Rev 1618 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | pj | 1 | /* e_j0f.c -- float version of e_j0.c. |
2 | * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
||
3 | */ |
||
4 | |||
5 | /* |
||
6 | * ==================================================== |
||
7 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
||
8 | * |
||
9 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
||
10 | * Permission to use, copy, modify, and distribute this |
||
11 | * software is freely granted, provided that this notice |
||
12 | * is preserved. |
||
13 | * ==================================================== |
||
14 | */ |
||
15 | |||
16 | #ifndef lint |
||
17 | static char rcsid[] = "$\Id: e_j0f.c,v 1.2 1995/05/30 05:48:19 rgrimes Exp $"; |
||
18 | #endif |
||
19 | |||
20 | #include "math.h" |
||
21 | #include "math_private.h" |
||
22 | |||
23 | #ifdef __STDC__ |
||
24 | static float pzerof(float), qzerof(float); |
||
25 | #else |
||
26 | static float pzerof(), qzerof(); |
||
27 | #endif |
||
28 | |||
29 | #ifdef __STDC__ |
||
30 | static const float |
||
31 | #else |
||
32 | static float |
||
33 | #endif |
||
34 | huge = 1e30, |
||
35 | one = 1.0, |
||
36 | invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */ |
||
37 | tpi = 6.3661974669e-01, /* 0x3f22f983 */ |
||
38 | /* R0/S0 on [0, 2.00] */ |
||
39 | R02 = 1.5625000000e-02, /* 0x3c800000 */ |
||
40 | R03 = -1.8997929874e-04, /* 0xb947352e */ |
||
41 | R04 = 1.8295404516e-06, /* 0x35f58e88 */ |
||
42 | R05 = -4.6183270541e-09, /* 0xb19eaf3c */ |
||
43 | S01 = 1.5619102865e-02, /* 0x3c7fe744 */ |
||
44 | S02 = 1.1692678527e-04, /* 0x38f53697 */ |
||
45 | S03 = 5.1354652442e-07, /* 0x3509daa6 */ |
||
46 | S04 = 1.1661400734e-09; /* 0x30a045e8 */ |
||
47 | |||
48 | #ifdef __STDC__ |
||
49 | static const float zero = 0.0; |
||
50 | #else |
||
51 | static float zero = 0.0; |
||
52 | #endif |
||
53 | |||
54 | #ifdef __STDC__ |
||
55 | float __ieee754_j0f(float x) |
||
56 | #else |
||
57 | float __ieee754_j0f(x) |
||
58 | float x; |
||
59 | #endif |
||
60 | { |
||
61 | float z, s,c,ss,cc,r,u,v; |
||
62 | int32_t hx,ix; |
||
63 | |||
64 | GET_FLOAT_WORD(hx,x); |
||
65 | ix = hx&0x7fffffff; |
||
66 | if(ix>=0x7f800000) return one/(x*x); |
||
67 | x = fabsf(x); |
||
68 | if(ix >= 0x40000000) { /* |x| >= 2.0 */ |
||
69 | s = sinf(x); |
||
70 | c = cosf(x); |
||
71 | ss = s-c; |
||
72 | cc = s+c; |
||
73 | if(ix<0x7f000000) { /* make sure x+x not overflow */ |
||
74 | z = -cosf(x+x); |
||
75 | if ((s*c)<zero) cc = z/ss; |
||
76 | else ss = z/cc; |
||
77 | } |
||
78 | /* |
||
79 | * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) |
||
80 | * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) |
||
81 | */ |
||
82 | if(ix>0x80000000) z = (invsqrtpi*cc)/sqrtf(x); |
||
83 | else { |
||
84 | u = pzerof(x); v = qzerof(x); |
||
85 | z = invsqrtpi*(u*cc-v*ss)/sqrtf(x); |
||
86 | } |
||
87 | return z; |
||
88 | } |
||
89 | if(ix<0x39000000) { /* |x| < 2**-13 */ |
||
90 | if(huge+x>one) { /* raise inexact if x != 0 */ |
||
91 | if(ix<0x32000000) return one; /* |x|<2**-27 */ |
||
92 | else return one - (float)0.25*x*x; |
||
93 | } |
||
94 | } |
||
95 | z = x*x; |
||
96 | r = z*(R02+z*(R03+z*(R04+z*R05))); |
