Rev 1618 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | pj | 1 | /* @(#)er_lgamma.c 5.1 93/09/24 */ |
2 | /* |
||
3 | * ==================================================== |
||
4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
||
5 | * |
||
6 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
||
7 | * Permission to use, copy, modify, and distribute this |
||
8 | * software is freely granted, provided that this notice |
||
9 | * is preserved. |
||
10 | * ==================================================== |
||
11 | */ |
||
12 | |||
13 | #ifndef lint |
||
14 | static char rcsid[] = "$\Id: e_lgamma_r.c,v 1.2 1995/05/30 05:48:27 rgrimes Exp $"; |
||
15 | #endif |
||
16 | |||
17 | /* __ieee754_lgamma_r(x, signgamp) |
||
18 | * Reentrant version of the logarithm of the Gamma function |
||
19 | * with user provide pointer for the sign of Gamma(x). |
||
20 | * |
||
21 | * Method: |
||
22 | * 1. Argument Reduction for 0 < x <= 8 |
||
23 | * Since gamma(1+s)=s*gamma(s), for x in [0,8], we may |
||
24 | * reduce x to a number in [1.5,2.5] by |
||
25 | * lgamma(1+s) = log(s) + lgamma(s) |
||
26 | * for example, |
||
27 | * lgamma(7.3) = log(6.3) + lgamma(6.3) |
||
28 | * = log(6.3*5.3) + lgamma(5.3) |
||
29 | * = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3) |
||
30 | * 2. Polynomial approximation of lgamma around its |
||
31 | * minimun ymin=1.461632144968362245 to maintain monotonicity. |
||
32 | * On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use |
||
33 | * Let z = x-ymin; |
||
34 | * lgamma(x) = -1.214862905358496078218 + z^2*poly(z) |
||
35 | * where |
||
36 | * poly(z) is a 14 degree polynomial. |
||
37 | * 2. Rational approximation in the primary interval [2,3] |
||
38 | * We use the following approximation: |
||
39 | * s = x-2.0; |
||
40 | * lgamma(x) = 0.5*s + s*P(s)/Q(s) |
||
41 | * with accuracy |
||
42 | * |P/Q - (lgamma(x)-0.5s)| < 2**-61.71 |
||
43 | * Our algorithms are based on the following observation |
||
44 | * |
||
45 | * zeta(2)-1 2 zeta(3)-1 3 |
||
46 | * lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ... |
||
47 | * 2 3 |
||
48 | * |
||
49 | * where Euler = 0.5771... is the Euler constant, which is very |
||
50 | * close to 0.5. |
||
51 | * |
||
52 | * 3. For x>=8, we have |
||
53 | * lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+.... |
||
54 | * (better formula: |
||
55 | * lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...) |
||
56 | * Let z = 1/x, then we approximation |
||
57 | * f(z) = lgamma(x) - (x-0.5)(log(x)-1) |
||
58 | * by |
||
59 | * 3 5 11 |
||
60 | * w = w0 + w1*z + w2*z + w3*z + ... + w6*z |
||
61 | * where |
||
62 | * |w - f(z)| < 2**-58.74 |
||
63 | * |
||
64 | * 4. For negative x, since (G is gamma function) |
||
65 | * -x*G(-x)*G(x) = pi/sin(pi*x), |
||
66 | * we have |
||
67 | * G(x) = pi/(sin(pi*x)*(-x)*G(-x)) |
||
68 | * since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0 |
||
69 | * Hence, for x<0, signgam = sign(sin(pi*x)) and |
||
70 | * lgamma(x) = log(|Gamma(x)|) |
||
71 | * = log(pi/(|x*sin(pi*x)|)) - lgamma(-x); |
||
72 | * Note: one should avoid compute pi*(-x) directly in the |
||
73 | * computation of sin(pi*(-x)). |
||
74 | * |
||
75 | * 5. Special Cases |
||
76 | * lgamma(2+s) ~ s*(1-Euler) for tiny s |
||
77 | * lgamma(1)=lgamma(2)=0 |
||
78 | * lgamma(x) ~ -log(x) for tiny x |
||
79 | * lgamma(0) = lgamma(inf) = inf |
||
80 | * lgamma(-integer) = +-inf |
||
81 | * |
||
82 | */ |
||
83 | |||
84 | #include "math.h" |
||
85 | #include "math_private.h" |
||
86 | |||
87 | #ifdef __STDC__ |
||
88 | static const double |
||
89 | #else |
||
90 | static double |
||
91 | #endif |
||
92 | two52= 4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */ |
||
93 | half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ |
||
94 | one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ |
||
95 | pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */ |
||
96 | a0 = 7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */ |
||
97 | a1 = 3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */ |
||
98 | a2 = 6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */ |
||
99 | a3 = 2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */ |
||
100 | a4 = 7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */ |
||
101 | a5 = 2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */ |
||
102 | a6 = 1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */ |
||
103 | a7 = 5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */ |
||
104 | a8 = 2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */ |
