Rev 1618 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | pj | 1 | /* s_erff.c -- float version of s_erf.c. |
2 | * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
||
3 | */ |
||
4 | |||
5 | /* |
||
6 | * ==================================================== |
||
7 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
||
8 | * |
||
9 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
||
10 | * Permission to use, copy, modify, and distribute this |
||
11 | * software is freely granted, provided that this notice |
||
12 | * is preserved. |
||
13 | * ==================================================== |
||
14 | */ |
||
15 | |||
16 | #ifndef lint |
||
17 | static char rcsid[] = "$\Id: s_erff.c,v 1.2 1995/05/30 05:49:32 rgrimes Exp $"; |
||
18 | #endif |
||
19 | |||
20 | #include "math.h" |
||
21 | #include "math_private.h" |
||
22 | |||
23 | #ifdef __STDC__ |
||
24 | static const float |
||
25 | #else |
||
26 | static float |
||
27 | #endif |
||
28 | tiny = 1e-30, |
||
29 | half= 5.0000000000e-01, /* 0x3F000000 */ |
||
30 | one = 1.0000000000e+00, /* 0x3F800000 */ |
||
31 | two = 2.0000000000e+00, /* 0x40000000 */ |
||
32 | /* c = (subfloat)0.84506291151 */ |
||
33 | erx = 8.4506291151e-01, /* 0x3f58560b */ |
||
34 | /* |
||
35 | * Coefficients for approximation to erf on [0,0.84375] |
||
36 | */ |
||
37 | efx = 1.2837916613e-01, /* 0x3e0375d4 */ |
||
38 | efx8= 1.0270333290e+00, /* 0x3f8375d4 */ |
||
39 | pp0 = 1.2837916613e-01, /* 0x3e0375d4 */ |
||
40 | pp1 = -3.2504209876e-01, /* 0xbea66beb */ |
||
41 | pp2 = -2.8481749818e-02, /* 0xbce9528f */ |
||
42 | pp3 = -5.7702702470e-03, /* 0xbbbd1489 */ |
||
43 | pp4 = -2.3763017452e-05, /* 0xb7c756b1 */ |
||
44 | qq1 = 3.9791721106e-01, /* 0x3ecbbbce */ |
||
45 | qq2 = 6.5022252500e-02, /* 0x3d852a63 */ |
||
46 | qq3 = 5.0813062117e-03, /* 0x3ba68116 */ |
||
47 | qq4 = 1.3249473704e-04, /* 0x390aee49 */ |
||
48 | qq5 = -3.9602282413e-06, /* 0xb684e21a */ |
||
49 | /* |
||
50 | * Coefficients for approximation to erf in [0.84375,1.25] |
||
51 | */ |
||
52 | pa0 = -2.3621185683e-03, /* 0xbb1acdc6 */ |
||
53 | pa1 = 4.1485610604e-01, /* 0x3ed46805 */ |
||
54 | pa2 = -3.7220788002e-01, /* 0xbebe9208 */ |
||
55 | pa3 = 3.1834661961e-01, /* 0x3ea2fe54 */ |
||
56 | pa4 = -1.1089469492e-01, /* 0xbde31cc2 */ |
||
57 | pa5 = 3.5478305072e-02, /* 0x3d1151b3 */ |
||
58 | pa6 = -2.1663755178e-03, /* 0xbb0df9c0 */ |
||
59 | qa1 = 1.0642088205e-01, /* 0x3dd9f331 */ |
||
60 | qa2 = 5.4039794207e-01, /* 0x3f0a5785 */ |
||
61 | qa3 = 7.1828655899e-02, /* 0x3d931ae7 */ |
||
62 | qa4 = 1.2617121637e-01, /* 0x3e013307 */ |
||
63 | qa5 = 1.3637083583e-02, /* 0x3c5f6e13 */ |
||
64 | qa6 = 1.1984500103e-02, /* 0x3c445aa3 */ |
||
65 | /* |
||
66 | * Coefficients for approximation to erfc in [1.25,1/0.35] |
||
67 | */ |
||
68 | ra0 = -9.8649440333e-03, /* 0xbc21a093 */ |
||
69 | ra1 = -6.9385856390e-01, /* 0xbf31a0b7 */ |
||
70 | ra2 = -1.0558626175e+01, /* 0xc128f022 */ |
||
71 | ra3 = -6.2375331879e+01, /* 0xc2798057 */ |
