an unformatted node. */
757
struct block_head {      
758
  __u16 blk_level;        /* Level of a block in the tree. */
759
  __u16 blk_nr_item;      /* Number of keys/items in a block. */
760
  __u16 blk_free_space;   /* Block free space in bytes. */
761
  __u16 blk_reserved;
762
                                /* dump this in v4/planA */
763
  struct key  blk_right_delim_key; /* kept only for compatibility */
764
};
765
 
766
#define BLKH_SIZE                     (sizeof(struct block_head))
767
#define blkh_level(p_blkh)            (le16_to_cpu((p_blkh)->blk_level))
768
#define blkh_nr_item(p_blkh)          (le16_to_cpu((p_blkh)->blk_nr_item))
769
#define blkh_free_space(p_blkh)       (le16_to_cpu((p_blkh)->blk_free_space))
770
#define blkh_reserved(p_blkh)         (le16_to_cpu((p_blkh)->blk_reserved))
771
#define set_blkh_level(p_blkh,val)    ((p_blkh)->blk_level = cpu_to_le16(val))
772
#define set_blkh_nr_item(p_blkh,val)  ((p_blkh)->blk_nr_item = cpu_to_le16(val))
773
#define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
774
#define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
775
#define blkh_right_delim_key(p_blkh)  ((p_blkh)->blk_right_delim_key)
776
#define set_blkh_right_delim_key(p_blkh,val)  ((p_blkh)->blk_right_delim_key = val)
777
 
778
/*
779
 * values for blk_level field of the struct block_head
780
 */
781
 
782
#define FREE_LEVEL 0 /* when node gets removed from the tree its
783
                        blk_level is set to FREE_LEVEL. It is then
784
                        used to see whether the node is still in the
785
                        tree */
786
 
787
#define DISK_LEAF_NODE_LEVEL  1 /* Leaf node level.*/
788
 
789
/* Given the buffer head of a formatted node, resolve to the block head of that node. */
790
#define B_BLK_HEAD(p_s_bh)            ((struct block_head *)((p_s_bh)->b_data))
791
/* Number of items that are in buffer. */
792
#define B_NR_ITEMS(p_s_bh)            (blkh_nr_item(B_BLK_HEAD(p_s_bh)))
793
#define B_LEVEL(p_s_bh)               (blkh_level(B_BLK_HEAD(p_s_bh)))
794
#define B_FREE_SPACE(p_s_bh)          (blkh_free_space(B_BLK_HEAD(p_s_bh)))
795
 
796
#define PUT_B_NR_ITEMS(p_s_bh,val)    do { set_blkh_nr_item(B_BLK_HEAD(p_s_bh),val); } while (0)
797
#define PUT_B_LEVEL(p_s_bh,val)       do { set_blkh_level(B_BLK_HEAD(p_s_bh),val); } while (0)
798
#define PUT_B_FREE_SPACE(p_s_bh,val)  do { set_blkh_free_space(B_BLK_HEAD(p_s_bh),val); } while (0)
799
 
800
 
801
/* Get right delimiting key. -- little endian */
802
#define B_PRIGHT_DELIM_KEY(p_s_bh)   (&(blk_right_delim_key(B_BLK_HEAD(p_s_bh))
803
 
804
/* Does the buffer contain a disk leaf. */
805
#define B_IS_ITEMS_LEVEL(p_s_bh)     (B_LEVEL(p_s_bh) == DISK_LEAF_NODE_LEVEL)
806
 
807
/* Does the buffer contain a disk internal node */
808
#define B_IS_KEYS_LEVEL(p_s_bh)      (B_LEVEL(p_s_bh) > DISK_LEAF_NODE_LEVEL \
809
                                            && B_LEVEL(p_s_bh) <= MAX_HEIGHT)
810
 
811
 
812
 
813
 
814
/***************************************************************************/
815
/*                             STAT DATA                                   */
816
/***************************************************************************/
817
 
818
 
819
//
820
// old stat data is 32 bytes long. We are going to distinguish new one by
821
// different size
822
//
823
struct stat_data_v1
824
{
825
    __u16 sd_mode;      /* file type, permissions */
826
    __u16 sd_nlink;     /* number of hard links */
827
    __u16 sd_uid;               /* owner */
828
    __u16 sd_gid;               /* group */
829
    __u32 sd_size;      /* file size */
830
    __u32 sd_atime;     /* time of last access */
831
    __u32 sd_mtime;     /* time file was last modified  */
832
    __u32 sd_ctime;     /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
833
    union {
834
        __u32 sd_rdev;
835
        __u32 sd_blocks;        /* number of blocks file uses */
836
    } __attribute__ ((__packed__)) u;
837
    __u32 sd_first_direct_byte; /* first byte of file which is stored
838
                                   in a direct item: except that if it
839
                                   equals 1 it is a symlink and if it
840
                                   equals ~(__u32)0 there is no
841
                                   direct item.  The existence of this
842
                                   field really grates on me. Let's
843
                                   replace it with a macro based on
844
                                   sd_size and our tail suppression
845
                                   policy.  Someday.  -Hans */
846
} __attribute__ ((__packed__));
847
 
848
#define SD_V1_SIZE              (sizeof(struct stat_data_v1))
849
#define stat_data_v1(ih)        (ih_version (ih) == KEY_FORMAT_3_5)
850
#define sd_v1_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
851
#define set_sd_v1_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
852
#define sd_v1_nlink(sdp)        (le16_to_cpu((sdp)->sd_nlink))
853
#define set_sd_v1_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le16(v))
854
#define sd_v1_uid(sdp)          (le16_to_cpu((sdp)->sd_uid))
855
#define set_sd_v1_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le16(v))
856
#define sd_v1_gid(sdp)          (le16_to_cpu((sdp)->sd_gid))
857
#define set_sd_v1_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le16(v))
858
#define sd_v1_size(sdp)         (le32_to_cpu((sdp)->sd_size))
859
#define set_sd_v1_size(sdp,v)   ((sdp)->sd_size = cpu_to_le32(v))
860
#define sd_v1_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
861
#define set_sd_v1_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
862
#define sd_v1_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
863
#define set_sd_v1_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
864
#define sd_v1_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
865
#define set_sd_v1_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
866
#define sd_v1_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
867
#define set_sd_v1_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
868
#define sd_v1_blocks(sdp)       (le32_to_cpu((sdp)->u.sd_blocks))
869
#define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
870
#define sd_v1_first_direct_byte(sdp) \
871
                                (le32_to_cpu((sdp)->sd_first_direct_byte))
872
#define set_sd_v1_first_direct_byte(sdp,v) \
873
                                ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
874
 
875
#include <linux/ext2_fs.h>
876
 
877
/* inode flags stored in sd_attrs (nee sd_reserved) */
878
 
879
/* we want common flags to have the same values as in ext2,
880
   so chattr(1) will work without problems */
881
#define REISERFS_IMMUTABLE_FL EXT2_IMMUTABLE_FL
882
#define REISERFS_APPEND_FL    EXT2_APPEND_FL
883
#define REISERFS_SYNC_FL      EXT2_SYNC_FL
884
#define REISERFS_NOATIME_FL   EXT2_NOATIME_FL
885
#define REISERFS_NODUMP_FL    EXT2_NODUMP_FL
886
#define REISERFS_SECRM_FL     EXT2_SECRM_FL
887
#define REISERFS_UNRM_FL      EXT2_UNRM_FL
888
#define REISERFS_COMPR_FL     EXT2_COMPR_FL
889
#define REISERFS_NOTAIL_FL    EXT2_NOTAIL_FL
890
 
891
/* persistent flags that file inherits from the parent directory */
892
#define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \
893
                                REISERFS_SYNC_FL |      \
894
                                REISERFS_NOATIME_FL |   \
895
                                REISERFS_NODUMP_FL |    \
896
                                REISERFS_SECRM_FL |     \
897
                                REISERFS_COMPR_FL |     \
898
                                REISERFS_NOTAIL_FL )
899
 
