Rev 1618 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | pj | 1 | /* @(#)e_asin.c 5.1 93/09/24 */ |
2 | /* |
||
3 | * ==================================================== |
||
4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
||
5 | * |
||
6 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
||
7 | * Permission to use, copy, modify, and distribute this |
||
8 | * software is freely granted, provided that this notice |
||
9 | * is preserved. |
||
10 | * ==================================================== |
||
11 | */ |
||
12 | |||
13 | #ifndef lint |
||
14 | static char rcsid[] = "$\Id: e_asin.c,v 1.3.2.1 1997/02/23 11:03:00 joerg Exp $"; |
||
15 | #endif |
||
16 | |||
17 | /* __ieee754_asin(x) |
||
18 | * Method : |
||
19 | * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... |
||
20 | * we approximate asin(x) on [0,0.5] by |
||
21 | * asin(x) = x + x*x^2*R(x^2) |
||
22 | * where |
||
23 | * R(x^2) is a rational approximation of (asin(x)-x)/x^3 |
||
24 | * and its remez error is bounded by |
||
25 | * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75) |
||
26 | * |
||
27 | * For x in [0.5,1] |
||
28 | * asin(x) = pi/2-2*asin(sqrt((1-x)/2)) |
||
29 | * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; |
||
30 | * then for x>0.98 |
||
31 | * asin(x) = pi/2 - 2*(s+s*z*R(z)) |
||
32 | * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) |
||
33 | * For x<=0.98, let pio4_hi = pio2_hi/2, then |
||
34 | * f = hi part of s; |
||
35 | * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z) |
||
36 | * and |
||
37 | * asin(x) = pi/2 - 2*(s+s*z*R(z)) |
||
38 | * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) |
||
39 | * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) |
||
40 | * |
||
41 | * Special cases: |
||
42 | * if x is NaN, return x itself; |
||
43 | * if |x|>1, return NaN with invalid signal. |
||
44 | * |
||
45 | */ |
||
46 | |||
47 | |||
48 | #include "math.h" |
||
49 | #include "math_private.h" |
||
50 | |||
51 | #ifdef __STDC__ |
||
52 | static const double |
||
53 | #else |
||
54 | static double |
||
55 | #endif |
||
56 | one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ |
||
57 | huge = 1.000e+300, |
||
58 | pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ |
||
59 | pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ |
||
60 | pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ |
||
61 | /* coefficient for R(x^2) */ |
||
62 | pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ |
||
63 | pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ |
||
64 | pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ |
||
65 | pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ |
||
66 | pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ |
||
67 | pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ |
||
68 | qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ |
||
69 | qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ |
||
70 | qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ |
||
71 | qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ |
||
72 | |||
73 | #ifdef __STDC__ |
||
74 | double __generic___ieee754_asin(double x) |
||
75 | #else |
||
76 | double __generic___ieee754_asin(x) |
||
77 | double x; |
||
78 | #endif |
||
79 | { |
||
80 | double t=0.0,w,p,q,c,r,s; |
||
81 | int32_t hx,ix; |
||
82 | GET_HIGH_WORD(hx,x); |
||
83 | ix = hx&0x7fffffff; |
||
84 | if(ix>= 0x3ff00000) { /* |x|>= 1 */ |
||
85 | u_int32_t lx; |
||
86 | GET_LOW_WORD(lx,x); |
||
87 | if(((ix-0x3ff00000)|lx)==0) |
||
88 | /* asin(1)=+-pi/2 with inexact */ |
||
89 | return x*pio2_hi+x*pio2_lo; |
||
90 | return (x-x)/(x-x); /* asin(|x|>1) is NaN */ |
||
91 | } else if (ix<0x3fe00000) { /* |x|<0.5 */ |
||
92 | if(ix<0x3e400000) { /* if |x| < 2**-27 */ |
||
93 | if(huge+x>one) return x;/* return x with inexact if x!=0*/ |
||
94 | } else |
||
95 | t = x*x; |
||
96 | p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); |
||
97 | q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); |
||
98 | w = p/q; |
||
99 | return x+x*w; |
||
100 | } |
||
101 | /* 1> |x|>= 0.5 */ |
||
102 | w = one-fabs(x); |
||
103 | t = w*0.5; |
||
104 | p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); |
||
105 | q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); |
||
106 | s = sqrt(t); |
||
107 | if(ix>=0x3FEF3333) { /* if |x| > 0.975 */ |
||
108 | w = p/q; |
||
109 | t = pio2_hi-(2.0*(s+s*w)-pio2_lo); |
||
110 | } else { |
||
111 | w = s; |
||
112 | SET_LOW_WORD(w,0); |
||
113 | c = (t-w*w)/(s+w); |
||
114 | r = p/q; |
||
115 | p = 2.0*s*r-(pio2_lo-2.0*c); |
||
116 | q = pio4_hi-2.0*w; |
||
117 | t = pio4_hi-(p-q); |
||
118 | } |
||
119 | if(hx>0) return t; else return -t; |
||
120 | } |