||
72 | ra4 = -1.6239666748e+02, /* 0xc322658c */ |
||
73 | ra5 = -1.8460508728e+02, /* 0xc3389ae7 */ |
||
74 | ra6 = -8.1287437439e+01, /* 0xc2a2932b */ |
||
75 | ra7 = -9.8143291473e+00, /* 0xc11d077e */ |
||
76 | sa1 = 1.9651271820e+01, /* 0x419d35ce */ |
||
77 | sa2 = 1.3765776062e+02, /* 0x4309a863 */ |
||
78 | sa3 = 4.3456588745e+02, /* 0x43d9486f */ |
||
79 | sa4 = 6.4538726807e+02, /* 0x442158c9 */ |
||
80 | sa5 = 4.2900814819e+02, /* 0x43d6810b */ |
||
81 | sa6 = 1.0863500214e+02, /* 0x42d9451f */ |
||
82 | sa7 = 6.5702495575e+00, /* 0x40d23f7c */ |
||
83 | sa8 = -6.0424413532e-02, /* 0xbd777f97 */ |
||
84 | /* |
||
85 | * Coefficients for approximation to erfc in [1/.35,28] |
||
86 | */ |
||
87 | rb0 = -9.8649431020e-03, /* 0xbc21a092 */ |
||
88 | rb1 = -7.9928326607e-01, /* 0xbf4c9dd4 */ |
||
89 | rb2 = -1.7757955551e+01, /* 0xc18e104b */ |
||
90 | rb3 = -1.6063638306e+02, /* 0xc320a2ea */ |
||
91 | rb4 = -6.3756646729e+02, /* 0xc41f6441 */ |
||
92 | rb5 = -1.0250950928e+03, /* 0xc480230b */ |
||
93 | rb6 = -4.8351919556e+02, /* 0xc3f1c275 */ |
||
94 | sb1 = 3.0338060379e+01, /* 0x41f2b459 */ |
||
95 | sb2 = 3.2579251099e+02, /* 0x43a2e571 */ |
||
96 | sb3 = 1.5367296143e+03, /* 0x44c01759 */ |
||
97 | sb4 = 3.1998581543e+03, /* 0x4547fdbb */ |
||
98 | sb5 = 2.5530502930e+03, /* 0x451f90ce */ |
||
99 | sb6 = 4.7452853394e+02, /* 0x43ed43a7 */ |
||
100 | sb7 = -2.2440952301e+01; /* 0xc1b38712 */ |
||
101 | |||
102 | #ifdef __STDC__ |
||
103 | float erff(float x) |
||
104 | #else |
||
105 | float erff(x) |
||
106 | float x; |
||
107 | #endif |
||
108 | { |
||
109 | int32_t hx,ix,i; |
||
110 | float R,S,P,Q,s,y,z,r; |
||
111 | GET_FLOAT_WORD(hx,x); |
||
112 | ix = hx&0x7fffffff; |
||
113 | if(ix>=0x7f800000) { /* erf(nan)=nan */ |
||
114 | i = ((u_int32_t)hx>>31)<<1; |
||
115 | return (float)(1-i)+one/x; /* erf(+-inf)=+-1 */ |
||
116 | } |
||
117 | |||
118 | if(ix < 0x3f580000) { /* |x|<0.84375 */ |
||
119 | if(ix < 0x31800000) { /* |x|<2**-28 */ |
||
120 | if (ix < 0x04000000) |
||
121 | /*avoid underflow */ |
||
122 | return (float)0.125*((float)8.0*x+efx8*x); |
||
123 | return x + efx*x; |
||
124 | } |
||
125 | z = x*x; |
||
126 | r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); |
||
127 | s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); |
||
128 | y = r/s; |
||
129 | return x + x*y; |
||
130 | } |
||
131 | if(ix < 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */ |
||
132 | s = fabsf(x)-one; |
||
133 | P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); |
||
134 | Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); |
||
135 | if(hx>=0) return erx + P/Q; else return -erx - P/Q; |
||
136 | } |
||
137 | if (ix >= 0x40c00000) { /* inf>|x|>=6 */ |
||
138 | if(hx>=0) return one-tiny; else return tiny-one; |
||
139 | } |
||
140 | x = fabsf(x); |
||
141 | s = one/(x*x); |
||
142 | if(ix< 0x4036DB6E) { /* |x| < 1/0.35 */ |
||
143 | R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( |