900
/* Stat Data on disk (reiserfs version of UFS disk inode minus the
901
   address blocks) */
902
struct stat_data {
903
    __u16 sd_mode;      /* file type, permissions */
904
    __u16 sd_attrs;     /* persistent inode flags */
905
    __u32 sd_nlink;     /* number of hard links */
906
    __u64 sd_size;      /* file size */
907
    __u32 sd_uid;               /* owner */
908
    __u32 sd_gid;               /* group */
909
    __u32 sd_atime;     /* time of last access */
910
    __u32 sd_mtime;     /* time file was last modified  */
911
    __u32 sd_ctime;     /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
912
    __u32 sd_blocks;
913
    union {
914
        __u32 sd_rdev;
915
        __u32 sd_generation;
916
      //__u32 sd_first_direct_byte; 
917
      /* first byte of file which is stored in a
918
                                       direct item: except that if it equals 1
919
                                       it is a symlink and if it equals
920
                                       ~(__u32)0 there is no direct item.  The
921
                                       existence of this field really grates
922
                                       on me. Let's replace it with a macro
923
                                       based on sd_size and our tail
924
                                       suppression policy? */
925
  } __attribute__ ((__packed__)) u;
926
} __attribute__ ((__packed__));
927
//
928
// this is 44 bytes long
929
//
930
#define SD_SIZE (sizeof(struct stat_data))
931
#define SD_V2_SIZE              SD_SIZE
932
#define stat_data_v2(ih)        (ih_version (ih) == KEY_FORMAT_3_6)
933
#define sd_v2_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
934
#define set_sd_v2_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
935
/* sd_reserved */
936
/* set_sd_reserved */
937
#define sd_v2_nlink(sdp)        (le32_to_cpu((sdp)->sd_nlink))
938
#define set_sd_v2_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le32(v))
939
#define sd_v2_size(sdp)         (le64_to_cpu((sdp)->sd_size))
940
#define set_sd_v2_size(sdp,v)   ((sdp)->sd_size = cpu_to_le64(v))
941
#define sd_v2_uid(sdp)          (le32_to_cpu((sdp)->sd_uid))
942
#define set_sd_v2_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le32(v))
943
#define sd_v2_gid(sdp)          (le32_to_cpu((sdp)->sd_gid))
944
#define set_sd_v2_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le32(v))
945
#define sd_v2_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
946
#define set_sd_v2_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
947
#define sd_v2_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
948
#define set_sd_v2_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
949
#define sd_v2_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
950
#define set_sd_v2_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
951
#define sd_v2_blocks(sdp)       (le32_to_cpu((sdp)->sd_blocks))
952
#define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
953
#define sd_v2_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
954
#define set_sd_v2_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
955
#define sd_v2_generation(sdp)   (le32_to_cpu((sdp)->u.sd_generation))
956
#define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
957
#define sd_v2_attrs(sdp)         (le16_to_cpu((sdp)->sd_attrs))
958
#define set_sd_v2_attrs(sdp,v)   ((sdp)->sd_attrs = cpu_to_le16(v))
959
 
960
 
961
/***************************************************************************/
962
/*                      DIRECTORY STRUCTURE                                */
963
/***************************************************************************/
964
/*
965
   Picture represents the structure of directory items
966
   ________________________________________________
967
   |  Array of     |   |     |        |       |   |
968
   | directory     |N-1| N-2 | ....   |   1st |0th|
969
   | entry headers |   |     |        |       |   |
970
   |_______________|___|_____|________|_______|___|
971
                    <----   directory entries         ------>
972
 
973
 First directory item has k_offset component 1. We store "." and ".."
974
 in one item, always, we never split "." and ".." into differing
975
 items.  This makes, among other things, the code for removing
976
 directories simpler. */
977
#define SD_OFFSET  0
978
#define SD_UNIQUENESS 0
979
#define DOT_OFFSET 1
980
#define DOT_DOT_OFFSET 2
981
#define DIRENTRY_UNIQUENESS 500
982
 
983
/* */
984
#define FIRST_ITEM_OFFSET 1
985
 
986
/*
987
   Q: How to get key of object pointed to by entry from entry?  
988
 
989
   A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key
990
      of object, entry points to */
991
 
992
/* NOT IMPLEMENTED:  
993
   Directory will someday contain stat data of object */
994
 
995
 
996
 
997
struct reiserfs_de_head
998
{
999
  __u32 deh_offset;             /* third component of the directory entry key */
1000
  __u32 deh_dir_id;             /* objectid of the parent directory of the object, that is referenced
1001
                                           by directory entry */
1002
  __u32 deh_objectid;           /* objectid of the object, that is referenced by directory entry */
1003
  __u16 deh_location;           /* offset of name in the whole item */
1004
  __u16 deh_state;              /* whether 1) entry contains stat data (for future), and 2) whether
1005
                                           entry is hidden (unlinked) */
1006
} __attribute__ ((__packed__));
1007
#define DEH_SIZE                  sizeof(struct reiserfs_de_head)
1008
#define deh_offset(p_deh)         (le32_to_cpu((p_deh)->deh_offset))
1009
#define deh_dir_id(p_deh)         (le32_to_cpu((p_deh)->deh_dir_id))
1010
#define deh_objectid(p_deh)       (le32_to_cpu((p_deh)->deh_objectid))
1011
#define deh_location(p_deh)       (le16_to_cpu((p_deh)->deh_location))
1012
#define deh_state(p_deh)          (le16_to_cpu((p_deh)->deh_state))
1013
 
1014
#define put_deh_offset(p_deh,v)   ((p_deh)->deh_offset = cpu_to_le32((v)))
1015
#define put_deh_dir_id(p_deh,v)   ((p_deh)->deh_dir_id = cpu_to_le32((v)))
1016
#define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
1017
#define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
1018
#define put_deh_state(p_deh,v)    ((p_deh)->deh_state = cpu_to_le16((v)))
1019
 
1020
/* empty directory contains two entries "." and ".." and their headers */
1021
#define EMPTY_DIR_SIZE \
1022
(DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
1023
 
1024
/* old format directories have this size when empty */
1025
#define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
1026
 
1027
#define DEH_Statdata 0                  /* not used now */
1028
#define DEH_Visible 2
1029
 
1030
/* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
1031
#if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
1032
#   define ADDR_UNALIGNED_BITS  (3)
1033
#endif
1034
 
1035
/* These are only used to manipulate deh_state.
1036
 * Because of this, we'll use the ext2_ bit routines,
1037
 * since they are little endian */
1038
#ifdef ADDR_UNALIGNED_BITS
1039
 
1040
#   define aligned_address(addr)           ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
1041
#   define unaligned_offset(addr)          (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
1042
 
1043
#   define set_bit_unaligned(nr, addr)     ext2_set_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1044
#   define clear_bit_unaligned(nr, addr)   ext2_clear_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1045
#   define test_bit_unaligned(nr, addr)    ext2_test_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1046
 
1047
#else
1048
 
1049
#   define set_bit_unaligned(nr, addr)     ext2_set_bit(nr, addr)
1050
#   define clear_bit_unaligned(nr, addr)   ext2_clear_bit(nr, addr)
1051
#   define test_bit_unaligned(nr, addr)    ext2_test_bit(nr, addr)
1052
 
1053
#endif
1054
 
1055
#define mark_de_with_sd(deh)        set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1056
#define mark_de_without_sd(deh)     clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1057
#define mark_de_visible(deh)        set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1058
#define mark_de_hidden(deh)         clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1059
 
1060
#define de_with_sd(deh)             test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1061
#define de_visible(deh)             test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1062
#define de_hidden(deh)              !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1063
 
1064
extern void make_empty_dir_item_v1 (char * body, __u32 dirid, __u32 objid,
1065
                                    __u32 par_dirid, __u32 par_objid);
1066
extern void make_empty_dir_item (char * body, __u32 dirid, __u32 objid,
1067
                                 __u32 par_dirid, __u32 par_objid);
1068
 
1069
/* array of the entry headers */
1070
 /* get item body */
1071
#define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
1072
#define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))
1073
 
1074
/* length of the directory entry in directory item. This define
1075
   calculates length of i-th directory entry using directory entry
1076
   locations from dir entry head. When it calculates length of 0-th
1077
   directory entry, it uses length of whole item in place of entry
1078
   location of the non-existent following entry in the calculation.
1079
   See picture above.*/
1080
/*
1081
#define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
1082
((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh))))
1083
*/
1084
static inline int entry_length (const struct buffer_head * bh,
1085
                                                                const struct item_head * ih, int pos_in_item)
1086
{
1087
    struct reiserfs_de_head * deh;
1088
 
1089
    deh = B_I_DEH (bh, ih) + pos_in_item;
1090
    if (pos_in_item)
1091
        return deh_location(deh-1) - deh_location(deh);
1092
 
1093
    return ih_item_len(ih) - deh_location(deh);
1094
}
1095
 
1096
 
1097
 
1098
/* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
1099
#define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))
1100
 
1101
 
1102
/* name by bh, ih and entry_num */
1103
#define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))
1104
 
1105
// two entries per block (at least)
1106
#define REISERFS_MAX_NAME(block_size) 255
1107
 
1108
 
1109
/* this structure is used for operations on directory entries. It is
1110
   not a disk structure. */
1111
/* When reiserfs_find_entry or search_by_entry_key find directory
1112
   entry, they return filled reiserfs_dir_entry structure */
1113
struct reiserfs_dir_entry
1114
{
1115
  struct buffer_head * de_bh;
1116
  int de_item_num;
1117
  struct item_head * de_ih;
1118
  int de_entry_num;
1119
  struct reiserfs_de_head * de_deh;
1120
  int de_entrylen;
1121
  int de_namelen;
1122
  char * de_name;
1123
  char * de_gen_number_bit_string;
1124
 
