Subversion Repositories shark

Rev

Rev 1618 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 pj 1
/* @(#)e_log.c 5.1 93/09/24 */
2
/*
3
 * ====================================================
4
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5
 *
6
 * Developed at SunPro, a Sun Microsystems, Inc. business.
7
 * Permission to use, copy, modify, and distribute this
8
 * software is freely granted, provided that this notice
9
 * is preserved.
10
 * ====================================================
11
 */
12
 
13
#ifndef lint
14
static char rcsid[] = "$\Id: e_log.c,v 1.2.6.1 1997/02/23 11:03:05 joerg Exp $";
15
#endif
16
 
17
/* __ieee754_log(x)
18
 * Return the logrithm of x
19
 *
20
 * Method :
21
 *   1. Argument Reduction: find k and f such that
22
 *                      x = 2^k * (1+f),
23
 *         where  sqrt(2)/2 < 1+f < sqrt(2) .
24
 *
25
 *   2. Approximation of log(1+f).
26
 *      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
27
 *               = 2s + 2/3 s**3 + 2/5 s**5 + .....,
28
 *               = 2s + s*R
29
 *      We use a special Reme algorithm on [0,0.1716] to generate
30
 *      a polynomial of degree 14 to approximate R The maximum error
31
 *      of this polynomial approximation is bounded by 2**-58.45. In
32
 *      other words,
33
 *                      2      4      6      8      10      12      14
34
 *          R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
35
 *      (the values of Lg1 to Lg7 are listed in the program)
36
 *      and
37
 *          |      2          14          |     -58.45
38
 *          | Lg1*s +...+Lg7*s    -  R(z) | <= 2
39
 *          |                             |
40
 *      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
41
 *      In order to guarantee error in log below 1ulp, we compute log
42
 *      by
43
 *              log(1+f) = f - s*(f - R)        (if f is not too large)
44
 *              log(1+f) = f - (hfsq - s*(hfsq+R)).     (better accuracy)
45
 *
46
 *      3. Finally,  log(x) = k*ln2 + log(1+f).
47
 *                          = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
48
 *         Here ln2 is split into two floating point number:
49
 *                      ln2_hi + ln2_lo,
50
 *         where n*ln2_hi is always exact for |n| < 2000.
51
 *
52
 * Special cases:
53
 *      log(x) is NaN with signal if x < 0 (including -INF) ;
54
 *      log(+INF) is +INF; log(0) is -INF with signal;
55
 *      log(NaN) is that NaN with no signal.
56
 *
57
 * Accuracy:
58
 *      according to an error analysis, the error is always less than
59
 *      1 ulp (unit in the last place).
60
 *
61
 * Constants:
62
 * The hexadecimal values are the intended ones for the following
63
 * constants. The decimal values may be used, provided that the
64
 * compiler will convert from decimal to binary accurately enough
65
 * to produce the hexadecimal values shown.
66
 */
67
 
68
#include "math.h"
69
#include "math_private.h"
70
 
71
#ifdef __STDC__
72
static const double
73
#else
74
static double
75
#endif
76
ln2_hi  =  6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */
77
ln2_lo  =  1.90821492927058770002e-10,  /* 3dea39ef 35793c76 */
78
two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
79
Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
80
Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
81
Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
82
Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
83
Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
84
Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
85
Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
86
 
87
#ifdef __STDC__
88
static const double zero   =  0.0;
89
#else
90
static double zero   =  0.0;
91
#endif
92
 
93
#ifdef __STDC__
94
        double __generic___ieee754_log(double x)
95
#else
96
        double __generic___ieee754_log(x)
97
        double x;
98
#endif
99
{
100
        double hfsq,f,s,z,R,w,t1,t2,dk;
101
        int32_t k,hx,i,j;
102
        u_int32_t lx;
103
 
104
        EXTRACT_WORDS(hx,lx,x);
105
 
106
        k=0;
107
        if (hx < 0x00100000) {                  /* x < 2**-1022  */
108
            if (((hx&0x7fffffff)|lx)==0)
109
                return -two54/zero;             /* log(+-0)=-inf */
110
            if (hx<0) return (x-x)/zero;        /* log(-#) = NaN */
111
            k -= 54; x *= two54; /* subnormal number, scale up x */
112
            GET_HIGH_WORD(hx,x);
113
        }
114
        if (hx >= 0x7ff00000) return x+x;
115
        k += (hx>>20)-1023;
116
        hx &= 0x000fffff;
117
        i = (hx+0x95f64)&0x100000;
118
        SET_HIGH_WORD(x,hx|(i^0x3ff00000));     /* normalize x or x/2 */
119
        k += (i>>20);
120
        f = x-1.0;
121
        if((0x000fffff&(2+hx))<3) {     /* |f| < 2**-20 */
122
            if(f==zero) if(k==0) return zero;  else {dk=(double)k;
123
                                 return dk*ln2_hi+dk*ln2_lo;}
124
            R = f*f*(0.5-0.33333333333333333*f);
125
            if(k==0) return f-R; else {dk=(double)k;
126
                     return dk*ln2_hi-((R-dk*ln2_lo)-f);}
127
        }
128
        s = f/(2.0+f);
129
        dk = (double)k;
130
        z = s*s;
131
        i = hx-0x6147a;
132
        w = z*z;
133
        j = 0x6b851-hx;
134
        t1= w*(Lg2+w*(Lg4+w*Lg6));
135
        t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
136
        i |= j;
137
        R = t2+t1;
138
        if(i>0) {
139
            hfsq=0.5*f*f;
140
            if(k==0) return f-(hfsq-s*(hfsq+R)); else
141
                     return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
142
        } else {
143
            if(k==0) return f-s*(f-R); else
144
                     return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
145
        }
146
}