||
97 | s = one+z*(S01+z*(S02+z*(S03+z*S04))); |
||
98 | if(ix < 0x3F800000) { /* |x| < 1.00 */ |
||
99 | return one + z*((float)-0.25+(r/s)); |
||
100 | } else { |
||
101 | u = (float)0.5*x; |
||
102 | return((one+u)*(one-u)+z*(r/s)); |
||
103 | } |
||
104 | } |
||
105 | |||
106 | #ifdef __STDC__ |
||
107 | static const float |
||
108 | #else |
||
109 | static float |
||
110 | #endif |
||
111 | u00 = -7.3804296553e-02, /* 0xbd9726b5 */ |
||
112 | u01 = 1.7666645348e-01, /* 0x3e34e80d */ |
||
113 | u02 = -1.3818567619e-02, /* 0xbc626746 */ |
||
114 | u03 = 3.4745343146e-04, /* 0x39b62a69 */ |
||
115 | u04 = -3.8140706238e-06, /* 0xb67ff53c */ |
||
116 | u05 = 1.9559013964e-08, /* 0x32a802ba */ |
||
117 | u06 = -3.9820518410e-11, /* 0xae2f21eb */ |
||
118 | v01 = 1.2730483897e-02, /* 0x3c509385 */ |
||
119 | v02 = 7.6006865129e-05, /* 0x389f65e0 */ |
||
120 | v03 = 2.5915085189e-07, /* 0x348b216c */ |
||
121 | v04 = 4.4111031494e-10; /* 0x2ff280c2 */ |
||
122 | |||
123 | #ifdef __STDC__ |
||
124 | float __ieee754_y0f(float x) |
||
125 | #else |
||
126 | float __ieee754_y0f(x) |
||
127 | float x; |
||
128 | #endif |
||
129 | { |
||
130 | float z, s,c,ss,cc,u,v; |
||
131 | int32_t hx,ix; |
||
132 | |||
133 | GET_FLOAT_WORD(hx,x); |
||
134 | ix = 0x7fffffff&hx; |
||
135 | /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */ |
||
136 | if(ix>=0x7f800000) return one/(x+x*x); |
||
137 | if(ix==0) return -one/zero; |
||
138 | if(hx<0) return zero/zero; |
||
139 | if(ix >= 0x40000000) { /* |x| >= 2.0 */ |
||
140 | /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0)) |
||
141 | * where x0 = x-pi/4 |
||
142 | * Better formula: |
||
143 | * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) |
||
144 | * = 1/sqrt(2) * (sin(x) + cos(x)) |
||
145 | * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) |
||
146 | * = 1/sqrt(2) * (sin(x) - cos(x)) |
||
147 | * To avoid cancellation, use |
||
148 | * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) |
||
149 | * to compute the worse one. |
||
150 | */ |
||
151 | s = sinf(x); |
||
152 | c = cosf(x); |
||
153 | ss = s-c; |
||
154 | cc = s+c; |
||
155 | /* |
||
156 | * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) |
||
157 | * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) |
||
158 | */ |
||
159 | if(ix<0x7f000000) { /* make sure x+x not overflow */ |
||
160 | z = -cosf(x+x); |
||
161 | if ((s*c)<zero) cc = z/ss; |
||
162 | else ss = z/cc; |
||
163 | } |
||
164 | if(ix>0x80000000) z = (invsqrtpi*ss)/sqrtf(x); |
||
165 | else { |
||
166 | u = pzerof(x); v = qzerof(x); |
||
167 | z = invsqrtpi*(u*ss+v*cc)/sqrtf(x); |
||
168 | } |
||
169 | return z; |
||
170 | } |
||
171 | if(ix<=0x32000000) { /* x < 2**-27 */ |
||
172 | return(u00 + tpi*__ieee754_logf(x)); |
||
173 | } |
||
174 | z = x*x; |
||
175 | u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06))))); |
||
176 | v = one+z*(v01+z*(v02+z*(v03+z*v04))); |
||
177 | return(u/v + tpi*(__ieee754_j0f(x)*__ieee754_logf(x))); |
||
178 | } |
||
179 | |||
180 | /* The asymptotic expansions of pzero is |
||
181 | * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x. |
||
182 | * For x >= 2, We approximate pzero by |