||
105 | a9 = 1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */ |
||
106 | a10 = 2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */ |
||
107 | a11 = 4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */ |
||
108 | tc = 1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */ |
||
109 | tf = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */ |
||
110 | /* tt = -(tail of tf) */ |
||
111 | tt = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */ |
||
112 | t0 = 4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */ |
||
113 | t1 = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */ |
||
114 | t2 = 6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */ |
||
115 | t3 = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */ |
||
116 | t4 = 1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */ |
||
117 | t5 = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */ |
||
118 | t6 = 6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */ |
||
119 | t7 = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */ |
||
120 | t8 = 2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */ |
||
121 | t9 = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */ |
||
122 | t10 = 8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */ |
||
123 | t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */ |
||
124 | t12 = 3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */ |
||
125 | t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */ |
||
126 | t14 = 3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */ |
||
127 | u0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */ |
||
128 | u1 = 6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */ |
||
129 | u2 = 1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */ |
||
130 | u3 = 9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */ |
||
131 | u4 = 2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */ |
||
132 | u5 = 1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */ |
||
133 | v1 = 2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */ |
||
134 | v2 = 2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */ |
||
135 | v3 = 7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */ |
||
136 | v4 = 1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */ |
||
137 | v5 = 3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */ |
||
138 | s0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */ |
||
139 | s1 = 2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */ |
||
140 | s2 = 3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */ |
||
141 | s3 = 1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */ |
||
142 | s4 = 2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */ |
||
143 | s5 = 1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */ |
||
144 | s6 = 3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */ |
||
145 | r1 = 1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */ |
||
146 | r2 = 7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */ |
||
147 | r3 = 1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */ |
||
148 | r4 = 1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */ |
||
149 | r5 = 7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */ |
||
150 | r6 = 7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */ |
||
151 | w0 = 4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */ |
||
152 | w1 = 8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */ |
||
153 | w2 = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */ |
||
154 | w3 = 7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */ |
||
155 | w4 = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */ |
||
156 | w5 = 8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */ |
||
157 | w6 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */ |
||
158 | |||
159 | #ifdef __STDC__ |
||
160 | static const double zero= 0.00000000000000000000e+00; |
||
161 | #else |
||
162 | static double zero= 0.00000000000000000000e+00; |
||
163 | #endif |
||
164 | |||
165 | #ifdef __STDC__ |
||
166 | static double sin_pi(double x) |
||
167 | #else |
||
168 | static double sin_pi(x) |
||
169 | double x; |
||
170 | #endif |
||
171 | { |
||
172 | double y,z; |
||
173 | int n,ix; |
||
174 | |||
175 | GET_HIGH_WORD(ix,x); |
||
176 | ix &= 0x7fffffff; |
||
177 | |||
178 | if(ix<0x3fd00000) return __kernel_sin(pi*x,zero,0); |
||
179 | y = -x; /* x is assume negative */ |
||
180 | |||
181 | /* |
||
182 | * argument reduction, make sure inexact flag not raised if input |
||
