Subversion Repositories shark

Rev

Rev 3 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 pj 1
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
2
<HTML>
3
<HEAD>
4
<!-- This HTML file has been created by texi2html 1.52
5
     from fftw.texi on 18 May 1999 -->
6
 
7
<TITLE>FFTW - Tutorial</TITLE>
8
</HEAD>
9
<BODY TEXT="#000000" BGCOLOR="#FFFFFF">
10
Go to the <A HREF="fftw_1.html">first</A>, <A HREF="fftw_1.html">previous</A>, <A HREF="fftw_3.html">next</A>, <A HREF="fftw_10.html">last</A> section, <A HREF="fftw_toc.html">table of contents</A>.
11
<P><HR><P>
12
 
13
 
14
<H1><A NAME="SEC2">Tutorial</A></H1>
15
<P>
16
<A NAME="IDX14"></A>
17
This chapter describes the basic usage of FFTW, i.e., how to compute the
18
Fourier transform of a single array.  This chapter tells the truth, but
19
not the <EM>whole</EM> truth. Specifically, FFTW implements additional
20
routines and flags, providing extra functionality, that are not
21
documented here.  See Section <A HREF="fftw_3.html#SEC16">FFTW Reference</A>, for more complete information.
22
(Note that you need to compile and install FFTW before you can use it in
23
a program.  See Section <A HREF="fftw_6.html#SEC66">Installation and Customization</A>, for the details of
24
the installation.)
25
 
26
 
27
<P>
28
This tutorial chapter is structured as follows.  Section <A HREF="fftw_2.html#SEC3">Complex One-dimensional Transforms Tutorial</A> describes the basic usage of the
29
one-dimensional transform of complex data.  Section <A HREF="fftw_2.html#SEC4">Complex Multi-dimensional Transforms Tutorial</A> describes the basic usage of the
30
multi-dimensional transform of complex data.  Section <A HREF="fftw_2.html#SEC5">Real One-dimensional Transforms Tutorial</A> describes the one-dimensional transform of real
31
data and its inverse.  Finally, Section <A HREF="fftw_2.html#SEC6">Real Multi-dimensional Transforms Tutorial</A> describes the multi-dimensional transform of real data and its
32
inverse.  We recommend that you read these sections in the order that
33
they are presented.  We then discuss two topics in detail.  In
34
Section <A HREF="fftw_2.html#SEC7">Multi-dimensional Array Format</A>, we discuss the various
35
alternatives for storing multi-dimensional arrays in memory.  Section <A HREF="fftw_2.html#SEC13">Words of Wisdom</A> shows how you can save FFTW's plans for future use.
36
 
37
 
38
 
39
 
40
<H2><A NAME="SEC3">Complex One-dimensional Transforms Tutorial</A></H2>
41
<P>
42
<A NAME="IDX15"></A>
43
<A NAME="IDX16"></A>
44
 
45
 
46
<P>
47
The basic usage of FFTW is simple.  A typical call to FFTW looks like:
48
 
49
 
50
 
51
<PRE>
52
#include &#60;fftw.h&#62;
53
...
54
{
55
     fftw_complex in[N], out[N];
56
     fftw_plan p;
57
     ...
58
     p = fftw_create_plan(N, FFTW_FORWARD, FFTW_ESTIMATE);
59
     ...
60
     fftw_one(p, in, out);
61
     ...
62
     fftw_destroy_plan(p);  
63
}
64
</PRE>
65
 
66
<P>
67
The first thing we do is to create a <EM>plan</EM>, which is an object
68
<A NAME="IDX17"></A>
69
that contains all the data that FFTW needs to compute the FFT, using the
70
following function:
71
 
72
 
73
 
74
<PRE>
75
fftw_plan fftw_create_plan(int n, fftw_direction dir, int flags);
76
</PRE>
77
 