1125
  __u32 de_dir_id;
1126
  __u32 de_objectid;
1127
 
1128
  struct cpu_key de_entry_key;
1129
};
1130
 
1131
/* these defines are useful when a particular member of a reiserfs_dir_entry is needed */
1132
 
1133
/* pointer to file name, stored in entry */
1134
#define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))
1135
 
1136
/* length of name */
1137
#define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
1138
(I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
1139
 
1140
 
1141
 
1142
/* hash value occupies bits from 7 up to 30 */
1143
#define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
1144
/* generation number occupies 7 bits starting from 0 up to 6 */
1145
#define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
1146
#define MAX_GENERATION_NUMBER  127
1147
 
1148
#define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
1149
 
1150
 
1151
/*
1152
 * Picture represents an internal node of the reiserfs tree
1153
 *  ______________________________________________________
1154
 * |      |  Array of     |  Array of         |  Free     |
1155
 * |block |    keys       |  pointers         | space     |
1156
 * | head |      N        |      N+1          |           |
1157
 * |______|_______________|___________________|___________|
1158
 */
1159
 
1160
/***************************************************************************/
1161
/*                      DISK CHILD                                         */
1162
/***************************************************************************/
1163
/* Disk child pointer: The pointer from an internal node of the tree
1164
   to a node that is on disk. */
1165
struct disk_child {
1166
  __u32       dc_block_number;              /* Disk child's block number. */
1167
  __u16       dc_size;                      /* Disk child's used space.   */
1168
  __u16       dc_reserved;
1169
};
1170
 
1171
#define DC_SIZE (sizeof(struct disk_child))
1172
#define dc_block_number(dc_p)   (le32_to_cpu((dc_p)->dc_block_number))
1173
#define dc_size(dc_p)           (le16_to_cpu((dc_p)->dc_size))
1174
#define put_dc_block_number(dc_p, val)   do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
1175
#define put_dc_size(dc_p, val)   do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
1176
 
1177
/* Get disk child by buffer header and position in the tree node. */
1178
#define B_N_CHILD(p_s_bh,n_pos)  ((struct disk_child *)\
1179
((p_s_bh)->b_data+BLKH_SIZE+B_NR_ITEMS(p_s_bh)*KEY_SIZE+DC_SIZE*(n_pos)))
1180
 
1181
/* Get disk child number by buffer header and position in the tree node. */
1182
#define B_N_CHILD_NUM(p_s_bh,n_pos) (dc_block_number(B_N_CHILD(p_s_bh,n_pos)))
1183
#define PUT_B_N_CHILD_NUM(p_s_bh,n_pos, val) (put_dc_block_number(B_N_CHILD(p_s_bh,n_pos), val ))
1184
 
1185
 /* maximal value of field child_size in structure disk_child */
1186
 /* child size is the combined size of all items and their headers */
1187
#define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
1188
 
1189
/* amount of used space in buffer (not including block head) */
1190
#define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
1191
 
1192
/* max and min number of keys in internal node */
1193
#define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
1194
#define MIN_NR_KEY(bh)    (MAX_NR_KEY(bh)/2)
1195
 
1196
/***************************************************************************/
1197
/*                      PATH STRUCTURES AND DEFINES                        */
1198
/***************************************************************************/
1199
 
1200
 
1201
/* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
1202
   key.  It uses reiserfs_bread to try to find buffers in the cache given their block number.  If it
1203
   does not find them in the cache it reads them from disk.  For each node search_by_key finds using
1204
   reiserfs_bread it then uses bin_search to look through that node.  bin_search will find the
1205
   position of the block_number of the next node if it is looking through an internal node.  If it
1206
   is looking through a leaf node bin_search will find the position of the item which has key either
1207
   equal to given key, or which is the maximal key less than the given key. */
1208
 
1209
struct  path_element  {
1210
  struct buffer_head *  pe_buffer;    /* Pointer to the buffer at the path in the tree. */
1211
  int                   pe_position;  /* Position in the tree node which is placed in the */
1212
                                      /* buffer above.                                  */
1213
};
1214
 
1215
#define MAX_HEIGHT 5 /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
1216
#define EXTENDED_MAX_HEIGHT         7 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
1217
#define FIRST_PATH_ELEMENT_OFFSET   2 /* Must be equal to at least 2. */
1218
 
1219
#define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
1220
#define MAX_FEB_SIZE 6   /* this MUST be MAX_HEIGHT + 1. See about FEB below */
1221
 
1222
 
1223
 
1224
/* We need to keep track of who the ancestors of nodes are.  When we
1225
   perform a search we record which nodes were visited while
1226
   descending the tree looking for the node we searched for. This list
1227
   of nodes is called the path.  This information is used while
1228
   performing balancing.  Note that this path information may become
1229
   invalid, and this means we must check it when using it to see if it
1230
   is still valid. You'll need to read search_by_key and the comments
1231
   in it, especially about decrement_counters_in_path(), to understand
1232
   this structure.  
1233
 
1234
Paths make the code so much harder to work with and debug.... An
1235
enormous number of bugs are due to them, and trying to write or modify
1236
code that uses them just makes my head hurt.  They are based on an
1237
excessive effort to avoid disturbing the precious VFS code.:-( The
1238
gods only know how we are going to SMP the code that uses them.
1239
znodes are the way! */
1240
 
1241
 
1242
struct  path {
1243
  int                   path_length;                            /* Length of the array above.   */
1244
  struct  path_element  path_elements[EXTENDED_MAX_HEIGHT];     /* Array of the path elements.  */
1245
  int                   pos_in_item;
1246
};
1247
 
1248
#define pos_in_item(path) ((path)->pos_in_item)
1249
 
1250
#define INITIALIZE_PATH(var) \
1251
struct path var = {ILLEGAL_PATH_ELEMENT_OFFSET, }
1252
 
1253
/* Get path element by path and path position. */
1254
#define PATH_OFFSET_PELEMENT(p_s_path,n_offset)  ((p_s_path)->path_elements +(n_offset))
1255
 
1256
/* Get buffer header at the path by path and path position. */
1257
#define PATH_OFFSET_PBUFFER(p_s_path,n_offset)   (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_buffer)
1258
 
1259
/* Get position in the element at the path by path and path position. */
1260
#define PATH_OFFSET_POSITION(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_position)
1261
 
1262
 
1263
#define PATH_PLAST_BUFFER(p_s_path) (PATH_OFFSET_PBUFFER((p_s_path), (p_s_path)->path_length))
1264
                                /* you know, to the person who didn't
1265
                                   write this the macro name does not
1266
                                   at first suggest what it does.
1267
                                   Maybe POSITION_FROM_PATH_END? Or
1268
                                   maybe we should just focus on
1269
                                   dumping paths... -Hans */
1270
#define PATH_LAST_POSITION(p_s_path) (PATH_OFFSET_POSITION((p_s_path), (p_s_path)->path_length))
1271
 
1272
 
1273
#define PATH_PITEM_HEAD(p_s_path)    B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_path),PATH_LAST_POSITION(p_s_path))
1274
 
1275
/* in do_balance leaf has h == 0 in contrast with path structure,
1276
   where root has level == 0. That is why we need these defines */
1277
#define PATH_H_PBUFFER(p_s_path, h) PATH_OFFSET_PBUFFER (p_s_path, p_s_path->path_length - (h)) /* tb->S[h] */
1278
#define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1)                  /* tb->F[h] or tb->S[0]->b_parent */
1279
#define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))   
1280
#define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1)               /* tb->S[h]->b_item_order */
1281
 
1282
#define PATH_H_PATH_OFFSET(p_s_path, n_h) ((p_s_path)->path_length - (n_h))
1283
 
1284
#define get_last_bh(path) PATH_PLAST_BUFFER(path)
1285
#define get_ih(path) PATH_PITEM_HEAD(path)
1286
#define get_item_pos(path) PATH_LAST_POSITION(path)
1287
#define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
1288
#define item_moved(ih,path) comp_items(ih, path)
1289
#define path_changed(ih,path) comp_items (ih, path)
1290
 
1291
 
1292
/***************************************************************************/
1293
/*                       MISC                                              */
1294
/***************************************************************************/
1295
 
1296
/* Size of pointer to the unformatted node. */
1297
#define UNFM_P_SIZE (sizeof(unp_t))
1298
#define UNFM_P_SHIFT 2
1299
 
1300
// in in-core inode key is stored on le form
1301
#define INODE_PKEY(inode) ((struct key *)(REISERFS_I(inode)->i_key))
1302
 
1303
#define MAX_UL_INT 0xffffffff
1304
#define MAX_INT    0x7ffffff
1305
#define MAX_US_INT 0xffff
1306
 
1307
// reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
1308
#define U32_MAX (~(__u32)0)
1309
 