183 | * is an integer |
||
184 | */ |
||
185 | z = floor(y); |
||
186 | if(z!=y) { /* inexact anyway */ |
||
187 | y *= 0.5; |
||
188 | y = 2.0*(y - floor(y)); /* y = |x| mod 2.0 */ |
||
189 | n = (int) (y*4.0); |
||
190 | } else { |
||
191 | if(ix>=0x43400000) { |
||
192 | y = zero; n = 0; /* y must be even */ |
||
193 | } else { |
||
194 | if(ix<0x43300000) z = y+two52; /* exact */ |
||
195 | GET_LOW_WORD(n,z); |
||
196 | n &= 1; |
||
197 | y = n; |
||
198 | n<<= 2; |
||
199 | } |
||
200 | } |
||
201 | switch (n) { |
||
202 | case 0: y = __kernel_sin(pi*y,zero,0); break; |
||
203 | case 1: |
||
204 | case 2: y = __kernel_cos(pi*(0.5-y),zero); break; |
||
205 | case 3: |
||
206 | case 4: y = __kernel_sin(pi*(one-y),zero,0); break; |
||
207 | case 5: |
||
208 | case 6: y = -__kernel_cos(pi*(y-1.5),zero); break; |
||
209 | default: y = __kernel_sin(pi*(y-2.0),zero,0); break; |
||
210 | } |
||
211 | return -y; |
||
212 | } |
||
213 | |||
214 | |||
215 | #ifdef __STDC__ |
||
216 | double __ieee754_lgamma_r(double x, int *signgamp) |
||
217 | #else |
||
218 | double __ieee754_lgamma_r(x,signgamp) |
||
219 | double x; int *signgamp; |
||
220 | #endif |
||
221 | { |
||
222 | double t,y,z,nadj,p,p1,p2,p3,q,r,w; |
||
223 | int i,hx,lx,ix; |
||
224 | |||
225 | EXTRACT_WORDS(hx,lx,x); |
||
226 | |||
227 | /* purge off +-inf, NaN, +-0, and negative arguments */ |
||
228 | *signgamp = 1; |
||
229 | ix = hx&0x7fffffff; |
||
230 | if(ix>=0x7ff00000) return x*x; |
||
231 | if((ix|lx)==0) return one/zero; |
||
232 | if(ix<0x3b900000) { /* |x|<2**-70, return -log(|x|) */ |
||
233 | if(hx<0) { |
||
234 | *signgamp = -1; |
||
235 | return -__ieee754_log(-x); |
||
236 | } else return -__ieee754_log(x); |
||
237 | } |
||
238 | if(hx<0) { |
||
239 | if(ix>=0x43300000) /* |x|>=2**52, must be -integer */ |
||
240 | return one/zero; |
||
241 | t = sin_pi(x); |
||
242 | if(t==zero) return one/zero; /* -integer */ |
||
243 | nadj = __ieee754_log(pi/fabs(t*x)); |
||
244 | if(t<zero) *signgamp = -1; |
||
245 | x = -x; |
||
246 | } |
||
247 | |||
248 | /* purge off 1 and 2 */ |
||
249 | if((((ix-0x3ff00000)|lx)==0)||(((ix-0x40000000)|lx)==0)) r = 0; |
||
250 | /* for x < 2.0 */ |
||
251 | else if(ix<0x40000000) { |
||
252 | if(ix<=0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */ |
||
253 | r = -__ieee754_log(x); |
||
254 | if(ix>=0x3FE76944) {y = one-x; i= 0;} |
||
255 | else if(ix>=0x3FCDA661) {y= x-(tc-one); i=1;} |
||
256 | else {y = x; i=2;} |
||
257 | } else { |
||
258 | r = zero; |
||
259 | if(ix>=0x3FFBB4C3) {y=2.0-x;i=0;} /* [1.7316,2] */ |
||
260 | else if(ix>=0x3FF3B4C4) {y=x-tc;i=1;} /* [1.23,1.73] */ |
||
261 | else {y=x-one;i=2;} |
||
262 | } |
||
263 | switch(i) { |
||
264 | case 0: |
||
265 | z = y*y; |
||
266 | p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10)))); |
||
267 | p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11))))); |
||
268 | p = y*p1+p2; |
||
269 | r += (p-0.5*y); break; |
||
270 | case 1: |
||
271 | z = y*y; |
||
272 | w = z*y; |
||
273 | p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */ |
||
274 | p2 = t1+w*(t4+w*(t7+w*(t10+w*t13))); |
||
275 | p3 = t2+w*(t5+w*(t8+w*(t11+w*t14))); |
||
276 | p = z*p1-(tt-w*(p2+y*p3)); |
||
277 | r += (tf + p); break; |
||
278 | case 2: |
||
279 | p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5))))); |
||
280 | p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5)))); |
||
281 | r += (-0.5*y + p1/p2); |
||
282 | } |
||
283 | } |
||
284 | else if(ix<0x40200000) { /* x < 8.0 */ |
||
285 | i = (int)x; |
||
286 | t = zero; |
||
287 | y = x-(double)i; |
||
288 | p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))); |
||
289 | q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))); |
||
290 | r = half*y+p/q; |
||
291 | z = one; /* lgamma(1+s) = log(s) + lgamma(s) */ |
||
292 | switch(i) { |
||
293 | case 7: z *= (y+6.0); /* FALLTHRU */ |
||
294 | case 6: z *= (y+5.0); /* FALLTHRU */ |
||
295 | case 5: z *= (y+4.0); /* FALLTHRU */ |
||
296 | case 4: z *= (y+3.0); /* FALLTHRU */ |
||
297 | case 3: z *= (y+2.0); /* FALLTHRU */ |
||
298 | r += __ieee754_log(z); break; |
||
299 | } |
||
300 | /* 8.0 <= x < 2**58 */ |
||
301 | } else if (ix < 0x43900000) { |
||
302 | t = __ieee754_log(x); |
||
303 | z = one/x; |
||
304 | y = z*z; |
||
305 | w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6))))); |
||
306 | r = (x-half)*(t-one)+w; |
||
307 | } else |
||
308 | /* 2**58 <= x <= inf */ |
||
309 | r = x*(__ieee754_log(x)-one); |
||
310 | if(hx<0) r = nadj - r; |
||
311 | return r; |
||
312 | } |