Rev 1618 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
961 | pj | 1 | /* |
2 | * Project: S.Ha.R.K. |
||
3 | * |
||
4 | * Coordinators: |
||
5 | * Giorgio Buttazzo <giorgio@sssup.it> |
||
6 | * Paolo Gai <pj@gandalf.sssup.it> |
||
7 | * |
||
8 | * Authors : |
||
9 | * Paolo Gai <pj@gandalf.sssup.it> |
||
10 | * Massimiliano Giorgi <massy@gandalf.sssup.it> |
||
11 | * Luca Abeni <luca@gandalf.sssup.it> |
||
12 | * (see the web pages for full authors list) |
||
13 | * |
||
14 | * ReTiS Lab (Scuola Superiore S.Anna - Pisa - Italy) |
||
15 | * |
||
16 | * http://www.sssup.it |
||
17 | * http://retis.sssup.it |
||
18 | * http://shark.sssup.it |
||
19 | */ |
||
20 | |||
21 | /** |
||
22 | ------------ |
||
23 | CVS : $Id: cbs.c,v 1.1 2005-02-25 10:53:02 pj Exp $ |
||
24 | |||
25 | File: $File$ |
||
26 | Revision: $Revision: 1.1 $ |
||
27 | Last update: $Date: 2005-02-25 10:53:02 $ |
||
28 | ------------ |
||
29 | |||
30 | This file contains the aperiodic server CBS (Total Bandwidth Server) |
||
31 | |||
32 | Read CBS.h for further details. |
||
33 | |||
34 | **/ |
||
35 | |||
36 | /* |
||
37 | * Copyright (C) 2000 Paolo Gai |
||
38 | * |
||
39 | * This program is free software; you can redistribute it and/or modify |
||
40 | * it under the terms of the GNU General Public License as published by |
||
41 | * the Free Software Foundation; either version 2 of the License, or |
||
42 | * (at your option) any later version. |
||
43 | * |
||
44 | * This program is distributed in the hope that it will be useful, |
||
45 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
46 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
47 | * GNU General Public License for more details. |
||
48 | * |
||
49 | * You should have received a copy of the GNU General Public License |
||
50 | * along with this program; if not, write to the Free Software |
||
51 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
||
52 | * |
||
53 | */ |
||
54 | |||
55 | |||
56 | #include <cbs/cbs/cbs.h> |
||
1621 | fabio | 57 | #include <arch/stdio.h> |
58 | #include <arch/string.h> |
||
961 | pj | 59 | #include <kernel/model.h> |
60 | #include <kernel/descr.h> |
||
61 | #include <kernel/var.h> |
||
62 | #include <kernel/func.h> |
||
63 | |||
64 | #include <tracer.h> |
||
65 | |||
66 | /*+ 4 debug purposes +*/ |
||
67 | #undef CBS_TEST |
||
68 | #undef CBS_COUNTER |
||
69 | |||
70 | #ifdef TESTG |
||
71 | #include "drivers/glib.h" |
||
72 | TIME x,oldx; |
||
73 | extern TIME starttime; |
||
74 | #endif |
||
75 | |||
76 | |||
77 | /*+ Status used in the level +*/ |
||
78 | #define CBS_IDLE APER_STATUS_BASE /*+ waiting the activation +*/ |
||
79 | #define CBS_ZOMBIE APER_STATUS_BASE+1 /*+ waiting the period end +*/ |
||
80 | |||
81 | /*+ task flags +*/ |
||
82 | #define CBS_SAVE_ARRIVALS 1 |
||
83 | #define CBS_APERIODIC 2 |
||
84 | #define CBS_SLEEP 4 |
||
85 | |||
86 | /*+ the level redefinition for the Total Bandwidth Server level +*/ |
||
87 | typedef struct { |
||
88 | level_des l; /*+ the standard level descriptor +*/ |
||
89 | |||
90 | /* The wcet are stored in the task descriptor, but we need |
