Rev 1618 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | pj | 1 | /* @(#)s_expm1.c 5.1 93/09/24 */ |
2 | /* |
||
3 | * ==================================================== |
||
4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
||
5 | * |
||
6 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
||
7 | * Permission to use, copy, modify, and distribute this |
||
8 | * software is freely granted, provided that this notice |
||
9 | * is preserved. |
||
10 | * ==================================================== |
||
11 | */ |
||
12 | |||
13 | #ifndef lint |
||
14 | static char rcsid[] = "$\Id: s_expm1.c,v 1.2 1995/05/30 05:49:33 rgrimes Exp $"; |
||
15 | #endif |
||
16 | |||
17 | /* expm1(x) |
||
18 | * Returns exp(x)-1, the exponential of x minus 1. |
||
19 | * |
||
20 | * Method |
||
21 | * 1. Argument reduction: |
||
22 | * Given x, find r and integer k such that |
||
23 | * |
||
24 | * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658 |
||
25 | * |
||
26 | * Here a correction term c will be computed to compensate |
||
27 | * the error in r when rounded to a floating-point number. |
||
28 | * |
||
29 | * 2. Approximating expm1(r) by a special rational function on |
||
30 | * the interval [0,0.34658]: |
||
31 | * Since |
||
32 | * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ... |
||
33 | * we define R1(r*r) by |
||
34 | * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r) |
||
35 | * That is, |
||
36 | * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) |
||
37 | * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) |
||
38 | * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ... |
||
39 | * We use a special Reme algorithm on [0,0.347] to generate |
||
40 | * a polynomial of degree 5 in r*r to approximate R1. The |
||
41 | * maximum error of this polynomial approximation is bounded |
||
42 | * by 2**-61. In other words, |
||
43 | * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 |
||
44 | * where Q1 = -1.6666666666666567384E-2, |
||
45 | * Q2 = 3.9682539681370365873E-4, |
||
46 | * Q3 = -9.9206344733435987357E-6, |
||
47 | * Q4 = 2.5051361420808517002E-7, |
||
48 | * Q5 = -6.2843505682382617102E-9; |
||
49 | * (where z=r*r, and the values of Q1 to Q5 are listed below) |
||
50 | * with error bounded by |
||
51 | * | 5 | -61 |
||
52 | * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2 |
||
53 | * | | |
||
54 | * |
||
55 | * expm1(r) = exp(r)-1 is then computed by the following |
||
56 | * specific way which minimize the accumulation rounding error: |
||
57 | * 2 3 |
||
58 | * r r [ 3 - (R1 + R1*r/2) ] |
||
59 | * expm1(r) = r + --- + --- * [--------------------] |
||
60 | * 2 2 [ 6 - r*(3 - R1*r/2) ] |
||
61 | * |
||
62 | * To compensate the error in the argument reduction, we use |
||
63 | * expm1(r+c) = expm1(r) + c + expm1(r)*c |
||
64 | * ~ expm1(r) + c + r*c |
||
65 | * Thus c+r*c will be added in as the correction terms for |
||
66 | * expm1(r+c). Now rearrange the term to avoid optimization |
||
67 | * screw up: |
||
68 | * ( 2 2 ) |
||
69 | * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r ) |
||
70 | * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) |
||
71 | * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 ) |
||
72 | * ( ) |
||
73 | * |
||
74 | * = r - E |
||
75 | * 3. Scale back to obtain expm1(x): |
||
76 | * From step 1, we have |
||
77 | * expm1(x) = either 2^k*[expm1(r)+1] - 1 |
||
78 | * = or 2^k*[expm1(r) + (1-2^-k)] |
||
79 | * 4. Implementation notes: |
||
80 | * (A). To save one multiplication, we scale the coefficient Qi |
||
81 | * to Qi*2^i, and replace z by (x^2)/2. |
||
82 | * (B). To achieve maximum accuracy, we compute expm1(x) by |
||
83 | * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf) |
||
84 | * (ii) if k=0, return r-E |
||
85 | * (iii) if k=-1, return 0.5*(r-E)-0.5 |
||
86 | * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E) |
||
87 | * else return 1.0+2.0*(r-E); |
||
88 | * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1) |
||
89 | * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else |
||
90 | * (vii) return 2^k(1-((E+2^-k)-r)) |
||
91 | * |
||
92 | * Special cases: |
||
93 | * expm1(INF) is INF, expm1(NaN) is NaN; |
||
94 | * expm1(-INF) is -1, and |
||
95 | * for finite argument, only expm1(0)=0 is exact. |
||
96 | * |
||
97 | * Accuracy: |
||
98 | * according to an error analysis, the error is always less than |
||
99 | * 1 ulp (unit in the last place). |
||
100 | * |
||
101 | * Misc. info. |
||
102 | * For IEEE double |
||
103 | * if x > 7.09782712893383973096e+02 then expm1(x) overflow |