78
<P>
79
<A NAME="IDX18"></A>
80
<A NAME="IDX19"></A>
81
<A NAME="IDX20"></A>
82
 
83
 
84
<P>
85
The first argument, <CODE>n</CODE>, is the size of the transform you are
86
trying to compute.  The size <CODE>n</CODE> can be any positive integer, but
87
sizes that are products of small factors are transformed most
88
efficiently.  The second argument, <CODE>dir</CODE>, can be either
89
<CODE>FFTW_FORWARD</CODE> or <CODE>FFTW_BACKWARD</CODE>, and indicates the direction
90
of the transform you
91
<A NAME="IDX21"></A>
92
<A NAME="IDX22"></A>
93
are interested in.  Alternatively, you can use the sign of the exponent
94
in the transform, -1 or +1, which corresponds to
95
<CODE>FFTW_FORWARD</CODE> or <CODE>FFTW_BACKWARD</CODE> respectively.  The
96
<CODE>flags</CODE> argument is either <CODE>FFTW_MEASURE</CODE> or
97
<A NAME="IDX23"></A>
98
<CODE>FFTW_ESTIMATE</CODE>.  <CODE>FFTW_MEASURE</CODE> means that FFTW actually runs
99
<A NAME="IDX24"></A>
100
and measures the execution time of several FFTs in order to find the
101
best way to compute the transform of size <CODE>n</CODE>.  This may take some
102
time, depending on your installation and on the precision of the timer
103
in your machine.  <CODE>FFTW_ESTIMATE</CODE>, on the contrary, does not run
104
any computation, and just builds a
105
<A NAME="IDX25"></A>
106
reasonable plan, which may be sub-optimal.  In other words, if your
107
program performs many transforms of the same size and initialization
108
time is not important, use <CODE>FFTW_MEASURE</CODE>; otherwise use the
109
estimate.  (A compromise between these two extremes exists.  See Section <A HREF="fftw_2.html#SEC13">Words of Wisdom</A>.)
110
 
111
 
112
<P>
113
Once the plan has been created, you can use it as many times as you like
114
for transforms on arrays of the same size.  When you are done with the
115
plan, you deallocate it by calling <CODE>fftw_destroy_plan(plan)</CODE>.
116
<A NAME="IDX26"></A>
117
 
118
 
119
<P>
120
The transform itself is computed by passing the plan along with the
121
input and output arrays to <CODE>fftw_one</CODE>:
122
 
123
 
124
 
125
<PRE>
126
void fftw_one(fftw_plan plan, fftw_complex *in, fftw_complex *out);
127
</PRE>
128
 
129
<P>
130
<A NAME="IDX27"></A>
131
 
132
 
133
<P>
134
Note that the transform is out of place: <CODE>in</CODE> and <CODE>out</CODE> must
135
point to distinct arrays. It operates on data of type
136
<CODE>fftw_complex</CODE>, a data structure with real (<CODE>in[i].re</CODE>) and
137
imaginary (<CODE>in[i].im</CODE>) floating-point components.  The <CODE>in</CODE>
138
and <CODE>out</CODE> arrays should have the length specified when the plan was
139
created.  An alternative function, <CODE>fftw</CODE>, allows you to
140
efficiently perform multiple and/or strided transforms (see Section <A HREF="fftw_3.html#SEC16">FFTW Reference</A>).
141
<A NAME="IDX28"></A>
142
 
143
 
144
<P>
145
The DFT results are stored in-order in the array <CODE>out</CODE>, with the
146
zero-frequency (DC) component in <CODE>out[0]</CODE>.
147
<A NAME="IDX29"></A>
148
The array <CODE>in</CODE> is not modified.  Users should note that FFTW
149
computes an unnormalized DFT, the sign of whose exponent is given by the
150
<CODE>dir</CODE> parameter of <CODE>fftw_create_plan</CODE>.  Thus, computing a
151
forward followed by a backward transform (or vice versa) results in the
152
original array scaled by <CODE>n</CODE>.  See Section <A HREF="fftw_3.html#SEC23">What FFTW Really Computes</A>,
153
for the definition of DFT.
154
<A NAME="IDX30"></A>
155
 
156
 
157
<P>
158
A program using FFTW should be linked with <CODE>-lfftw -lm</CODE> on Unix
159
systems, or with the FFTW and standard math libraries in general.
160
<A NAME="IDX31"></A>
161
 