||
91 | an array for the deadlines. We can't use the timespec_priority |
||
92 | field because it is used by the master level!!!... |
||
93 | Notice that however the use of the timespec_priority field |
||
94 | does not cause any problem... */ |
||
95 | |||
96 | struct timespec cbs_dline[MAX_PROC]; /*+ CBS deadlines +*/ |
||
97 | |||
98 | TIME period[MAX_PROC]; /*+ CBS activation period +*/ |
||
99 | |||
100 | struct timespec reactivation_time[MAX_PROC]; |
||
101 | /*+ the time at witch the reactivation timer is post +*/ |
||
102 | int reactivation_timer[MAX_PROC]; |
||
103 | /*+ the recativation timer +*/ |
||
104 | |||
105 | int nact[MAX_PROC]; /*+ number of pending activations +*/ |
||
106 | |||
107 | BYTE flag[MAX_PROC]; /*+ task flags +*/ |
||
108 | |||
109 | int flags; /*+ the init flags... +*/ |
||
110 | |||
111 | bandwidth_t U; /*+ the used bandwidth by the server +*/ |
||
112 | |||
113 | LEVEL scheduling_level; |
||
114 | |||
115 | } CBS_level_des; |
||
116 | |||
117 | #ifdef CBS_COUNTER |
||
118 | int cbs_counter=0; |
||
119 | int cbs_counter2=0; |
||
120 | #endif |
||
121 | |||
122 | |||
123 | static void CBS_activation(CBS_level_des *lev, |
||
124 | PID p, |
||
125 | struct timespec *acttime) |
||
126 | { |
||
127 | JOB_TASK_MODEL job; |
||
128 | |||
129 | /* we have to check if the deadline and the wcet are correct before |
||
130 | activating a new task or an old task... */ |
||
131 | |||
132 | /* check 1: if the deadline is before than the actual scheduling time */ |
||
133 | /* check 2: if ( avail_time >= (cbs_dline - acttime)* (wcet/period) ) |
||
134 | (rule 7 in the CBS article!) */ |
||
135 | |||
136 | /* CHANGES by Anton Cervin 2004-06-23: |
||
137 | a) only check: if ( acttime + (avail_time * period) / wcet > cbs_dline ) |
||
138 | b) without (long long) in the computation we can have an overflow!! */ |
||
139 | |||
140 | TIME t; |
||
141 | struct timespec t2; |
||
142 | |||
143 | t = ((long long)lev->period[p] * (long long)proc_table[p].avail_time) |
||
144 | / (long long)proc_table[p].wcet; |
||
145 | t2 = *acttime; |
||
146 | ADDUSEC2TIMESPEC(t, &t2); |
||
147 | |||
148 | if (TIMESPEC_A_GT_B(&t2, &lev->cbs_dline[p])) { |
||
149 | |||
150 | /* we modify the deadline ... */ |
||
151 | TIMESPEC_ASSIGN(&lev->cbs_dline[p], acttime); |
||
152 | ADDUSEC2TIMESPEC(lev->period[p], &lev->cbs_dline[p]); |
||
153 | |||
154 | /* and the capacity */ |
||
155 | proc_table[p].avail_time = proc_table[p].wcet; |
||
156 | } |
||
157 | |||
158 | #ifdef TESTG |
||
159 | if (starttime && p == 3) { |
||
160 | oldx = x; |
||
161 | x = ((lev->cbs_dline[p].tv_sec*1000000+lev->cbs_dline[p].tv_nsec/1000)/5000 - starttime) + 20; |
||
162 | // kern_printf("(a%d)",lev->cbs_dline[p].tv_sec*1000000+lev->cbs_dline[p].tv_nsec/1000); |
||
163 | if (oldx > x) kern_raise(XUNSPECIFIED_EXCEPTION, exec_shadow); |
||
164 | if (x<640) |
||
165 | grx_plot(x, 15, 8); |
||
166 | } |
||
167 | #endif |
||
168 | |||
169 | /* and, finally, we reinsert the task in the master level */ |
||
170 | job_task_default_model(job, lev->cbs_dline[p]); |
||