1310
static inline loff_t max_reiserfs_offset (struct inode * inode)
1311
{
1312
    if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
1313
        return (loff_t)U32_MAX;
1314
 
1315
    return (loff_t)((~(__u64)0) >> 4);
1316
}
1317
 
1318
 
1319
/*#define MAX_KEY_UNIQUENESS    MAX_UL_INT*/
1320
#define MAX_KEY_OBJECTID        MAX_UL_INT
1321
 
1322
 
1323
#define MAX_B_NUM  MAX_UL_INT
1324
#define MAX_FC_NUM MAX_US_INT
1325
 
1326
 
1327
/* the purpose is to detect overflow of an unsigned short */
1328
#define REISERFS_LINK_MAX (MAX_US_INT - 1000)
1329
 
1330
 
1331
/* The following defines are used in reiserfs_insert_item and reiserfs_append_item  */
1332
#define REISERFS_KERNEL_MEM             0       /* reiserfs kernel memory mode  */
1333
#define REISERFS_USER_MEM               1       /* reiserfs user memory mode            */
1334
 
1335
#define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
1336
#define get_generation(s) atomic_read (&fs_generation(s))
1337
#define FILESYSTEM_CHANGED_TB(tb)  (get_generation((tb)->tb_sb) != (tb)->fs_gen)
1338
#define fs_changed(gen,s) (gen != get_generation (s))
1339
 
1340
 
1341
/***************************************************************************/
1342
/*                  FIXATE NODES                                           */
1343
/***************************************************************************/
1344
 
1345
#define VI_TYPE_LEFT_MERGEABLE 1
1346
#define VI_TYPE_RIGHT_MERGEABLE 2
1347
 
1348
/* To make any changes in the tree we always first find node, that
1349
   contains item to be changed/deleted or place to insert a new
1350
   item. We call this node S. To do balancing we need to decide what
1351
   we will shift to left/right neighbor, or to a new node, where new
1352
   item will be etc. To make this analysis simpler we build virtual
1353
   node. Virtual node is an array of items, that will replace items of
1354
   node S. (For instance if we are going to delete an item, virtual
1355
   node does not contain it). Virtual node keeps information about
1356
   item sizes and types, mergeability of first and last items, sizes
1357
   of all entries in directory item. We use this array of items when
1358
   calculating what we can shift to neighbors and how many nodes we
1359
   have to have if we do not any shiftings, if we shift to left/right
1360
   neighbor or to both. */
1361
struct virtual_item
1362
{
1363
    int vi_index; // index in the array of item operations
1364
    unsigned short vi_type;     // left/right mergeability
1365
    unsigned short vi_item_len;           /* length of item that it will have after balancing */
1366
    struct item_head * vi_ih;
1367
    const char * vi_item;     // body of item (old or new)
1368
    const void * vi_new_data; // 0 always but paste mode
1369
    void * vi_uarea;    // item specific area
1370
};
1371
 
1372
 
1373
struct virtual_node
1374
{
1375
  char * vn_free_ptr;           /* this is a pointer to the free space in the buffer */
1376
  unsigned short vn_nr_item;    /* number of items in virtual node */
1377
  short vn_size;                /* size of node , that node would have if it has unlimited size and no balancing is performed */
1378
  short vn_mode;                /* mode of balancing (paste, insert, delete, cut) */
1379
  short vn_affected_item_num;
1380
  short vn_pos_in_item;
1381
  struct item_head * vn_ins_ih; /* item header of inserted item, 0 for other modes */
1382
  const void * vn_data;
1383
  struct virtual_item * vn_vi;  /* array of items (including a new one, excluding item to be deleted) */
1384
};
1385
 
1386
/* used by directory items when creating virtual nodes */
1387
struct direntry_uarea {
1388
    int flags;
1389
    __u16 entry_count;
1390
    __u16 entry_sizes[1];
1391
} __attribute__ ((__packed__)) ;
1392
 
1393
 
1394
/***************************************************************************/
1395
/*                  TREE BALANCE                                           */
1396
/***************************************************************************/
1397
 
1398
/* This temporary structure is used in tree balance algorithms, and
1399
   constructed as we go to the extent that its various parts are
1400
   needed.  It contains arrays of nodes that can potentially be
1401
   involved in the balancing of node S, and parameters that define how
1402
   each of the nodes must be balanced.  Note that in these algorithms
1403
   for balancing the worst case is to need to balance the current node
1404
   S and the left and right neighbors and all of their parents plus
1405
   create a new node.  We implement S1 balancing for the leaf nodes
1406
   and S0 balancing for the internal nodes (S1 and S0 are defined in
1407
   our papers.)*/
1408
 
1409
#define MAX_FREE_BLOCK 7        /* size of the array of buffers to free at end of do_balance */
1410
 
1411
/* maximum number of FEB blocknrs on a single level */
1412
#define MAX_AMOUNT_NEEDED 2
1413
 
1414
/* someday somebody will prefix every field in this struct with tb_ */
1415
struct tree_balance
1416
{
1417
  int tb_mode;
1418
  int need_balance_dirty;
1419
  struct super_block * tb_sb;
1420
  struct reiserfs_transaction_handle *transaction_handle ;
1421
  struct path * tb_path;
1422
  struct buffer_head * L[MAX_HEIGHT];        /* array of left neighbors of nodes in the path */
1423
  struct buffer_head * R[MAX_HEIGHT];        /* array of right neighbors of nodes in the path*/
1424
  struct buffer_head * FL[MAX_HEIGHT];       /* array of fathers of the left  neighbors      */
1425
  struct buffer_head * FR[MAX_HEIGHT];       /* array of fathers of the right neighbors      */
1426
  struct buffer_head * CFL[MAX_HEIGHT];      /* array of common parents of center node and its left neighbor  */
1427
  struct buffer_head * CFR[MAX_HEIGHT];      /* array of common parents of center node and its right neighbor */
1428
 
1429
  struct buffer_head * FEB[MAX_FEB_SIZE]; /* array of empty buffers. Number of buffers in array equals
1430
                                             cur_blknum. */
1431
  struct buffer_head * used[MAX_FEB_SIZE];
1432
  struct buffer_head * thrown[MAX_FEB_SIZE];
1433
  int lnum[MAX_HEIGHT]; /* array of number of items which must be
1434
                           shifted to the left in order to balance the
1435
                           current node; for leaves includes item that
1436
                           will be partially shifted; for internal
1437
                           nodes, it is the number of child pointers
1438
                           rather than items. It includes the new item
1439
                           being created. The code sometimes subtracts
1440
                           one to get the number of wholly shifted
1441
                           items for other purposes. */
1442
  int rnum[MAX_HEIGHT]; /* substitute right for left in comment above */
1443
  int lkey[MAX_HEIGHT];               /* array indexed by height h mapping the key delimiting L[h] and
1444
                                               S[h] to its item number within the node CFL[h] */
1445
  int rkey[MAX_HEIGHT];               /* substitute r for l in comment above */
1446
  int insert_size[MAX_HEIGHT];        /* the number of bytes by we are trying to add or remove from
1447
                                               S[h]. A negative value means removing.  */
1448
  int blknum[MAX_HEIGHT];             /* number of nodes that will replace node S[h] after
1449
                                               balancing on the level h of the tree.  If 0 then S is
1450
                                               being deleted, if 1 then S is remaining and no new nodes
1451
                                               are being created, if 2 or 3 then 1 or 2 new nodes is
1452
                                               being created */
1453
 
1454
  /* fields that are used only for balancing leaves of the tree */
1455
  int cur_blknum;       /* number of empty blocks having been already allocated                 */
1456
  int s0num;             /* number of items that fall into left most  node when S[0] splits     */
1457
  int s1num;             /* number of items that fall into first  new node when S[0] splits     */
1458
  int s2num;             /* number of items that fall into second new node when S[0] splits     */
1459
  int lbytes;            /* number of bytes which can flow to the left neighbor from the        left    */
1460
  /* most liquid item that cannot be shifted from S[0] entirely         */
1461
  /* if -1 then nothing will be partially shifted */
1462
  int rbytes;            /* number of bytes which will flow to the right neighbor from the right        */
1463
  /* most liquid item that cannot be shifted from S[0] entirely         */
1464
  /* if -1 then nothing will be partially shifted                           */
1465
  int s1bytes;          /* number of bytes which flow to the first  new node when S[0] splits   */
1466
                                /* note: if S[0] splits into 3 nodes, then items do not need to be cut  */
1467
  int s2bytes;
1468
  struct buffer_head * buf_to_free[MAX_FREE_BLOCK]; /* buffers which are to be freed after do_balance finishes by unfix_nodes */
1469
  char * vn_buf;                /* kmalloced memory. Used to create
1470
                                   virtual node and keep map of
1471
                                   dirtied bitmap blocks */
1472
  int vn_buf_size;              /* size of the vn_buf */
1473
  struct virtual_node * tb_vn;  /* VN starts after bitmap of bitmap blocks */
1474
 