||
183 | * pzero(x) = 1 + (R/S) |
||
184 | * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10 |
||
185 | * S = 1 + pS0*s^2 + ... + pS4*s^10 |
||
186 | * and |
||
187 | * | pzero(x)-1-R/S | <= 2 ** ( -60.26) |
||
188 | */ |
||
189 | #ifdef __STDC__ |
||
190 | static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
||
191 | #else |
||
192 | static float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
||
193 | #endif |
||
194 | 0.0000000000e+00, /* 0x00000000 */ |
||
195 | -7.0312500000e-02, /* 0xbd900000 */ |
||
196 | -8.0816707611e+00, /* 0xc1014e86 */ |
||
197 | -2.5706311035e+02, /* 0xc3808814 */ |
||
198 | -2.4852163086e+03, /* 0xc51b5376 */ |
||
199 | -5.2530439453e+03, /* 0xc5a4285a */ |
||
200 | }; |
||
201 | #ifdef __STDC__ |
||
202 | static const float pS8[5] = { |
||
203 | #else |
||
204 | static float pS8[5] = { |
||
205 | #endif |
||
206 | 1.1653436279e+02, /* 0x42e91198 */ |
||
207 | 3.8337448730e+03, /* 0x456f9beb */ |
||
208 | 4.0597855469e+04, /* 0x471e95db */ |
||
209 | 1.1675296875e+05, /* 0x47e4087c */ |
||
210 | 4.7627726562e+04, /* 0x473a0bba */ |
||
211 | }; |
||
212 | #ifdef __STDC__ |
||
213 | static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
||
214 | #else |
||
215 | static float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
||
216 | #endif |
||
217 | -1.1412546255e-11, /* 0xad48c58a */ |
||
218 | -7.0312492549e-02, /* 0xbd8fffff */ |
||
219 | -4.1596107483e+00, /* 0xc0851b88 */ |
||
220 | -6.7674766541e+01, /* 0xc287597b */ |
||
221 | -3.3123129272e+02, /* 0xc3a59d9b */ |
||
222 | -3.4643338013e+02, /* 0xc3ad3779 */ |
||
223 | }; |
||
224 | #ifdef __STDC__ |
||
225 | static const float pS5[5] = { |
||
226 | #else |
||
227 | static float pS5[5] = { |
||
228 | #endif |
||
229 | 6.0753936768e+01, /* 0x42730408 */ |
||
230 | 1.0512523193e+03, /* 0x44836813 */ |
||
231 | 5.9789707031e+03, /* 0x45bad7c4 */ |
||
232 | 9.6254453125e+03, /* 0x461665c8 */ |
||
233 | 2.4060581055e+03, /* 0x451660ee */ |
||
234 | }; |
||
235 | |||
236 | #ifdef __STDC__ |
||
237 | static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ |
||
238 | #else |
||
239 | static float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ |
||
240 | #endif |
||
241 | -2.5470459075e-09, /* 0xb12f081b */ |
||
242 | -7.0311963558e-02, /* 0xbd8fffb8 */ |
||
243 | -2.4090321064e+00, /* 0xc01a2d95 */ |
||
244 | -2.1965976715e+01, /* 0xc1afba52 */ |
||
245 | -5.8079170227e+01, /* 0xc2685112 */ |
||
246 | -3.1447946548e+01, /* 0xc1fb9565 */ |
||
247 | }; |
||
248 | #ifdef __STDC__ |
||
249 | static const float pS3[5] = { |
||
250 | #else |
||
251 | static float pS3[5] = { |
||
252 | #endif |
||
253 | 3.5856033325e+01, /* 0x420f6c94 */ |
||
254 | 3.6151397705e+02, /* 0x43b4c1ca */ |
||
255 | 1.1936077881e+03, /* 0x44953373 */ |
||
256 | 1.1279968262e+03, /* 0x448cffe6 */ |
||
257 | 1.7358093262e+02, /* 0x432d94b8 */ |
||
258 | }; |
||
259 | |||
260 | #ifdef __STDC__ |
||
261 | static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
||
262 | #else |
||
263 | static float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
||
264 | #endif |
||
265 | -8.8753431271e-08, /* 0xb3be98b7 */ |
||
266 | -7.0303097367e-02, /* 0xbd8ffb12 */ |