171 | job_task_def_noexc(job); |
||
172 | level_table[ lev->scheduling_level ]-> |
||
173 | private_insert(lev->scheduling_level, p, (TASK_MODEL *)&job); |
||
174 | } |
||
175 | |||
176 | static void CBS_avail_time_check(CBS_level_des *lev, PID p) |
||
177 | { |
||
178 | /* there is a while because if the wcet is << than the system tick |
||
179 | we need to postpone the deadline many times */ |
||
180 | while (proc_table[p].avail_time <= 0) { |
||
181 | ADDUSEC2TIMESPEC(lev->period[p], &lev->cbs_dline[p]); |
||
182 | proc_table[p].avail_time += proc_table[p].wcet; |
||
183 | |||
184 | #ifdef TESTG |
||
185 | if (starttime && p == 3) { |
||
186 | oldx = x; |
||
187 | x = ((lev->cbs_dline[p].tv_sec*1000000+lev->cbs_dline[p].tv_nsec/1000)/5000 - starttime) + 20; |
||
188 | // kern_printf("(e%d avail%d)",lev->cbs_dline[p].tv_sec*1000000+lev->cbs_dline[p].tv_nsec/1000,proc_table[p].avail_time); |
||
189 | if (oldx > x) kern_raise(XUNSPECIFIED_EXCEPTION, exec_shadow); |
||
190 | if (x<640) |
||
191 | grx_plot(x, 15, 2); |
||
192 | } |
||
193 | #endif |
||
194 | } |
||
195 | } |
||
196 | |||
197 | |||
198 | /* this is the periodic reactivation of the task... it is posted only |
||
199 | if the task is a periodic task */ |
||
200 | static void CBS_timer_reactivate(void *par) |
||
201 | { |
||
202 | PID p = (PID) par; |
||
203 | CBS_level_des *lev; |
||
204 | |||
205 | lev = (CBS_level_des *)level_table[proc_table[p].task_level]; |
||
206 | |||
207 | #ifdef CBS_COUNTER |
||
208 | if (p==5) cbs_counter++; |
||
209 | #endif |
||
210 | |||
211 | if (lev->flag[p] & CBS_SLEEP && proc_table[p].status == CBS_IDLE) { |
||
212 | proc_table[p].status = SLEEP; |
||
213 | proc_table[p].avail_time = proc_table[p].wcet; |
||
214 | NULL_TIMESPEC(&lev->cbs_dline[p]); |
||
215 | return; |
||
216 | } |
||
217 | |||
218 | if (proc_table[p].status == CBS_IDLE) { |
||
219 | /* the task has finished the current activation and must be |
||
220 | reactivated */ |
||
221 | CBS_activation(lev,p,&lev->reactivation_time[p]); |
||
222 | |||
223 | event_need_reschedule(); |
||
224 | } |
||
225 | else if (lev->flag[p] & CBS_SAVE_ARRIVALS) |
||
226 | /* the task has not completed the current activation, so we save |
||
227 | the activation incrementing nact... */ |
||
228 | lev->nact[p]++; |
||
229 | |||
230 | /* repost the event at the next period end... */ |
||
231 | ADDUSEC2TIMESPEC(lev->period[p], &lev->reactivation_time[p]); |
||
232 | lev->reactivation_timer[p] = kern_event_post(&lev->reactivation_time[p], |
||
233 | CBS_timer_reactivate, |
||
234 | (void *)p); |
||
235 | #ifdef CBS_COUNTER |
||
236 | if (p==5) cbs_counter2++; |
||
237 | #endif |
||
238 | /* tracer stuff */ |
||
239 | TRACER_LOGEVENT(FTrace_EVT_task_timer,(unsigned short int)proc_table[p].context,(unsigned int)proc_table[p].task_level); |
||
240 | |||
241 | } |
||
242 | |||
243 | /*+ this function is called when a killed or ended task reach the |
||
244 | period end +*/ |
||
245 | static void CBS_timer_zombie(void *par) |
||
246 | { |
||
247 | PID p = (PID) par; |
||
248 | CBS_level_des *lev; |
||
249 | |||