1475
  int fs_gen;                  /* saved value of `reiserfs_generation' counter
1476
                                  see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */
1477
#ifdef DISPLACE_NEW_PACKING_LOCALITIES
1478
  struct key  key;            /* key pointer, to pass to block allocator or
1479
                                 another low-level subsystem */
1480
#endif
1481
} ;
1482
 
1483
/* These are modes of balancing */
1484
 
1485
/* When inserting an item. */
1486
#define M_INSERT        'i'
1487
/* When inserting into (directories only) or appending onto an already
1488
   existant item. */
1489
#define M_PASTE         'p'
1490
/* When deleting an item. */
1491
#define M_DELETE        'd'
1492
/* When truncating an item or removing an entry from a (directory) item. */
1493
#define M_CUT           'c'
1494
 
1495
/* used when balancing on leaf level skipped (in reiserfsck) */
1496
#define M_INTERNAL      'n'
1497
 
1498
/* When further balancing is not needed, then do_balance does not need
1499
   to be called. */
1500
#define M_SKIP_BALANCING                's'
1501
#define M_CONVERT       'v'
1502
 
1503
/* modes of leaf_move_items */
1504
#define LEAF_FROM_S_TO_L 0
1505
#define LEAF_FROM_S_TO_R 1
1506
#define LEAF_FROM_R_TO_L 2
1507
#define LEAF_FROM_L_TO_R 3
1508
#define LEAF_FROM_S_TO_SNEW 4
1509
 
1510
#define FIRST_TO_LAST 0
1511
#define LAST_TO_FIRST 1
1512
 
1513
/* used in do_balance for passing parent of node information that has
1514
   been gotten from tb struct */
1515
struct buffer_info {
1516
    struct tree_balance * tb;
1517
    struct buffer_head * bi_bh;
1518
    struct buffer_head * bi_parent;
1519
    int bi_position;
1520
};
1521
 
1522
 
1523
/* there are 4 types of items: stat data, directory item, indirect, direct.
1524
+-------------------+------------+--------------+------------+
1525
|                   |  k_offset  | k_uniqueness | mergeable? |
1526
+-------------------+------------+--------------+------------+
1527
|     stat data     |   0        |      0       |   no       |
1528
+-------------------+------------+--------------+------------+
1529
| 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS|   no       |
1530
| non 1st directory | hash value |              |   yes      |
1531
|     item          |            |              |            |
1532
+-------------------+------------+--------------+------------+
1533
| indirect item     | offset + 1 |TYPE_INDIRECT |   if this is not the first indirect item of the object
1534
+-------------------+------------+--------------+------------+
1535
| direct item       | offset + 1 |TYPE_DIRECT   | if not this is not the first direct item of the object
1536
+-------------------+------------+--------------+------------+
1537
*/
1538
 
1539
struct item_operations {
1540
    int (*bytes_number) (struct item_head * ih, int block_size);
1541
    void (*decrement_key) (struct cpu_key *);
1542
    int (*is_left_mergeable) (struct key * ih, unsigned long bsize);
1543
    void (*print_item) (struct item_head *, char * item);
1544
    void (*check_item) (struct item_head *, char * item);
1545
 
1546
    int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
1547
                      int is_affected, int insert_size);
1548
    int (*check_left) (struct virtual_item * vi, int free,
1549
                            int start_skip, int end_skip);
1550
    int (*check_right) (struct virtual_item * vi, int free);
1551
    int (*part_size) (struct virtual_item * vi, int from, int to);
1552
    int (*unit_num) (struct virtual_item * vi);
1553
    void (*print_vi) (struct virtual_item * vi);
1554
};
1555
 
1556
 
1557
extern struct item_operations stat_data_ops, indirect_ops, direct_ops,
1558
  direntry_ops;
1559
extern struct item_operations * item_ops [TYPE_ANY + 1];
1560
 
1561
#define op_bytes_number(ih,bsize)                    item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
1562
#define op_is_left_mergeable(key,bsize)              item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
1563
#define op_print_item(ih,item)                       item_ops[le_ih_k_type (ih)]->print_item (ih, item)
1564
#define op_check_item(ih,item)                       item_ops[le_ih_k_type (ih)]->check_item (ih, item)
1565
#define op_create_vi(vn,vi,is_affected,insert_size)  item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
1566
#define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
1567
#define op_check_right(vi,free)                      item_ops[(vi)->vi_index]->check_right (vi, free)
1568
#define op_part_size(vi,from,to)                     item_ops[(vi)->vi_index]->part_size (vi, from, to)
1569
#define op_unit_num(vi)                              item_ops[(vi)->vi_index]->unit_num (vi)
1570
#define op_print_vi(vi)                              item_ops[(vi)->vi_index]->print_vi (vi)
1571
 
1572
 
1573
 
1574
 
1575
 
1576
#define COMP_KEYS comp_keys
1577
#define COMP_SHORT_KEYS comp_short_keys
1578
/*#define keys_of_same_object comp_short_keys*/
1579
 
1580
/* number of blocks pointed to by the indirect item */
1581
#define I_UNFM_NUM(p_s_ih)      ( ih_item_len(p_s_ih) / UNFM_P_SIZE )
1582
 
1583
/* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
1584
#define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
1585
 
1586
/* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */
1587
 
1588
 
1589
/* get the item header */
1590
#define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1591
 
1592
/* get key */
1593
#define B_N_PDELIM_KEY(bh,item_num) ( (struct key * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1594
 
1595
/* get the key */
1596
#define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )
1597
 
1598
/* get item body */
1599
#define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))
1600
 
1601
/* get the stat data by the buffer header and the item order */
1602
#define B_N_STAT_DATA(bh,nr) \
1603
( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) )
1604
 
1605
    /* following defines use reiserfs buffer header and item header */
1606
 
1607
/* get stat-data */
1608
#define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
1609
 
1610
// this is 3976 for size==4096
1611
#define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
1612
 
1613
/* indirect items consist of entries which contain blocknrs, pos
1614
   indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
1615
   blocknr contained by the entry pos points to */
1616
#define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
1617
#define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)
1618
 
1619
struct reiserfs_iget_args {
1620
    __u32 objectid ;
1621
    __u32 dirid ;
1622
} ;
1623
 
1624
/***************************************************************************/
1625
/*                    FUNCTION DECLARATIONS                                */
1626
/***************************************************************************/
1627
 
1628
/*#ifdef __KERNEL__*/
1629
#define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
1630
 
1631
#define journal_trans_half(blocksize) \
1632
        ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
1633
 
1634
/* journal.c see journal.c for all the comments here */
1635
 
1636
/* first block written in a commit.  */
1637
struct reiserfs_journal_desc {
1638
  __u32 j_trans_id ;                    /* id of commit */
1639
  __u32 j_len ;                 /* length of commit. len +1 is the commit block */
1640
  __u32 j_mount_id ;                            /* mount id of this trans*/
1641
  __u32 j_realblock[1] ; /* real locations for each block */
1642
} ;
1643
 
1644
#define get_desc_trans_id(d)   le32_to_cpu((d)->j_trans_id)
1645
#define get_desc_trans_len(d)  le32_to_cpu((d)->j_len)
1646
#define get_desc_mount_id(d)   le32_to_cpu((d)->j_mount_id)
1647
 
1648
#define set_desc_trans_id(d,val)       do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
1649
#define set_desc_trans_len(d,val)      do { (d)->j_len = cpu_to_le32 (val); } while (0)
1650
#define set_desc_mount_id(d,val)       do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
1651
 
1652
/* last block written in a commit */
1653
struct reiserfs_journal_commit {
1654
  __u32 j_trans_id ;                    /* must match j_trans_id from the desc block */
1655
  __u32 j_len ;                 /* ditto */
1656
  __u32 j_realblock[1] ; /* real locations for each block */
1657
} ;
1658
 
1659
#define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
1660
#define get_commit_trans_len(c)        le32_to_cpu((c)->j_len)
1661
#define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
1662
 
1663
#define set_commit_trans_id(c,val)     do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
1664
#define set_commit_trans_len(c,val)    do { (c)->j_len = cpu_to_le32 (val); } while (0)
1665
 
1666
/* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
1667
** last fully flushed transaction.  fully flushed means all the log blocks and all the real blocks are on disk,
1668
** and this transaction does not need to be replayed.
1669
*/
1670
struct reiserfs_journal_header {
1671
  __u32 j_last_flush_trans_id ;         /* id of last fully flushed transaction */
1672
  __u32 j_first_unflushed_offset ;      /* offset in the log of where to start replay after a crash */
1673
  __u32 j_mount_id ;
1674
  /* 12 */ struct journal_params jh_journal;
1675
} ;
1676
 
