Rev 1618 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | pj | 1 | /* @(#)s_erf.c 5.1 93/09/24 */ |
2 | /* |
||
3 | * ==================================================== |
||
4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
||
5 | * |
||
6 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
||
7 | * Permission to use, copy, modify, and distribute this |
||
8 | * software is freely granted, provided that this notice |
||
9 | * is preserved. |
||
10 | * ==================================================== |
||
11 | */ |
||
12 | |||
13 | #ifndef lint |
||
14 | static char rcsid[] = "$\Id: s_erf.c,v 1.2 1995/05/30 05:49:31 rgrimes Exp $"; |
||
15 | #endif |
||
16 | |||
17 | /* double erf(double x) |
||
18 | * double erfc(double x) |
||
19 | * x |
||
20 | * 2 |\ |
||
21 | * erf(x) = --------- | exp(-t*t)dt |
||
22 | * sqrt(pi) \| |
||
23 | * 0 |
||
24 | * |
||
25 | * erfc(x) = 1-erf(x) |
||
26 | * Note that |
||
27 | * erf(-x) = -erf(x) |
||
28 | * erfc(-x) = 2 - erfc(x) |
||
29 | * |
||
30 | * Method: |
||
31 | * 1. For |x| in [0, 0.84375] |
||
32 | * erf(x) = x + x*R(x^2) |
||
33 | * erfc(x) = 1 - erf(x) if x in [-.84375,0.25] |
||
34 | * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375] |
||
35 | * where R = P/Q where P is an odd poly of degree 8 and |
||
36 | * Q is an odd poly of degree 10. |
||
37 | * -57.90 |
||
38 | * | R - (erf(x)-x)/x | <= 2 |
||
39 | * |
||
40 | * |
||
41 | * Remark. The formula is derived by noting |
||
42 | * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) |
||
43 | * and that |
||
44 | * 2/sqrt(pi) = 1.128379167095512573896158903121545171688 |
||
45 | * is close to one. The interval is chosen because the fix |
||
46 | * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is |
||
47 | * near 0.6174), and by some experiment, 0.84375 is chosen to |
||
48 | * guarantee the error is less than one ulp for erf. |
||
49 | * |
||
50 | * 2. For |x| in [0.84375,1.25], let s = |x| - 1, and |
||
51 | * c = 0.84506291151 rounded to single (24 bits) |
||
52 | * erf(x) = sign(x) * (c + P1(s)/Q1(s)) |
||
53 | * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0 |
||
54 | * 1+(c+P1(s)/Q1(s)) if x < 0 |
||
55 | * |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06 |
||
56 | * Remark: here we use the taylor series expansion at x=1. |
||
57 | * erf(1+s) = erf(1) + s*Poly(s) |
||
58 | * = 0.845.. + P1(s)/Q1(s) |
||
59 | * That is, we use rational approximation to approximate |
||
60 | * erf(1+s) - (c = (single)0.84506291151) |
||
61 | * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] |
||
62 | * where |
||
63 | * P1(s) = degree 6 poly in s |
||
64 | * Q1(s) = degree 6 poly in s |
||
65 | * |
||
66 | * 3. For x in [1.25,1/0.35(~2.857143)], |
||
67 | * erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1) |
||
68 | * erf(x) = 1 - erfc(x) |
||
69 | * where |
||
70 | * R1(z) = degree 7 poly in z, (z=1/x^2) |
||
71 | * S1(z) = degree 8 poly in z |
||
72 | * |
||
73 | * 4. For x in [1/0.35,28] |
||
74 | * erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0 |
||
75 | * = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0 |
||
76 | * = 2.0 - tiny (if x <= -6) |
||
77 | * erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else |
||
78 | * erf(x) = sign(x)*(1.0 - tiny) |
||
79 | * where |
||
80 | * R2(z) = degree 6 poly in z, (z=1/x^2) |
||
81 | * S2(z) = degree 7 poly in z |
||
82 | * |
||
83 | * Note1: |
||
84 | * To compute exp(-x*x-0.5625+R/S), let s be a single |
||
85 | * precision number and s := x; then |
||
86 | * -x*x = -s*s + (s-x)*(s+x) |
||
87 | * exp(-x*x-0.5626+R/S) = |
||
88 | * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S); |
||
89 | * Note2: |
||
90 | * Here 4 and 5 make use of the asymptotic series |
||
91 | * exp(-x*x) |
||
92 | * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) ) |
||
93 | * x*sqrt(pi) |
||
94 | * We use rational approximation to approximate |
||
95 | * g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625 |
||
96 | * Here is the error bound for R1/S1 and R2/S2 |
||
97 | * |R1/S1 - f(x)| < 2**(-62.57) |
||
98 | * |R2/S2 - f(x)| < 2**(-61.52) |
||
99 | * |
||
100 | * 5. For inf > x >= 28 |
||
101 | * erf(x) = sign(x) *(1 - tiny) (raise inexact) |
||
102 | * erfc(x) = tiny*tiny (raise underflow) if x > 0 |
||
103 | * = 2 - tiny if x<0 |
||
104 | * |
||
105 | * 7. Special case: |
||
106 | * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1, |
||
107 | * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, |
||
108 | * erfc/erf(NaN) is NaN |
||
109 | */ |
||
