Rev 1618 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | pj | 1 | /* @(#)k_rem_pio2.c 5.1 93/09/24 */ |
2 | /* |
||
3 | * ==================================================== |
||
4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
||
5 | * |
||
6 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
||
7 | * Permission to use, copy, modify, and distribute this |
||
8 | * software is freely granted, provided that this notice |
||
9 | * is preserved. |
||
10 | * ==================================================== |
||
11 | */ |
||
12 | |||
13 | #ifndef lint |
||
14 | static char rcsid[] = "$\Id: k_rem_pio2.c,v 1.2 1995/05/30 05:48:57 rgrimes Exp $"; |
||
15 | #endif |
||
16 | |||
17 | /* |
||
18 | * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) |
||
19 | * double x[],y[]; int e0,nx,prec; int ipio2[]; |
||
20 | * |
||
21 | * __kernel_rem_pio2 return the last three digits of N with |
||
22 | * y = x - N*pi/2 |
||
23 | * so that |y| < pi/2. |
||
24 | * |
||
25 | * The method is to compute the integer (mod 8) and fraction parts of |
||
26 | * (2/pi)*x without doing the full multiplication. In general we |
||
27 | * skip the part of the product that are known to be a huge integer ( |
||
28 | * more accurately, = 0 mod 8 ). Thus the number of operations are |
||
29 | * independent of the exponent of the input. |
||
30 | * |
||
31 | * (2/pi) is represented by an array of 24-bit integers in ipio2[]. |
||
32 | * |
||
33 | * Input parameters: |
||
34 | * x[] The input value (must be positive) is broken into nx |
||
35 | * pieces of 24-bit integers in double precision format. |
||
36 | * x[i] will be the i-th 24 bit of x. The scaled exponent |
||
37 | * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 |
||
38 | * match x's up to 24 bits. |
||
39 | * |
||
40 | * Example of breaking a double positive z into x[0]+x[1]+x[2]: |
||
41 | * e0 = ilogb(z)-23 |
||
42 | * z = scalbn(z,-e0) |
||
43 | * for i = 0,1,2 |
||
44 | * x[i] = floor(z) |
||
45 | * z = (z-x[i])*2**24 |
||
46 | * |
||
47 | * |
||
48 | * y[] ouput result in an array of double precision numbers. |
||
49 | * The dimension of y[] is: |
||
50 | * 24-bit precision 1 |
||
51 | * 53-bit precision 2 |
||
52 | * 64-bit precision 2 |
||
53 | * 113-bit precision 3 |
||
54 | * The actual value is the sum of them. Thus for 113-bit |
||
55 | * precison, one may have to do something like: |
||
56 | * |
||
57 | * long double t,w,r_head, r_tail; |
||
58 | * t = (long double)y[2] + (long double)y[1]; |
||
59 | * w = (long double)y[0]; |
||
60 | * r_head = t+w; |
||
61 | * r_tail = w - (r_head - t); |
||
62 | * |
||
63 | * e0 The exponent of x[0] |
||
64 | * |
||
65 | * nx dimension of x[] |
||
66 | * |
||
67 | * prec an integer indicating the precision: |
||
68 | * 0 24 bits (single) |
||
69 | * 1 53 bits (double) |
||
70 | * 2 64 bits (extended) |
||
71 | * 3 113 bits (quad) |
||
72 | * |
||
73 | * ipio2[] |
||
74 | * integer array, contains the (24*i)-th to (24*i+23)-th |
||
75 | * bit of 2/pi after binary point. The corresponding |
||
76 | * floating value is |
||
77 | * |
||
78 | * ipio2[i] * 2^(-24(i+1)). |
||
79 | * |
||
80 | * External function: |
||
81 | * double scalbn(), floor(); |
||
82 | * |
||
83 | * |
||
84 | * Here is the description of some local variables: |
||
85 | * |
||
86 | * jk jk+1 is the initial number of terms of ipio2[] needed |
||
87 | * in the computation. The recommended value is 2,3,4, |
||
88 | * 6 for single, double, extended,and quad. |
||
89 | * |
||
90 | * jz local integer variable indicating the number of |
||
91 | * terms of ipio2[] used. |
||
92 | * |
||
93 | * jx nx - 1 |
||
94 | * |
||
95 | * jv index for pointing to the suitable ipio2[] for the |
||
96 | * computation. In general, we want |
||