||
144 | ra5+s*(ra6+s*ra7)))))); |
||
145 | S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( |
||
146 | sa5+s*(sa6+s*(sa7+s*sa8))))))); |
||
147 | } else { /* |x| >= 1/0.35 */ |
||
148 | R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( |
||
149 | rb5+s*rb6))))); |
||
150 | S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( |
||
151 | sb5+s*(sb6+s*sb7)))))); |
||
152 | } |
||
153 | GET_FLOAT_WORD(ix,x); |
||
154 | SET_FLOAT_WORD(z,ix&0xfffff000); |
||
155 | r = __ieee754_expf(-z*z-(float)0.5625)*__ieee754_expf((z-x)*(z+x)+R/S); |
||
156 | if(hx>=0) return one-r/x; else return r/x-one; |
||
157 | } |
||
158 | |||
159 | #ifdef __STDC__ |
||
160 | float erfcf(float x) |
||
161 | #else |
||
162 | float erfcf(x) |
||
163 | float x; |
||
164 | #endif |
||
165 | { |
||
166 | int32_t hx,ix; |
||
167 | float R,S,P,Q,s,y,z,r; |
||
168 | GET_FLOAT_WORD(hx,x); |
||
169 | ix = hx&0x7fffffff; |
||
170 | if(ix>=0x7f800000) { /* erfc(nan)=nan */ |
||
171 | /* erfc(+-inf)=0,2 */ |
||
172 | return (float)(((u_int32_t)hx>>31)<<1)+one/x; |
||
173 | } |
||
174 | |||
175 | if(ix < 0x3f580000) { /* |x|<0.84375 */ |
||
176 | if(ix < 0x23800000) /* |x|<2**-56 */ |
||
177 | return one-x; |
||
178 | z = x*x; |
||
179 | r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); |
||
180 | s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); |
||
181 | y = r/s; |
||
182 | if(hx < 0x3e800000) { /* x<1/4 */ |
||
183 | return one-(x+x*y); |
||
184 | } else { |
||
185 | r = x*y; |
||
186 | r += (x-half); |
||
187 | return half - r ; |
||
188 | } |
||
189 | } |
||
190 | if(ix < 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */ |
||
191 | s = fabsf(x)-one; |
||
192 | P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); |
||
193 | Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); |
||
194 | if(hx>=0) { |
||
195 | z = one-erx; return z - P/Q; |
||
196 | } else { |
||
197 | z = erx+P/Q; return one+z; |
||
198 | } |
||
199 | } |
||
200 | if (ix < 0x41e00000) { /* |x|<28 */ |
||
201 | x = fabsf(x); |
||
202 | s = one/(x*x); |
||
203 | if(ix< 0x4036DB6D) { /* |x| < 1/.35 ~ 2.857143*/ |
||
204 | R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( |
||
205 | ra5+s*(ra6+s*ra7)))))); |
||
206 | S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( |
||
207 | sa5+s*(sa6+s*(sa7+s*sa8))))))); |
||
208 | } else { /* |x| >= 1/.35 ~ 2.857143 */ |
||
209 | if(hx<0&&ix>=0x40c00000) return two-tiny;/* x < -6 */ |
||
210 | R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( |
||
211 | rb5+s*rb6))))); |
||
212 | S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( |
||
213 | sb5+s*(sb6+s*sb7)))))); |
||
214 | } |
||
215 | GET_FLOAT_WORD(ix,x); |
||
216 | SET_FLOAT_WORD(z,ix&0xfffff000); |
||
217 | r = __ieee754_expf(-z*z-(float)0.5625)* |
||
218 | __ieee754_expf((z-x)*(z+x)+R/S); |
||
219 | if(hx>0) return r/x; else return two-r/x; |
||
220 | } else { |
||
221 | if(hx>0) return tiny*tiny; else return two-tiny; |
||
222 | } |
||
223 | } |