||
267 | -1.4507384300e+00, /* 0xbfb9b1cc */ |
||
268 | -7.6356959343e+00, /* 0xc0f4579f */ |
||
269 | -1.1193166733e+01, /* 0xc1331736 */ |
||
270 | -3.2336456776e+00, /* 0xc04ef40d */ |
||
271 | }; |
||
272 | #ifdef __STDC__ |
||
273 | static const float pS2[5] = { |
||
274 | #else |
||
275 | static float pS2[5] = { |
||
276 | #endif |
||
277 | 2.2220300674e+01, /* 0x41b1c32d */ |
||
278 | 1.3620678711e+02, /* 0x430834f0 */ |
||
279 | 2.7047027588e+02, /* 0x43873c32 */ |
||
280 | 1.5387539673e+02, /* 0x4319e01a */ |
||
281 | 1.4657617569e+01, /* 0x416a859a */ |
||
282 | }; |
||
283 | |||
284 | #ifdef __STDC__ |
||
285 | static float pzerof(float x) |
||
286 | #else |
||
287 | static float pzerof(x) |
||
288 | float x; |
||
289 | #endif |
||
290 | { |
||
291 | #ifdef __STDC__ |
||
292 | const float *p,*q; |
||
293 | #else |
||
294 | float *p,*q; |
||
295 | #endif |
||
296 | float z,r,s; |
||
297 | int32_t ix; |
||
298 | GET_FLOAT_WORD(ix,x); |
||
299 | ix &= 0x7fffffff; |
||
300 | if(ix>=0x41000000) {p = pR8; q= pS8;} |
||
301 | else if(ix>=0x40f71c58){p = pR5; q= pS5;} |
||
302 | else if(ix>=0x4036db68){p = pR3; q= pS3;} |
||
303 | else if(ix>=0x40000000){p = pR2; q= pS2;} |
||
304 | z = one/(x*x); |
||
305 | r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); |
||
306 | s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); |
||
307 | return one+ r/s; |
||
308 | } |
||
309 | |||
310 | |||
311 | /* For x >= 8, the asymptotic expansions of qzero is |
||
312 | * -1/8 s + 75/1024 s^3 - ..., where s = 1/x. |
||
313 | * We approximate pzero by |
||
314 | * qzero(x) = s*(-1.25 + (R/S)) |
||
315 | * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10 |
||
316 | * S = 1 + qS0*s^2 + ... + qS5*s^12 |
||
317 | * and |
||
318 | * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22) |
||
319 | */ |
||
320 | #ifdef __STDC__ |
||
321 | static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
||
322 | #else |
||
323 | static float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
||
324 | #endif |
||
325 | 0.0000000000e+00, /* 0x00000000 */ |
||
326 | 7.3242187500e-02, /* 0x3d960000 */ |
||
327 | 1.1768206596e+01, /* 0x413c4a93 */ |
||
328 | 5.5767340088e+02, /* 0x440b6b19 */ |
||
329 | 8.8591972656e+03, /* 0x460a6cca */ |
||
330 | 3.7014625000e+04, /* 0x471096a0 */ |
||
331 | }; |
||
332 | #ifdef __STDC__ |
||
333 | static const float qS8[6] = { |
||
334 | #else |
||
335 | static float qS8[6] = { |
||
336 | #endif |
||
337 | 1.6377603149e+02, /* 0x4323c6aa */ |
||
338 | 8.0983447266e+03, /* 0x45fd12c2 */ |
||
339 | 1.4253829688e+05, /* 0x480b3293 */ |
||
340 | 8.0330925000e+05, /* 0x49441ed4 */ |
||
341 | 8.4050156250e+05, /* 0x494d3359 */ |
||
342 | -3.4389928125e+05, /* 0xc8a7eb69 */ |
||
343 | }; |
||
344 | |||
345 | #ifdef __STDC__ |
||
346 | static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
||
347 | #else |
||
348 | static float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
||
349 | #endif |
||
350 | 1.8408595828e-11, /* 0x2da1ec79 */ |
||
351 | 7.3242180049e-02, /* 0x3d95ffff */ |
||
352 | 5.8356351852e+00, /* 0x40babd86 */ |
||
353 | 1.3511157227e+02, /* 0x43071c90 */ |
||
354 | 1.0272437744e+03, /* 0x448067cd */ |