97 | * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 |
||
98 | * is an integer. Thus |
||
99 | * e0-3-24*jv >= 0 or (e0-3)/24 >= jv |
||
100 | * Hence jv = max(0,(e0-3)/24). |
||
101 | * |
||
102 | * jp jp+1 is the number of terms in PIo2[] needed, jp = jk. |
||
103 | * |
||
104 | * q[] double array with integral value, representing the |
||
105 | * 24-bits chunk of the product of x and 2/pi. |
||
106 | * |
||
107 | * q0 the corresponding exponent of q[0]. Note that the |
||
108 | * exponent for q[i] would be q0-24*i. |
||
109 | * |
||
110 | * PIo2[] double precision array, obtained by cutting pi/2 |
||
111 | * into 24 bits chunks. |
||
112 | * |
||
113 | * f[] ipio2[] in floating point |
||
114 | * |
||
115 | * iq[] integer array by breaking up q[] in 24-bits chunk. |
||
116 | * |
||
117 | * fq[] final product of x*(2/pi) in fq[0],..,fq[jk] |
||
118 | * |
||
119 | * ih integer. If >0 it indicates q[] is >= 0.5, hence |
||
120 | * it also indicates the *sign* of the result. |
||
121 | * |
||
122 | */ |
||
123 | |||
124 | |||
125 | /* |
||
126 | * Constants: |
||
127 | * The hexadecimal values are the intended ones for the following |
||
128 | * constants. The decimal values may be used, provided that the |
||
129 | * compiler will convert from decimal to binary accurately enough |
||
130 | * to produce the hexadecimal values shown. |
||
131 | */ |
||
132 | |||
133 | #include "math.h" |
||
134 | #include "math_private.h" |
||
135 | |||
136 | #ifdef __STDC__ |
||
137 | static const int init_jk[] = {2,3,4,6}; /* initial value for jk */ |
||
138 | #else |
||
139 | static int init_jk[] = {2,3,4,6}; |
||
140 | #endif |
||
141 | |||
142 | #ifdef __STDC__ |
||
143 | static const double PIo2[] = { |
||
144 | #else |
||
145 | static double PIo2[] = { |
||
146 | #endif |
||
147 | 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ |
||
148 | 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ |
||
149 | 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ |
||
150 | 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ |
||
151 | 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ |
||
152 | 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ |
||
153 | 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ |
||
154 | 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ |
||
155 | }; |
||
156 | |||
157 | #ifdef __STDC__ |
||
158 | static const double |
||
159 | #else |
||
160 | static double |
||
161 | #endif |
||
162 | zero = 0.0, |
||
163 | one = 1.0, |
||
164 | two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ |
||
165 | twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ |
||
166 | |||
167 | #ifdef __STDC__ |
||
168 | int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2) |
||
169 | #else |
||
170 | int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) |
||
171 | double x[], y[]; int e0,nx,prec; int32_t ipio2[]; |
||
172 | #endif |
||
173 | { |
||
174 | int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; |
||
175 | double z,fw,f[20],fq[20],q[20]; |
||
176 | |||
177 | /* initialize jk*/ |
||
178 | jk = init_jk[prec]; |
||
179 | jp = jk; |
||
180 | |||
181 | /* determine jx,jv,q0, note that 3>q0 */ |
||
182 | jx = nx-1; |
||
183 | jv = (e0-3)/24; if(jv<0) jv=0; |
||
184 | q0 = e0-24*(jv+1); |
||
185 | |||
186 | /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ |
||
187 | j = jv-jx; m = jx+jk; |
||
188 | for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j]; |
||
189 | |||
190 | /* compute q[0],q[1],...q[jk] */ |
||
191 | for (i=0;i<=jk;i++) { |
||
192 | for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw; |
||
193 | } |
||
194 | |||
195 | jz = jk; |
||
196 | recompute: |
||
197 | /* distill q[] into iq[] reversingly */ |
||
198 | for(i=0,j=jz,z=q[jz];j>0;i++,j--) { |
||