250 | lev = (CBS_level_des *)level_table[proc_table[p].task_level]; |
||
251 | |||
252 | /* we finally put the task in the ready queue */ |
||
253 | proc_table[p].status = FREE; |
||
254 | iq_insertfirst(p,&freedesc); |
||
255 | |||
256 | /* and free the allocated bandwidth */ |
||
257 | lev->U -= (MAX_BANDWIDTH/lev->period[p]) * proc_table[p].wcet; |
||
258 | |||
259 | } |
||
260 | |||
261 | |||
262 | /* The on-line guarantee is enabled only if the appropriate flag is set... */ |
||
263 | static int CBS_public_guarantee(LEVEL l, bandwidth_t *freebandwidth) |
||
264 | { |
||
265 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
266 | |||
267 | if (*freebandwidth >= lev->U) { |
||
268 | *freebandwidth -= lev->U; |
||
269 | return 1; |
||
270 | } |
||
271 | else |
||
272 | return 0; |
||
273 | } |
||
274 | |||
275 | static int CBS_public_create(LEVEL l, PID p, TASK_MODEL *m) |
||
276 | { |
||
277 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
278 | SOFT_TASK_MODEL *soft; |
||
279 | |||
280 | if (m->pclass != SOFT_PCLASS) return -1; |
||
281 | if (m->level != 0 && m->level != l) return -1; |
||
282 | soft = (SOFT_TASK_MODEL *)m; |
||
283 | if (!(soft->met && soft->period)) return -1; |
||
284 | |||
285 | soft = (SOFT_TASK_MODEL *)m; |
||
286 | |||
287 | if (lev->flags & CBS_ENABLE_GUARANTEE) { |
||
288 | bandwidth_t b; |
||
289 | b = (MAX_BANDWIDTH / soft->period) * soft->met; |
||
290 | |||
291 | /* really update lev->U, checking an overflow... */ |
||
292 | if (MAX_BANDWIDTH - lev->U > b) |
||
293 | lev->U += b; |
||
294 | else |
||
295 | return -1; |
||
296 | } |
||
297 | |||
298 | /* Enable wcet check */ |
||
299 | proc_table[p].avail_time = soft->met; |
||
300 | proc_table[p].wcet = soft->met; |
||
301 | proc_table[p].control |= CONTROL_CAP; |
||
302 | |||
303 | lev->nact[p] = 0; |
||
304 | lev->period[p] = soft->period; |
||
305 | NULL_TIMESPEC(&lev->cbs_dline[p]); |
||
306 | |||
307 | if (soft->periodicity == APERIODIC) |
||
308 | lev->flag[p] = CBS_APERIODIC; |
||
309 | else |
||
310 | lev->flag[p] = 0; |
||
311 | |||
312 | if (soft->arrivals == SAVE_ARRIVALS) |
||
313 | lev->flag[p] |= CBS_SAVE_ARRIVALS; |
||
314 | |||
315 | return 0; /* OK, also if the task cannot be guaranteed... */ |
||
316 | } |
||
317 | |||
318 | static void CBS_public_detach(LEVEL l, PID p) |
||
319 | { |
||
320 | /* the CBS level doesn't introduce any dinamic allocated new field. |
||
321 | we have only to decrement the allocated bandwidth */ |
||
322 | |||
323 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
324 | |||
325 | if (lev->flags & CBS_ENABLE_GUARANTEE) { |
||
326 | lev->U -= (MAX_BANDWIDTH / lev->period[p]) * proc_table[p].wcet; |
||
327 | } |
||
328 | } |
||
329 | |||
330 | static int CBS_public_eligible(LEVEL l, PID p) |
||
331 | { |
||
332 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
333 | JOB_TASK_MODEL job; |
||
334 | |||
335 | /* we have to check if the deadline and the wcet are correct... |
||
336 | if the CBS level schedules in background with respect to others |
||
337 | levels, there can be the case in witch a task is scheduled by |
||