1677
/* biggest tunable defines are right here */
1678
#define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */
1679
#define JOURNAL_TRANS_MAX_DEFAULT 1024   /* biggest possible single transaction, don't change for now (8/3/99) */
1680
#define JOURNAL_TRANS_MIN_DEFAULT 256
1681
#define JOURNAL_MAX_BATCH_DEFAULT   900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */
1682
#define JOURNAL_MIN_RATIO 2
1683
#define JOURNAL_MAX_COMMIT_AGE 30 
1684
#define JOURNAL_MAX_TRANS_AGE 30
1685
#define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
1686
 
1687
/* both of these can be as low as 1, or as high as you want.  The min is the
1688
** number of 4k bitmap nodes preallocated on mount. New nodes are allocated
1689
** as needed, and released when transactions are committed.  On release, if
1690
** the current number of nodes is > max, the node is freed, otherwise,
1691
** it is put on a free list for faster use later.
1692
*/
1693
#define REISERFS_MIN_BITMAP_NODES 10 
1694
#define REISERFS_MAX_BITMAP_NODES 100 
1695
 
1696
#define JBH_HASH_SHIFT 13 /* these are based on journal hash size of 8192 */
1697
#define JBH_HASH_MASK 8191
1698
 
1699
#define _jhashfn(sb,block)      \
1700
        (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
1701
         (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
1702
#define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
1703
 
1704
/* finds n'th buffer with 0 being the start of this commit.  Needs to go away, j_ap_blocks has changed
1705
** since I created this.  One chunk of code in journal.c needs changing before deleting it
1706
*/
1707
#define JOURNAL_BUFFER(j,n) ((j)->j_ap_blocks[((j)->j_start + (n)) % JOURNAL_BLOCK_COUNT])
1708
 
1709
// We need these to make journal.c code more readable
1710
#define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1711
#define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1712
#define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1713
 
1714
void reiserfs_commit_for_inode(struct inode *) ;
1715
void reiserfs_update_inode_transaction(struct inode *) ;
1716
void reiserfs_wait_on_write_block(struct super_block *s) ;
1717
void reiserfs_block_writes(struct reiserfs_transaction_handle *th) ;
1718
void reiserfs_allow_writes(struct super_block *s) ;
1719
void reiserfs_check_lock_depth(char *caller) ;
1720
void reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh, int wait) ;
1721
void reiserfs_restore_prepared_buffer(struct super_block *, struct buffer_head *bh) ;
1722
int journal_init(struct super_block *, const char * j_dev_name, int old_format) ;
1723
int journal_release(struct reiserfs_transaction_handle*, struct super_block *) ;
1724
int journal_release_error(struct reiserfs_transaction_handle*, struct super_block *) ;
1725
int journal_end(struct reiserfs_transaction_handle *, struct super_block *, unsigned long) ;
1726
int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *, unsigned long) ;
1727
int journal_mark_dirty_nolog(struct reiserfs_transaction_handle *, struct super_block *, struct buffer_head *bh) ;
1728
int journal_mark_freed(struct reiserfs_transaction_handle *, struct super_block *, b_blocknr_t blocknr) ;
1729
int push_journal_writer(char *w) ;
1730
int pop_journal_writer(int windex) ;
1731
int journal_transaction_should_end(struct reiserfs_transaction_handle *, int) ;
1732
int reiserfs_in_journal(struct super_block *p_s_sb, int bmap_nr, int bit_nr, int searchall, b_blocknr_t *next) ;
1733
int journal_begin(struct reiserfs_transaction_handle *, struct super_block *p_s_sb, unsigned long) ;
1734
void flush_async_commits(struct super_block *p_s_sb) ;
1735
 
1736
int buffer_journaled(const struct buffer_head *bh) ;
1737
int mark_buffer_journal_new(struct buffer_head *bh) ;
1738
int reiserfs_add_page_to_flush_list(struct reiserfs_transaction_handle *,
1739
                                    struct inode *, struct buffer_head *) ;
1740
int reiserfs_remove_page_from_flush_list(struct reiserfs_transaction_handle *,
1741
                                         struct inode *) ;
1742
 
1743
int reiserfs_allocate_list_bitmaps(struct super_block *s, struct reiserfs_list_bitmap *, int) ;
1744
 
1745
                                /* why is this kerplunked right here? */
1746
static inline int reiserfs_buffer_prepared(const struct buffer_head *bh) {
1747
  if (bh && test_bit(BH_JPrepared, &bh->b_state))
1748
    return 1 ;
1749
  else
1750
    return 0 ;
1751
}
1752
 
1753
/* buffer was journaled, waiting to get to disk */
1754
static inline int buffer_journal_dirty(const struct buffer_head *bh) {
1755
  if (bh)
1756
    return test_bit(BH_JDirty_wait, &bh->b_state) ;
1757
  else
1758
    return 0 ;
1759
}
1760
static inline int mark_buffer_notjournal_dirty(struct buffer_head *bh) {
1761
  if (bh)
1762
    clear_bit(BH_JDirty_wait, &bh->b_state) ;
1763
  return 0 ;
1764
}
1765
static inline int mark_buffer_notjournal_new(struct buffer_head *bh) {
1766
  if (bh) {
1767
    clear_bit(BH_JNew, &bh->b_state) ;
1768
  }
1769
  return 0 ;
1770
}
1771
 
1772
void add_save_link (struct reiserfs_transaction_handle * th,
1773
                                        struct inode * inode, int truncate);
1774
void remove_save_link (struct inode * inode, int truncate);
1775
 
1776
/* objectid.c */
1777
__u32 reiserfs_get_unused_objectid (struct reiserfs_transaction_handle *th);
1778
void reiserfs_release_objectid (struct reiserfs_transaction_handle *th, __u32 objectid_to_release);
1779
int reiserfs_convert_objectid_map_v1(struct super_block *) ;
1780
 
1781
/* stree.c */
1782
int B_IS_IN_TREE(const struct buffer_head *);
1783
extern inline void copy_short_key (void * to, const void * from);
1784
extern inline void copy_item_head(struct item_head * p_v_to,
1785
                                                                  const struct item_head * p_v_from);
1786
 
1787
// first key is in cpu form, second - le
1788
extern inline int comp_keys (const struct key * le_key,
1789
                             const struct cpu_key * cpu_key);
1790
extern inline int  comp_short_keys (const struct key * le_key,
1791
                                    const struct cpu_key * cpu_key);
1792
extern inline void le_key2cpu_key (struct cpu_key * to, const struct key * from);
1793
 
1794
// both are cpu keys
1795
extern inline int comp_cpu_keys (const struct cpu_key *, const struct cpu_key *);
1796
extern inline int comp_short_cpu_keys (const struct cpu_key *,
1797
                                       const struct cpu_key *);
1798
extern inline void cpu_key2cpu_key (struct cpu_key *, const struct cpu_key *);
1799
 
1800
// both are in le form
1801
extern inline int comp_le_keys (const struct key *, const struct key *);
1802
extern inline int comp_short_le_keys (const struct key *, const struct key *);
1803
 
1804
//
1805
// get key version from on disk key - kludge
1806
//
1807
static inline int le_key_version (const struct key * key)
1808
{
1809
    int type;
1810
 
1811
    type = offset_v2_k_type( &(key->u.k_offset_v2));
1812
    if (type != TYPE_DIRECT && type != TYPE_INDIRECT && type != TYPE_DIRENTRY)
1813
        return KEY_FORMAT_3_5;
1814
 
1815
    return KEY_FORMAT_3_6;
1816
 
1817
}
1818
 
1819
 
1820
static inline void copy_key (struct key *to, const struct key *from)
1821
{
1822
    memcpy (to, from, KEY_SIZE);
1823
}
1824
 
1825
 
1826
int comp_items (const struct item_head * stored_ih, const struct path * p_s_path);
1827
const struct key * get_rkey (const struct path * p_s_chk_path,
1828
                                                         const struct super_block  * p_s_sb);
1829
inline int bin_search (const void * p_v_key, const void * p_v_base,
1830
                                           int p_n_num, int p_n_width, int * p_n_pos);
1831
int search_by_key (struct super_block *, const struct cpu_key *,
1832
                                   struct path *, int);
1833
#define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
1834
int search_for_position_by_key (struct super_block * p_s_sb,
1835
                                                                const struct cpu_key * p_s_cpu_key,
1836
                                                                struct path * p_s_search_path);
1837
extern inline void decrement_bcount (struct buffer_head * p_s_bh);
1838
void decrement_counters_in_path (struct path * p_s_search_path);
1839
void pathrelse (struct path * p_s_search_path);
1840
int reiserfs_check_path(struct path *p) ;
1841
void pathrelse_and_restore (struct super_block *s, struct path * p_s_search_path);
1842
 
1843
int reiserfs_insert_item (struct reiserfs_transaction_handle *th,
1844
                          struct path * path,
1845
                          const struct cpu_key * key,
1846
                          struct item_head * ih, const char * body);
1847
 