||
355 | 1.9899779053e+03, /* 0x44f8bf4b */ |
||
356 | }; |
||
357 | #ifdef __STDC__ |
||
358 | static const float qS5[6] = { |
||
359 | #else |
||
360 | static float qS5[6] = { |
||
361 | #endif |
||
362 | 8.2776611328e+01, /* 0x42a58da0 */ |
||
363 | 2.0778142090e+03, /* 0x4501dd07 */ |
||
364 | 1.8847289062e+04, /* 0x46933e94 */ |
||
365 | 5.6751113281e+04, /* 0x475daf1d */ |
||
366 | 3.5976753906e+04, /* 0x470c88c1 */ |
||
367 | -5.3543427734e+03, /* 0xc5a752be */ |
||
368 | }; |
||
369 | |||
370 | #ifdef __STDC__ |
||
371 | static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ |
||
372 | #else |
||
373 | static float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ |
||
374 | #endif |
||
375 | 4.3774099900e-09, /* 0x3196681b */ |
||
376 | 7.3241114616e-02, /* 0x3d95ff70 */ |
||
377 | 3.3442313671e+00, /* 0x405607e3 */ |
||
378 | 4.2621845245e+01, /* 0x422a7cc5 */ |
||
379 | 1.7080809021e+02, /* 0x432acedf */ |
||
380 | 1.6673394775e+02, /* 0x4326bbe4 */ |
||
381 | }; |
||
382 | #ifdef __STDC__ |
||
383 | static const float qS3[6] = { |
||
384 | #else |
||
385 | static float qS3[6] = { |
||
386 | #endif |
||
387 | 4.8758872986e+01, /* 0x42430916 */ |
||
388 | 7.0968920898e+02, /* 0x44316c1c */ |
||
389 | 3.7041481934e+03, /* 0x4567825f */ |
||
390 | 6.4604252930e+03, /* 0x45c9e367 */ |
||
391 | 2.5163337402e+03, /* 0x451d4557 */ |
||
392 | -1.4924745178e+02, /* 0xc3153f59 */ |
||
393 | }; |
||
394 | |||
395 | #ifdef __STDC__ |
||
396 | static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
||
397 | #else |
||
398 | static float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
||
399 | #endif |
||
400 | 1.5044444979e-07, /* 0x342189db */ |
||
401 | 7.3223426938e-02, /* 0x3d95f62a */ |
||
402 | 1.9981917143e+00, /* 0x3fffc4bf */ |
||
403 | 1.4495602608e+01, /* 0x4167edfd */ |
||
404 | 3.1666231155e+01, /* 0x41fd5471 */ |
||
405 | 1.6252708435e+01, /* 0x4182058c */ |
||
406 | }; |
||
407 | #ifdef __STDC__ |
||
408 | static const float qS2[6] = { |
||
409 | #else |
||
410 | static float qS2[6] = { |
||
411 | #endif |
||
412 | 3.0365585327e+01, /* 0x41f2ecb8 */ |
||
413 | 2.6934811401e+02, /* 0x4386ac8f */ |
||
414 | 8.4478375244e+02, /* 0x44533229 */ |
||
415 | 8.8293585205e+02, /* 0x445cbbe5 */ |
||
416 | 2.1266638184e+02, /* 0x4354aa98 */ |
||
417 | -5.3109550476e+00, /* 0xc0a9f358 */ |
||
418 | }; |
||
419 | |||
420 | #ifdef __STDC__ |
||
421 | static float qzerof(float x) |
||
422 | #else |
||
423 | static float qzerof(x) |
||
424 | float x; |
||
425 | #endif |
||
426 | { |
||
427 | #ifdef __STDC__ |
||
428 | const float *p,*q; |
||
429 | #else |
||
430 | float *p,*q; |
||
431 | #endif |
||
432 | float s,r,z; |
||
433 | int32_t ix; |
||
434 | GET_FLOAT_WORD(ix,x); |
||
435 | ix &= 0x7fffffff; |
||
436 | if(ix>=0x41000000) {p = qR8; q= qS8;} |
||
437 | else if(ix>=0x40f71c58){p = qR5; q= qS5;} |
||
438 | else if(ix>=0x4036db68){p = qR3; q= qS3;} |
||
439 | else if(ix>=0x40000000){p = qR2; q= qS2;} |
||
440 | z = one/(x*x); |
||
441 | r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); |
||
442 | s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); |
||
443 | return (-(float).125 + r/s)/x; |
||
444 | } |