338 | schedule_time > CBS_deadline; in this case (not covered in the |
||
339 | article because if there is only the standard scheduling policy |
||
340 | this never apply) we reassign the deadline */ |
||
341 | |||
342 | if ( TIMESPEC_A_LT_B(&lev->cbs_dline[p], &schedule_time) ) { |
||
343 | /* we kill the current activation */ |
||
344 | level_table[ lev->scheduling_level ]-> |
||
345 | private_extract(lev->scheduling_level, p); |
||
346 | |||
347 | /* we modify the deadline ... */ |
||
348 | TIMESPEC_ASSIGN(&lev->cbs_dline[p], &schedule_time); |
||
349 | ADDUSEC2TIMESPEC(lev->period[p], &lev->cbs_dline[p]); |
||
350 | |||
351 | /* and the capacity */ |
||
352 | proc_table[p].avail_time = proc_table[p].wcet; |
||
353 | |||
354 | /* and, finally, we reinsert the task in the master level */ |
||
355 | job_task_default_model(job, lev->cbs_dline[p]); |
||
356 | job_task_def_noexc(job); |
||
357 | level_table[ lev->scheduling_level ]-> |
||
358 | private_insert(lev->scheduling_level, p, (TASK_MODEL *)&job); |
||
359 | |||
360 | return -1; |
||
361 | } |
||
362 | |||
363 | return 0; |
||
364 | } |
||
365 | |||
366 | static void CBS_public_dispatch(LEVEL l, PID p, int nostop) |
||
367 | { |
||
368 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
369 | level_table[ lev->scheduling_level ]-> |
||
370 | private_dispatch(lev->scheduling_level,p,nostop); |
||
371 | } |
||
372 | |||
373 | static void CBS_public_epilogue(LEVEL l, PID p) |
||
374 | { |
||
375 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
376 | JOB_TASK_MODEL job; |
||
377 | |||
378 | /* check if the wcet is finished... */ |
||
379 | if ( proc_table[p].avail_time <= 0) { |
||
380 | /* we kill the current activation */ |
||
381 | level_table[ lev->scheduling_level ]-> |
||
382 | private_extract(lev->scheduling_level, p); |
||
383 | |||
384 | /* we modify the deadline according to rule 4 ... */ |
||
385 | CBS_avail_time_check(lev, p); |
||
386 | |||
387 | /* and, finally, we reinsert the task in the master level */ |
||
388 | job_task_default_model(job, lev->cbs_dline[p]); |
||
389 | job_task_def_noexc(job); |
||
390 | level_table[ lev->scheduling_level ]-> |
||
391 | private_insert(lev->scheduling_level, p, (TASK_MODEL *)&job); |
||
392 | // kern_printf("epil : dl %d per %d p %d |\n", |
||
393 | // lev->cbs_dline[p].tv_nsec/1000,lev->period[p],p); |
||
394 | |||
395 | } |
||
396 | else |
||
397 | /* the task has been preempted. it returns into the ready queue by |
||
398 | calling the guest_epilogue... */ |
||
399 | level_table[ lev->scheduling_level ]-> |
||
400 | private_epilogue(lev->scheduling_level,p); |
||
401 | } |
||
402 | |||
403 | static void CBS_public_activate(LEVEL l, PID p, struct timespec *t) |
||
404 | { |
||
405 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
406 | |||
407 | if (lev->flag[p] & CBS_SLEEP) { |
||
408 | lev->flag[p] &= ~CBS_SLEEP; |
||
409 | if (proc_table[p].status != SLEEP) return; |
||
410 | } |
||
411 | |||
412 | /* save activation (only if needed... */ |
||
413 | if (proc_table[p].status != SLEEP) { |
||
414 | if (lev->flag[p] & CBS_SAVE_ARRIVALS) |