199 | fw = (double)((int32_t)(twon24* z)); |
||
200 | iq[i] = (int32_t)(z-two24*fw); |
||
201 | z = q[j-1]+fw; |
||
202 | } |
||
203 | |||
204 | /* compute n */ |
||
205 | z = scalbn(z,q0); /* actual value of z */ |
||
206 | z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */ |
||
207 | n = (int32_t) z; |
||
208 | z -= (double)n; |
||
209 | ih = 0; |
||
210 | if(q0>0) { /* need iq[jz-1] to determine n */ |
||
211 | i = (iq[jz-1]>>(24-q0)); n += i; |
||
212 | iq[jz-1] -= i<<(24-q0); |
||
213 | ih = iq[jz-1]>>(23-q0); |
||
214 | } |
||
215 | else if(q0==0) ih = iq[jz-1]>>23; |
||
216 | else if(z>=0.5) ih=2; |
||
217 | |||
218 | if(ih>0) { /* q > 0.5 */ |
||
219 | n += 1; carry = 0; |
||
220 | for(i=0;i<jz ;i++) { /* compute 1-q */ |
||
221 | j = iq[i]; |
||
222 | if(carry==0) { |
||
223 | if(j!=0) { |
||
224 | carry = 1; iq[i] = 0x1000000- j; |
||
225 | } |
||
226 | } else iq[i] = 0xffffff - j; |
||
227 | } |
||
228 | if(q0>0) { /* rare case: chance is 1 in 12 */ |
||
229 | switch(q0) { |
||
230 | case 1: |
||
231 | iq[jz-1] &= 0x7fffff; break; |
||
232 | case 2: |
||
233 | iq[jz-1] &= 0x3fffff; break; |
||
234 | } |
||
235 | } |
||
236 | if(ih==2) { |
||
237 | z = one - z; |
||
238 | if(carry!=0) z -= scalbn(one,q0); |
||
239 | } |
||
240 | } |
||
241 | |||
242 | /* check if recomputation is needed */ |
||
243 | if(z==zero) { |
||
244 | j = 0; |
||
245 | for (i=jz-1;i>=jk;i--) j |= iq[i]; |
||
246 | if(j==0) { /* need recomputation */ |
||
247 | for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */ |
||
248 | |||
249 | for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */ |
||
250 | f[jx+i] = (double) ipio2[jv+i]; |
||
251 | for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; |
||
252 | q[i] = fw; |
||
253 | } |
||
254 | jz += k; |
||
255 | goto recompute; |
||
256 | } |
||
257 | } |
||
258 | |||
259 | /* chop off zero terms */ |
||
260 | if(z==0.0) { |
||
261 | jz -= 1; q0 -= 24; |
||
262 | while(iq[jz]==0) { jz--; q0-=24;} |
||
263 | } else { /* break z into 24-bit if necessary */ |
||
264 | z = scalbn(z,-q0); |
||
265 | if(z>=two24) { |
||
266 | fw = (double)((int32_t)(twon24*z)); |
||
267 | iq[jz] = (int32_t)(z-two24*fw); |
||
268 | jz += 1; q0 += 24; |
||
269 | iq[jz] = (int32_t) fw; |
||
270 | } else iq[jz] = (int32_t) z ; |
||
271 | } |
||
272 | |||
273 | /* convert integer "bit" chunk to floating-point value */ |
||
274 | fw = scalbn(one,q0); |
||
275 | for(i=jz;i>=0;i--) { |
||
276 | q[i] = fw*(double)iq[i]; fw*=twon24; |
||
277 | } |
||
278 | |||
279 | /* compute PIo2[0,...,jp]*q[jz,...,0] */ |
||
280 | for(i=jz;i>=0;i--) { |
||
281 | for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k]; |
||
282 | fq[jz-i] = fw; |
||
283 | } |
||
284 | |||
285 | /* compress fq[] into y[] */ |
||
286 | switch(prec) { |
||
287 | case 0: |
||
288 | fw = 0.0; |
||
289 | for (i=jz;i>=0;i--) fw += fq[i]; |
||
290 | y[0] = (ih==0)? fw: -fw; |
||
291 | break; |
||
292 | case 1: |
||
293 | case 2: |
||
294 | fw = 0.0; |
||
295 | for (i=jz;i>=0;i--) fw += fq[i]; |
||
296 | y[0] = (ih==0)? fw: -fw; |
||
297 | fw = fq[0]-fw; |
||
298 | for (i=1;i<=jz;i++) fw += fq[i]; |
||
299 | y[1] = (ih==0)? fw: -fw; |
||
300 | break; |
||
301 | case 3: /* painful */ |
||
302 | for (i=jz;i>0;i--) { |
||
303 | fw = fq[i-1]+fq[i]; |
||
304 | fq[i] += fq[i-1]-fw; |
||
305 | fq[i-1] = fw; |
||
306 | } |
||
307 | for (i=jz;i>1;i--) { |
||
308 | fw = fq[i-1]+fq[i]; |
||
309 | fq[i] += fq[i-1]-fw; |
||
310 | fq[i-1] = fw; |
||
311 | } |
||
312 | for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; |
||
313 | if(ih==0) { |
||
314 | y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; |
||
315 | } else { |
||
316 | y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; |
||
317 | } |
||
318 | } |
||
319 | return n&7; |
||
320 | } |