110 | |||
111 | |||
112 | #include "math.h" |
||
113 | #include "math_private.h" |
||
114 | |||
115 | #ifdef __STDC__ |
||
116 | static const double |
||
117 | #else |
||
118 | static double |
||
119 | #endif |
||
120 | tiny = 1e-300, |
||
121 | half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ |
||
122 | one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ |
||
123 | two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */ |
||
124 | /* c = (float)0.84506291151 */ |
||
125 | erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */ |
||
126 | /* |
||
127 | * Coefficients for approximation to erf on [0,0.84375] |
||
128 | */ |
||
129 | efx = 1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */ |
||
130 | efx8= 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */ |
||
131 | pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */ |
||
132 | pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */ |
||
133 | pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */ |
||
134 | pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */ |
||
135 | pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */ |
||
136 | qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */ |
||
137 | qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */ |
||
138 | qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */ |
||
139 | qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */ |
||
140 | qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */ |
||
141 | /* |
||
142 | * Coefficients for approximation to erf in [0.84375,1.25] |
||
143 | */ |
||
144 | pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */ |
||
145 | pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */ |
||
146 | pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */ |
||
147 | pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */ |
||
148 | pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */ |
||
149 | pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */ |
||
150 | pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */ |
||
151 | qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */ |
||
152 | qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */ |
||
153 | qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */ |
||
154 | qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */ |
||
155 | qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */ |
||
156 | qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */ |
||
157 | /* |
||
158 | * Coefficients for approximation to erfc in [1.25,1/0.35] |
||
159 | */ |
||
160 | ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */ |
||
161 | ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */ |
||
162 | ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */ |
||
163 | ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */ |
||
164 | ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */ |
||
165 | ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */ |
||
166 | ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */ |
||
167 | ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */ |
||
168 | sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */ |
||
169 | sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */ |
||
170 | sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */ |
||
171 | sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */ |
||
172 | sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */ |
||
173 | sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */ |
||
174 | sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */ |
||
175 | sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */ |
||
176 | /* |
||
177 | * Coefficients for approximation to erfc in [1/.35,28] |
||
178 | */ |
||
179 | rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */ |
||
180 | rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */ |
||
181 | rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */ |
||
182 | rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */ |
||
183 | rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */ |
||
184 | rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */ |
||
185 | rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */ |
||
186 | sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */ |
||
187 | sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */ |
||
188 | sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */ |
||
189 | sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */ |
||
190 | sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */ |
||