||
415 | lev->nact[p]++; |
||
416 | return; |
||
417 | } |
||
418 | |||
419 | CBS_activation(lev, p, t); |
||
420 | |||
421 | /* Set the reactivation timer */ |
||
422 | if (!(lev->flag[p] & CBS_APERIODIC)) |
||
423 | { |
||
424 | /* we cannot use the deadline computed by CBS_activation because |
||
425 | the deadline may be != from actual_time + period |
||
426 | (if we call the task_activate after a task_sleep, and the |
||
427 | deadline was postponed a lot...) */ |
||
428 | TIMESPEC_ASSIGN(&lev->reactivation_time[p], t); |
||
429 | ADDUSEC2TIMESPEC(lev->period[p], &lev->reactivation_time[p]); |
||
430 | // TIMESPEC_ASSIGN(&lev->reactivation_time[p], &lev->cbs_dline[p]); |
||
431 | lev->reactivation_timer[p] = kern_event_post(&lev->reactivation_time[p], |
||
432 | CBS_timer_reactivate, |
||
433 | (void *)p); |
||
434 | #ifdef CBS_COUNTER |
||
435 | if (p==5) cbs_counter2++; |
||
436 | #endif |
||
437 | } |
||
438 | // kern_printf("act : %d %d |",lev->cbs_dline[p].tv_nsec/1000,p); |
||
439 | } |
||
440 | |||
441 | static void CBS_public_unblock(LEVEL l, PID p) |
||
442 | { |
||
443 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
444 | struct timespec acttime; |
||
445 | |||
446 | kern_gettime(&acttime); |
||
447 | |||
448 | CBS_activation(lev,p,&acttime); |
||
449 | } |
||
450 | |||
451 | static void CBS_public_block(LEVEL l, PID p) |
||
452 | { |
||
453 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
454 | |||
455 | /* check if the wcet is finished... */ |
||
456 | CBS_avail_time_check(lev, p); |
||
457 | |||
458 | level_table[ lev->scheduling_level ]-> |
||
459 | private_extract(lev->scheduling_level,p); |
||
460 | } |
||
461 | |||
462 | static int CBS_public_message(LEVEL l, PID p, void *m) |
||
463 | { |
||
464 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
465 | |||
466 | switch((long)(m)) { |
||
467 | |||
468 | case (long)(NULL): |
||
469 | |||
470 | /* check if the wcet is finished... */ |
||
471 | CBS_avail_time_check(lev, p); |
||
472 | |||
473 | if (lev->nact[p]) { |
||
474 | /* continue!!!! */ |
||
475 | lev->nact[p]--; |
||
476 | level_table[ lev->scheduling_level ]-> |
||
477 | private_epilogue(lev->scheduling_level,p); |
||
478 | } else { |
||
479 | level_table[ lev->scheduling_level ]-> |
||
480 | private_extract(lev->scheduling_level,p); |
||
481 | |||
482 | if (lev->flag[p] & CBS_APERIODIC) |
||
483 | proc_table[p].status = SLEEP; |
||
484 | else /* the task is soft_periodic */ |
||
485 | proc_table[p].status = CBS_IDLE; |
||
486 | } |
||
487 | |||
488 | jet_update_endcycle(); /* Update the Jet data... */ |
||
489 | TRACER_LOGEVENT(FTrace_EVT_task_end_cycle,(unsigned short int)proc_table[p].context,(unsigned int)l); |
||
490 | |||
491 | break; |
||
492 | |||
493 | case 1: |
||
494 | |||
495 | lev->flag[p] |= CBS_SLEEP; |
||
496 | TRACER_LOGEVENT(FTrace_EVT_task_disable,(unsigned short int)proc_table[p].context,(unsigned int)l); |
||
497 | |||
498 | break; |
||
499 | |||
500 | } |
||
501 | |||
502 | return 0; |
||
503 | |||
504 | } |
||
505 | |||
506 | static void CBS_public_end(LEVEL l, PID p) |
||