1848
int reiserfs_paste_into_item (struct reiserfs_transaction_handle *th,
1849
                              struct path * path,
1850
                              const struct cpu_key * key,
1851
                              const char * body, int paste_size);
1852
 
1853
int reiserfs_cut_from_item (struct reiserfs_transaction_handle *th,
1854
                            struct path * path,
1855
                            struct cpu_key * key,
1856
                            struct inode * inode,
1857
                            struct page *page,
1858
                            loff_t new_file_size);
1859
 
1860
int reiserfs_delete_item (struct reiserfs_transaction_handle *th,
1861
                          struct path * path,
1862
                          const struct cpu_key * key,
1863
                          struct inode * inode,
1864
                          struct buffer_head  * p_s_un_bh);
1865
 
1866
void reiserfs_delete_solid_item (struct reiserfs_transaction_handle *th,
1867
                                                                struct key * key);
1868
void reiserfs_delete_object (struct reiserfs_transaction_handle *th, struct inode * p_s_inode);
1869
void reiserfs_do_truncate (struct reiserfs_transaction_handle *th,
1870
                           struct  inode * p_s_inode, struct page *,
1871
                           int update_timestamps);
1872
 
1873
#define i_block_size(inode) ((inode)->i_sb->s_blocksize)
1874
#define file_size(inode) ((inode)->i_size)
1875
#define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
1876
 
1877
#define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
1878
!STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
1879
 
1880
void padd_item (char * item, int total_length, int length);
1881
 
1882
/* inode.c */
1883
void restart_transaction(struct reiserfs_transaction_handle *th, struct inode *inode, struct path *path);
1884
void reiserfs_read_locked_inode(struct inode * inode, struct reiserfs_iget_args *args) ;
1885
int reiserfs_find_actor(struct inode * inode, void *p) ;
1886
int reiserfs_init_locked_inode(struct inode * inode, void *p) ;
1887
void reiserfs_delete_inode (struct inode * inode);
1888
void reiserfs_write_inode (struct inode * inode, int) ;
1889
struct dentry *reiserfs_get_dentry(struct super_block *, void *) ;
1890
struct dentry *reiserfs_decode_fh(struct super_block *sb, __u32 *data,
1891
                                     int len, int fhtype,
1892
                                  int (*acceptable)(void *contect, struct dentry *de),
1893
                                  void *context) ;
1894
int reiserfs_encode_fh( struct dentry *dentry, __u32 *data, int *lenp,
1895
                                                int connectable );
1896
 
1897
int reiserfs_prepare_write(struct file *, struct page *, unsigned, unsigned) ;
1898
void reiserfs_truncate_file(struct inode *, int update_timestamps) ;
1899
void make_cpu_key (struct cpu_key * cpu_key, struct inode * inode, loff_t offset,
1900
                   int type, int key_length);
1901
void make_le_item_head (struct item_head * ih, const struct cpu_key * key,
1902
                        int version,
1903
                        loff_t offset, int type, int length, int entry_count);
1904
struct inode * reiserfs_iget (struct super_block * s,
1905
                              const struct cpu_key * key);
1906
 
1907
 
1908
int reiserfs_new_inode (struct reiserfs_transaction_handle *th,
1909
                                   struct inode * dir, int mode,
1910
                                   const char * symname, loff_t i_size,
1911
                                   struct dentry *dentry, struct inode *inode);
1912
int reiserfs_sync_inode (struct reiserfs_transaction_handle *th, struct inode * inode);
1913
void reiserfs_update_sd (struct reiserfs_transaction_handle *th, struct inode * inode);
1914
 
1915
void sd_attrs_to_i_attrs( __u16 sd_attrs, struct inode *inode );
1916
void i_attrs_to_sd_attrs( struct inode *inode, __u16 *sd_attrs );
1917
 
1918
/* namei.c */
1919
inline void set_de_name_and_namelen (struct reiserfs_dir_entry * de);
1920
int search_by_entry_key (struct super_block * sb, const struct cpu_key * key,
1921
                         struct path * path,
1922
                         struct reiserfs_dir_entry * de);
1923
struct dentry *reiserfs_get_parent(struct dentry *) ;
1924
/* procfs.c */
1925
 
1926
#if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
1927
#define REISERFS_PROC_INFO
1928
#else
1929
#undef REISERFS_PROC_INFO
1930
#endif
1931
 
1932
int reiserfs_proc_info_init( struct super_block *sb );
1933
int reiserfs_proc_info_done( struct super_block *sb );
1934
struct proc_dir_entry *reiserfs_proc_register_global( char *name,
1935
                                                                                                          read_proc_t *func );
1936
void reiserfs_proc_unregister_global( const char *name );
1937
int reiserfs_proc_info_global_init( void );
1938
int reiserfs_proc_info_global_done( void );
1939
int reiserfs_global_version_in_proc( char *buffer, char **start, off_t offset,
1940
                                                                         int count, int *eof, void *data );
1941
 
1942
#if defined( REISERFS_PROC_INFO )
1943
 
1944
#define PROC_EXP( e )   e
1945
 
1946
#define MAX( a, b ) ( ( ( a ) > ( b ) ) ? ( a ) : ( b ) )
1947
#define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
1948
#define PROC_INFO_MAX( sb, field, value )                                                               \
1949
    __PINFO( sb ).field =                                                                                               \
1950
        MAX( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
1951
#define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
1952
#define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
1953
#define PROC_INFO_BH_STAT( sb, bh, level )                                                      \
1954
    PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] );                                              \
1955
    PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) );      \
1956
    PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
1957
#else
1958
#define PROC_EXP( e )
1959
#define VOID_V ( ( void ) 0 )
1960
#define PROC_INFO_MAX( sb, field, value ) VOID_V
1961
#define PROC_INFO_INC( sb, field ) VOID_V
1962
#define PROC_INFO_ADD( sb, field, val ) VOID_V
1963
#define PROC_INFO_BH_STAT( p_s_sb, p_s_bh, n_node_level ) VOID_V
1964
#endif
1965
 
1966
/* dir.c */
1967
extern struct inode_operations reiserfs_dir_inode_operations;
1968
extern struct file_operations reiserfs_dir_operations;
1969
 
1970
/* tail_conversion.c */
1971
int direct2indirect (struct reiserfs_transaction_handle *, struct inode *, struct path *, struct buffer_head *, loff_t);
1972
int indirect2direct (struct reiserfs_transaction_handle *, struct inode *, struct page *, struct path *, const struct cpu_key *, loff_t, char *);
1973
void reiserfs_unmap_buffer(struct buffer_head *) ;
1974
 
1975
 
1976
/* file.c */
1977
extern struct inode_operations reiserfs_file_inode_operations;
1978
extern struct file_operations reiserfs_file_operations;
1979
extern struct address_space_operations reiserfs_address_space_operations ;
1980
 
1981
/* fix_nodes.c */
1982
#ifdef CONFIG_REISERFS_CHECK
1983
void * reiserfs_kmalloc (size_t size, int flags, struct super_block * s);
1984
void reiserfs_kfree (const void * vp, size_t size, struct super_block * s);
1985
#else
1986
#define reiserfs_kmalloc(x, y, z) kmalloc(x, y)
1987
#define reiserfs_kfree(x, y, z) kfree(x)
1988
#endif
1989
 
1990
int fix_nodes (int n_op_mode, struct tree_balance * p_s_tb,
1991
               struct item_head * p_s_ins_ih, const void *);
1992
void unfix_nodes (struct tree_balance *);
1993
void free_buffers_in_tb (struct tree_balance * p_s_tb);
1994
 
1995
 
1996
/* prints.c */
1997
void reiserfs_panic (struct super_block * s, const char * fmt, ...)
1998
__attribute__ ( ( noreturn ) );/* __attribute__( ( format ( printf, 2, 3 ) ) ) */
1999
void reiserfs_debug (struct super_block *s, int level, const char * fmt, ...);
2000
/* __attribute__( ( format ( printf, 3, 4 ) ) ); */
2001
void print_virtual_node (struct virtual_node * vn);
2002
void print_indirect_item (struct buffer_head * bh, int item_num);
2003
void store_print_tb (struct tree_balance * tb);
2004
void print_cur_tb (char * mes);
2005
void print_de (struct reiserfs_dir_entry * de);
2006
void print_bi (struct buffer_info * bi, char * mes);
2007
#define PRINT_LEAF_ITEMS 1   /* print all items */
2008
#define PRINT_DIRECTORY_ITEMS 2 /* print directory items */
2009
#define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */
2010
void print_block (struct buffer_head * bh, ...);
2011
void print_path (struct tree_balance * tb, struct path * path);
2012
void print_bmap (struct super_block * s, int silent);
2013
void print_bmap_block (int i, char * data, int size, int silent);
2014
/*void print_super_block (struct super_block * s, char * mes);*/
2015
void print_objectid_map (struct super_block * s);
2016
void print_block_head (struct buffer_head * bh, char * mes);
2017
void check_leaf (struct buffer_head * bh);
2018
void check_internal (struct buffer_head * bh);
2019
void print_statistics (struct super_block * s);
2020
char * reiserfs_hashname(int code);
2021
 