||
104 | * |
||
105 | * Constants: |
||
106 | * The hexadecimal values are the intended ones for the following |
||
107 | * constants. The decimal values may be used, provided that the |
||
108 | * compiler will convert from decimal to binary accurately enough |
||
109 | * to produce the hexadecimal values shown. |
||
110 | */ |
||
111 | |||
112 | #include "math.h" |
||
113 | #include "math_private.h" |
||
114 | |||
115 | #ifdef __STDC__ |
||
116 | static const double |
||
117 | #else |
||
118 | static double |
||
119 | #endif |
||
120 | one = 1.0, |
||
121 | huge = 1.0e+300, |
||
122 | tiny = 1.0e-300, |
||
123 | o_threshold = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */ |
||
124 | ln2_hi = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */ |
||
125 | ln2_lo = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */ |
||
126 | invln2 = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */ |
||
127 | /* scaled coefficients related to expm1 */ |
||
128 | Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */ |
||
129 | Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */ |
||
130 | Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */ |
||
131 | Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */ |
||
132 | Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */ |
||
133 | |||
134 | #ifdef __STDC__ |
||
135 | double expm1(double x) |
||
136 | #else |
||
137 | double expm1(x) |
||
138 | double x; |
||
139 | #endif |
||
140 | { |
||
141 | double y,hi,lo,c,t,e,hxs,hfx,r1; |
||
142 | int32_t k,xsb; |
||
143 | u_int32_t hx; |
||
144 | |||
145 | GET_HIGH_WORD(hx,x); |
||
146 | xsb = hx&0x80000000; /* sign bit of x */ |
||
147 | if(xsb==0) y=x; else y= -x; /* y = |x| */ |
||
148 | hx &= 0x7fffffff; /* high word of |x| */ |
||
149 | |||
150 | /* filter out huge and non-finite argument */ |
||
151 | if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */ |
||
152 | if(hx >= 0x40862E42) { /* if |x|>=709.78... */ |
||
153 | if(hx>=0x7ff00000) { |
||
154 | u_int32_t low; |
||
155 | GET_LOW_WORD(low,x); |
||
156 | if(((hx&0xfffff)|low)!=0) |
||
157 | return x+x; /* NaN */ |
||
158 | else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */ |
||
159 | } |
||
160 | if(x > o_threshold) return huge*huge; /* overflow */ |
||
161 | } |
||
162 | if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */ |
||
163 | if(x+tiny<0.0) /* raise inexact */ |
||
164 | return tiny-one; /* return -1 */ |
||
165 | } |
||
166 | } |
||
167 | |||
168 | /* argument reduction */ |
||
169 | if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ |
||
170 | if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ |
||
171 | if(xsb==0) |
||
172 | {hi = x - ln2_hi; lo = ln2_lo; k = 1;} |
||
173 | else |
||
174 | {hi = x + ln2_hi; lo = -ln2_lo; k = -1;} |
||
175 | } else { |
||
176 | k = invln2*x+((xsb==0)?0.5:-0.5); |
||
177 | t = k; |
||
178 | hi = x - t*ln2_hi; /* t*ln2_hi is exact here */ |
||
179 | lo = t*ln2_lo; |
||
180 | } |
||
181 | x = hi - lo; |
||
182 | c = (hi-x)-lo; |
||
183 | } |
||
184 | else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */ |
||
185 | t = huge+x; /* return x with inexact flags when x!=0 */ |
||
186 | return x - (t-(huge+x)); |
||
187 | } |
||
188 | else k = 0; |
||
189 | |||
190 | /* x is now in primary range */ |
||
191 | hfx = 0.5*x; |
||
192 | hxs = x*hfx; |
||
193 | r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5)))); |
||
194 | t = 3.0-r1*hfx; |
||
195 | e = hxs*((r1-t)/(6.0 - x*t)); |
||
196 | if(k==0) return x - (x*e-hxs); /* c is 0 */ |
||
197 | else { |
||
198 | e = (x*(e-c)-c); |
||
199 | e -= hxs; |
||
200 | if(k== -1) return 0.5*(x-e)-0.5; |
||
201 | if(k==1) |
||
202 | if(x < -0.25) return -2.0*(e-(x+0.5)); |
||
203 | else return one+2.0*(x-e); |
||
204 | if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */ |
||
205 | u_int32_t high; |
||
206 | y = one-(e-x); |
||
207 | GET_HIGH_WORD(high,y); |
||
208 | SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */ |
||
209 | return y-one; |
||
210 | } |
||
211 | t = one; |
||
212 | if(k<20) { |
||
213 | u_int32_t high; |
||
214 | SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k)); /* t=1-2^-k */ |
||
215 | y = t-(e-x); |
||
216 | GET_HIGH_WORD(high,y); |
||
217 | SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */ |
||
218 | } else { |
||
219 | u_int32_t high; |
||
220 | SET_HIGH_WORD(t,((0x3ff-k)<<20)); /* 2^-k */ |
||
221 | y = x-(e+t); |
||
222 | y += one; |
||
223 | GET_HIGH_WORD(high,y); |
||
224 | SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */ |
||
225 | } |
||
226 | } |
||
227 | return y; |
||
228 | } |