507 | { |
||
508 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
509 | |||
510 | /* check if the wcet is finished... */ |
||
511 | CBS_avail_time_check(lev, p); |
||
512 | |||
513 | level_table[ lev->scheduling_level ]-> |
||
514 | private_extract(lev->scheduling_level,p); |
||
515 | |||
516 | /* we delete the reactivation timer */ |
||
517 | if (!(lev->flag[p] & CBS_APERIODIC)) { |
||
518 | kern_event_delete(lev->reactivation_timer[p]); |
||
519 | lev->reactivation_timer[p] = -1; |
||
520 | } |
||
521 | |||
522 | /* Finally, we post the zombie event. when the end period is reached, |
||
523 | the task descriptor and banwidth are freed */ |
||
524 | proc_table[p].status = CBS_ZOMBIE; |
||
525 | lev->reactivation_timer[p] = kern_event_post(&lev->cbs_dline[p], |
||
526 | CBS_timer_zombie, |
||
527 | (void *)p); |
||
528 | } |
||
529 | |||
530 | /* Registration functions */ |
||
531 | |||
532 | /*+ Registration function: |
||
533 | int flags the init flags ... see CBS.h +*/ |
||
534 | LEVEL CBS_register_level(int flags, LEVEL master) |
||
535 | { |
||
536 | LEVEL l; /* the level that we register */ |
||
537 | CBS_level_des *lev; /* for readableness only */ |
||
538 | PID i; /* a counter */ |
||
539 | |||
540 | printk("CBS_register_level\n"); |
||
541 | |||
542 | /* request an entry in the level_table */ |
||
543 | l = level_alloc_descriptor(sizeof(CBS_level_des)); |
||
544 | |||
545 | lev = (CBS_level_des *)level_table[l]; |
||
546 | |||
547 | /* fill the standard descriptor */ |
||
548 | if (flags & CBS_ENABLE_GUARANTEE) |
||
549 | lev->l.public_guarantee = CBS_public_guarantee; |
||
550 | else |
||
551 | lev->l.public_guarantee = NULL; |
||
552 | lev->l.public_create = CBS_public_create; |
||
553 | lev->l.public_detach = CBS_public_detach; |
||
554 | lev->l.public_end = CBS_public_end; |
||
555 | lev->l.public_eligible = CBS_public_eligible; |
||
556 | lev->l.public_dispatch = CBS_public_dispatch; |
||
557 | lev->l.public_epilogue = CBS_public_epilogue; |
||
558 | lev->l.public_activate = CBS_public_activate; |
||
559 | lev->l.public_unblock = CBS_public_unblock; |
||
560 | lev->l.public_block = CBS_public_block; |
||
561 | lev->l.public_message = CBS_public_message; |
||
562 | |||
563 | /* fill the CBS descriptor part */ |
||
564 | for (i=0; i<MAX_PROC; i++) { |
||
565 | NULL_TIMESPEC(&lev->cbs_dline[i]); |
||
566 | lev->period[i] = 0; |
||
567 | NULL_TIMESPEC(&lev->reactivation_time[i]); |
||
568 | lev->reactivation_timer[i] = -1; |
||
569 | lev->nact[i] = 0; |
||
570 | lev->flag[i] = 0; |
||
571 | } |
||
572 | |||
573 | |||
574 | lev->U = 0; |
||
575 | |||
576 | lev->scheduling_level = master; |
||
577 | |||
578 | lev->flags = flags; |
||
579 | |||
580 | return l; |
||
581 | } |
||
582 | |||
583 | bandwidth_t CBS_usedbandwidth(LEVEL l) |
||
584 | { |
||
585 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
586 | |||
587 | return lev->U; |
||
588 | } |
||
589 | |||
590 | int CBS_get_nact(LEVEL l, PID p) |
||
591 | { |
||
592 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
593 | |||
594 | return lev->nact[p]; |
||
595 | } |
||
596 |