191 | sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */ |
||
192 | sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */ |
||
193 | |||
194 | #ifdef __STDC__ |
||
195 | double erf(double x) |
||
196 | #else |
||
197 | double erf(x) |
||
198 | double x; |
||
199 | #endif |
||
200 | { |
||
201 | int32_t hx,ix,i; |
||
202 | double R,S,P,Q,s,y,z,r; |
||
203 | GET_HIGH_WORD(hx,x); |
||
204 | ix = hx&0x7fffffff; |
||
205 | if(ix>=0x7ff00000) { /* erf(nan)=nan */ |
||
206 | i = ((u_int32_t)hx>>31)<<1; |
||
207 | return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */ |
||
208 | } |
||
209 | |||
210 | if(ix < 0x3feb0000) { /* |x|<0.84375 */ |
||
211 | if(ix < 0x3e300000) { /* |x|<2**-28 */ |
||
212 | if (ix < 0x00800000) |
||
213 | return 0.125*(8.0*x+efx8*x); /*avoid underflow */ |
||
214 | return x + efx*x; |
||
215 | } |
||
216 | z = x*x; |
||
217 | r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); |
||
218 | s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); |
||
219 | y = r/s; |
||
220 | return x + x*y; |
||
221 | } |
||
222 | if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */ |
||
223 | s = fabs(x)-one; |
||
224 | P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); |
||
225 | Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); |
||
226 | if(hx>=0) return erx + P/Q; else return -erx - P/Q; |
||
227 | } |
||
228 | if (ix >= 0x40180000) { /* inf>|x|>=6 */ |
||
229 | if(hx>=0) return one-tiny; else return tiny-one; |
||
230 | } |
||
231 | x = fabs(x); |
||
232 | s = one/(x*x); |
||
233 | if(ix< 0x4006DB6E) { /* |x| < 1/0.35 */ |
||
234 | R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( |
||
235 | ra5+s*(ra6+s*ra7)))))); |
||
236 | S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( |
||
237 | sa5+s*(sa6+s*(sa7+s*sa8))))))); |
||
238 | } else { /* |x| >= 1/0.35 */ |
||
239 | R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( |
||
240 | rb5+s*rb6))))); |
||
241 | S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( |
||
242 | sb5+s*(sb6+s*sb7)))))); |
||
243 | } |
||
244 | z = x; |
||
245 | SET_LOW_WORD(z,0); |
||
246 | r = __ieee754_exp(-z*z-0.5625)*__ieee754_exp((z-x)*(z+x)+R/S); |
||
247 | if(hx>=0) return one-r/x; else return r/x-one; |
||
248 | } |
||
249 | |||
250 | #ifdef __STDC__ |
||
251 | double erfc(double x) |
||
252 | #else |
||
253 | double erfc(x) |
||
254 | double x; |
||
255 | #endif |
||
256 | { |
||
257 | int32_t hx,ix; |
||
258 | double R,S,P,Q,s,y,z,r; |
||
259 | GET_HIGH_WORD(hx,x); |
||
260 | ix = hx&0x7fffffff; |
||
261 | if(ix>=0x7ff00000) { /* erfc(nan)=nan */ |
||
262 | /* erfc(+-inf)=0,2 */ |
||
263 | return (double)(((u_int32_t)hx>>31)<<1)+one/x; |
||
264 | } |
||
265 | |||
266 | if(ix < 0x3feb0000) { /* |x|<0.84375 */ |
||
267 | if(ix < 0x3c700000) /* |x|<2**-56 */ |
||
268 | return one-x; |
||
269 | z = x*x; |
||
270 | r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); |
||
271 | s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); |
||
272 | y = r/s; |
||
273 | if(hx < 0x3fd00000) { /* x<1/4 */ |
||
274 | return one-(x+x*y); |
||
275 | } else { |
||
276 | r = x*y; |
||
277 | r += (x-half); |
||
278 | return half - r ; |
||
279 | } |
||
280 | } |
||
281 | if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */ |
||
282 | s = fabs(x)-one; |
||
283 | P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); |
||
284 | Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); |
||
285 | if(hx>=0) { |
||
286 | z = one-erx; return z - P/Q; |
||
287 | } else { |
||
288 | z = erx+P/Q; return one+z; |
||
289 | } |
||
290 | } |
||
291 | if (ix < 0x403c0000) { /* |x|<28 */ |
||
292 | x = fabs(x); |
||
293 | s = one/(x*x); |
||
294 | if(ix< 0x4006DB6D) { /* |x| < 1/.35 ~ 2.857143*/ |
||
295 | R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( |
||
296 | ra5+s*(ra6+s*ra7)))))); |
||
297 | S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( |
||
298 | sa5+s*(sa6+s*(sa7+s*sa8))))))); |
||
299 | } else { /* |x| >= 1/.35 ~ 2.857143 */ |
||
300 | if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */ |
||
301 | R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( |
||
302 | rb5+s*rb6))))); |
||
303 | S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( |
||
304 | sb5+s*(sb6+s*sb7)))))); |
||
305 | } |
||
306 | z = x; |
||
307 | SET_LOW_WORD(z,0); |
||
308 | r = __ieee754_exp(-z*z-0.5625)* |
||
309 | __ieee754_exp((z-x)*(z+x)+R/S); |
||
310 | if(hx>0) return r/x; else return two-r/x; |
||
311 | } else { |
||
312 | if(hx>0) return tiny*tiny; else return two-tiny; |
||
313 | } |
||
314 | } |