2022
/* lbalance.c */
2023
int leaf_move_items (int shift_mode, struct tree_balance * tb, int mov_num, int mov_bytes, struct buffer_head * Snew);
2024
int leaf_shift_left (struct tree_balance * tb, int shift_num, int shift_bytes);
2025
int leaf_shift_right (struct tree_balance * tb, int shift_num, int shift_bytes);
2026
void leaf_delete_items (struct buffer_info * cur_bi, int last_first, int first, int del_num, int del_bytes);
2027
void leaf_insert_into_buf (struct buffer_info * bi, int before,
2028
                           struct item_head * inserted_item_ih, const char * inserted_item_body, int zeros_number);
2029
void leaf_paste_in_buffer (struct buffer_info * bi, int pasted_item_num,
2030
                           int pos_in_item, int paste_size, const char * body, int zeros_number);
2031
void leaf_cut_from_buffer (struct buffer_info * bi, int cut_item_num, int pos_in_item,
2032
                           int cut_size);
2033
void leaf_paste_entries (struct buffer_head * bh, int item_num, int before,
2034
                         int new_entry_count, struct reiserfs_de_head * new_dehs, const char * records, int paste_size);
2035
/* ibalance.c */
2036
int balance_internal (struct tree_balance * , int, int, struct item_head * ,
2037
                      struct buffer_head **);
2038
 
2039
/* do_balance.c */
2040
inline void do_balance_mark_leaf_dirty (struct tree_balance * tb,
2041
                                        struct buffer_head * bh, int flag);
2042
#define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
2043
#define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
2044
 
2045
void do_balance (struct tree_balance * tb, struct item_head * ih,
2046
                 const char * body, int flag);
2047
void reiserfs_invalidate_buffer (struct tree_balance * tb, struct buffer_head * bh);
2048
 
2049
int get_left_neighbor_position (struct tree_balance * tb, int h);
2050
int get_right_neighbor_position (struct tree_balance * tb, int h);
2051
void replace_key (struct tree_balance * tb, struct buffer_head *, int, struct buffer_head *, int);
2052
void replace_lkey (struct tree_balance *, int, struct item_head *);
2053
void replace_rkey (struct tree_balance *, int, struct item_head *);
2054
void make_empty_node (struct buffer_info *);
2055
struct buffer_head * get_FEB (struct tree_balance *);
2056
 
2057
/* bitmap.c */
2058
 
2059
/* structure contains hints for block allocator, and it is a container for
2060
 * arguments, such as node, search path, transaction_handle, etc. */
2061
 struct __reiserfs_blocknr_hint {
2062
     struct inode * inode;              /* inode passed to allocator, if we allocate unf. nodes */
2063
     long block;                        /* file offset, in blocks */
2064
     struct key key;
2065
     struct path * path;                /* search path, used by allocator to deternine search_start by
2066
                                         * various ways */
2067
     struct reiserfs_transaction_handle * th; /* transaction handle is needed to log super blocks and
2068
                                               * bitmap blocks changes  */
2069
     b_blocknr_t beg, end;
2070
     b_blocknr_t search_start;          /* a field used to transfer search start value (block number)
2071
                                         * between different block allocator procedures
2072
                                         * (determine_search_start() and others) */
2073
    int prealloc_size;                  /* is set in determine_prealloc_size() function, used by underlayed
2074
                                         * function that do actual allocation */
2075
 
2076
    int formatted_node:1;               /* the allocator uses different polices for getting disk space for
2077
                                         * formatted/unformatted blocks with/without preallocation */
2078
    int preallocate:1;
2079
};
2080
 
2081
typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
2082
 
2083
int reiserfs_parse_alloc_options (struct super_block *, char *);
2084
int is_reusable (struct super_block * s, b_blocknr_t block, int bit_value);
2085
void reiserfs_free_block (struct reiserfs_transaction_handle *th, b_blocknr_t);
2086
int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t * , int, int);
2087
extern inline int reiserfs_new_form_blocknrs (struct tree_balance * tb,
2088
                                              b_blocknr_t *new_blocknrs, int amount_needed)
2089
{
2090
    reiserfs_blocknr_hint_t hint = {
2091
        .th = tb->transaction_handle,
2092
        .path = tb->tb_path,
2093
        .inode = NULL,
2094
        .key = tb->key,
2095
        .block = 0,
2096
        .formatted_node = 1
2097
    };
2098
    return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed, 0);
2099
}
2100
 
2101
extern inline int reiserfs_new_unf_blocknrs (struct reiserfs_transaction_handle *th,
2102
                                             struct inode *inode,
2103
                                             b_blocknr_t *new_blocknrs,
2104
                                             struct path * path, long block)
2105
{
2106
    reiserfs_blocknr_hint_t hint = {
2107
        .th = th,
2108
        .path = path,
2109
        .inode = inode,
2110
        .block = block,
2111
        .formatted_node = 0,
2112
        .preallocate = 0
2113
    };
2114
    return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2115
}
2116
 
2117
#ifdef REISERFS_PREALLOCATE
2118
extern inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle *th,
2119
                                             struct inode * inode,
2120
                                             b_blocknr_t *new_blocknrs,
2121
                                             struct path * path, long block)
2122
{
2123
    reiserfs_blocknr_hint_t hint = {
2124
        .th = th,
2125
        .path = path,
2126
        .inode = inode,
2127
        .block = block,
2128
        .formatted_node = 0,
2129
        .preallocate = 1
2130
    };
2131
    return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2132
}
2133
 
2134
void reiserfs_discard_prealloc (struct reiserfs_transaction_handle *th,
2135
                                struct inode * inode);
2136
void reiserfs_discard_all_prealloc (struct reiserfs_transaction_handle *th);
2137
#endif
2138
void reiserfs_claim_blocks_to_be_allocated( struct super_block *sb, int blocks);
2139
void reiserfs_release_claimed_blocks( struct super_block *sb, int blocks);
2140
int reiserfs_can_fit_pages(struct super_block *sb);
2141
 
2142
/* hashes.c */
2143
__u32 keyed_hash (const signed char *msg, int len);
2144
__u32 yura_hash (const signed char *msg, int len);
2145
__u32 r5_hash (const signed char *msg, int len);
2146
 
2147
/* the ext2 bit routines adjust for big or little endian as
2148
** appropriate for the arch, so in our laziness we use them rather
2149
** than using the bit routines they call more directly.  These
2150
** routines must be used when changing on disk bitmaps.  */
2151
#define reiserfs_test_and_set_le_bit   ext2_set_bit
2152
#define reiserfs_test_and_clear_le_bit ext2_clear_bit
2153
#define reiserfs_test_le_bit           ext2_test_bit
2154
#define reiserfs_find_next_zero_le_bit ext2_find_next_zero_bit
2155
 
2156
/* sometimes reiserfs_truncate may require to allocate few new blocks
2157
   to perform indirect2direct conversion. People probably used to
2158
   think, that truncate should work without problems on a filesystem
2159
   without free disk space. They may complain that they can not
2160
   truncate due to lack of free disk space. This spare space allows us
2161
   to not worry about it. 500 is probably too much, but it should be
2162
   absolutely safe */
2163
#define SPARE_SPACE 500
2164
 
2165
 
2166
/* prototypes from ioctl.c */
2167
int reiserfs_ioctl (struct inode * inode, struct file * filp,
2168
                    unsigned int cmd, unsigned long arg);
2169
int reiserfs_unpack (struct inode * inode, struct file * filp);
2170
 
2171
/* ioctl's command */
2172
#define REISERFS_IOC_UNPACK             _IOW(0xCD,1,long)
2173
/* define following flags to be the same as in ext2, so that chattr(1),
2174
   lsattr(1) will work with us. */
2175
#define REISERFS_IOC_GETFLAGS           EXT2_IOC_GETFLAGS
2176
#define REISERFS_IOC_SETFLAGS           EXT2_IOC_SETFLAGS
2177
#define REISERFS_IOC_GETVERSION         EXT2_IOC_GETVERSION
2178
#define REISERFS_IOC_SETVERSION         EXT2_IOC_SETVERSION
2179
 
2180
/* Locking primitives */
2181
/* Right now we are still falling back to (un)lock_kernel, but eventually that
2182
   would evolve into real per-fs locks */
2183
#define reiserfs_write_lock( sb ) lock_kernel()
2184
#define reiserfs_write_unlock( sb ) unlock_kernel()
2185
 
2186
#endif /* _LINUX_REISER_FS_H */
2187
 
2188