162
 
163
 
164
 
165
<H2><A NAME="SEC4">Complex Multi-dimensional Transforms Tutorial</A></H2>
166
<P>
167
<A NAME="IDX32"></A>
168
<A NAME="IDX33"></A>
169
 
170
 
171
<P>
172
FFTW can also compute transforms of any number of dimensions
173
(<EM>rank</EM>).  The syntax is similar to that for the one-dimensional
174
<A NAME="IDX34"></A>
175
transforms, with <SAMP>`fftw_'</SAMP> replaced by <SAMP>`fftwnd_'</SAMP> (which stands
176
for "<CODE>fftw</CODE> in <CODE>N</CODE> dimensions").
177
 
178
 
179
<P>
180
As before, we <CODE>#include &#60;fftw.h&#62;</CODE> and create a plan for the
181
transforms, this time of type <CODE>fftwnd_plan</CODE>:
182
 
183
 
184
 
185
<PRE>
186
fftwnd_plan fftwnd_create_plan(int rank, const int *n,
187
                               fftw_direction dir, int flags);
188
</PRE>
189
 
190
<P>
191
<A NAME="IDX35"></A>
192
<A NAME="IDX36"></A>
193
<A NAME="IDX37"></A>
194
 
195
 
196
<P>
197
<CODE>rank</CODE> is the dimensionality of the array, and can be any
198
non-negative integer.  The next argument, <CODE>n</CODE>, is a pointer to an
199
integer array of length <CODE>rank</CODE> containing the (positive) sizes of
200
each dimension of the array.  (Note that the array will be stored in
201
row-major order. See Section <A HREF="fftw_2.html#SEC7">Multi-dimensional Array Format</A>, for information
202
on row-major order.)  The last two parameters are the same as in
203
<CODE>fftw_create_plan</CODE>.  We now, however, have an additional possible
204
flag, <CODE>FFTW_IN_PLACE</CODE>, since <CODE>fftwnd</CODE> supports true in-place
205
<A NAME="IDX38"></A>
206
<A NAME="IDX39"></A>
207
<A NAME="IDX40"></A>
208
transforms.  Multiple flags are combined using a bitwise <EM>or</EM>
209
(<SAMP>`|'</SAMP>).  (An <EM>in-place</EM> transform is one in which the output
210
data overwrite the input data.  It thus requires half as much memory
211
as--and is often faster than--its opposite, an <EM>out-of-place</EM>
212
transform.)
213
<A NAME="IDX41"></A>
214
<A NAME="IDX42"></A>
215
 
216
 
217
<P>
218
For two- and three-dimensional transforms, FFTWND provides alternative
219
routines that accept the sizes of each dimension directly, rather than
220
indirectly through a rank and an array of sizes.  These are otherwise
221
identical to <CODE>fftwnd_create_plan</CODE>, and are sometimes more
222
convenient:
223
 
224
 
225
 
226
<PRE>
227
fftwnd_plan fftw2d_create_plan(int nx, int ny,
228
                               fftw_direction dir, int flags);
229
fftwnd_plan fftw3d_create_plan(int nx, int ny, int nz,
230
                               fftw_direction dir, int flags);
231
</PRE>
232
 
233
<P>
234
<A NAME="IDX43"></A>
235
<A NAME="IDX44"></A>
236
 
237
 
238
<P>
239
Once the plan has been created, you can use it any number of times for
240
transforms of the same size.  When you do not need a plan anymore, you
241
can deallocate the plan by calling <CODE>fftwnd_destroy_plan(plan)</CODE>.
242
<A NAME="IDX45"></A>
243
 
244
 
245
<P>
246
Given a plan, you can compute the transform of an array of data by
247
calling:
248
 
249
 
250
 
251
<PRE>
252
void fftwnd_one(fftwnd_plan plan, fftw_complex *in, fftw_complex *out);
253
</PRE>
254
 
255
<P>
256
<A NAME="IDX46"></A>
257
 
258
 
259
<P>
260
Here, <CODE>in</CODE> and <CODE>out</CODE> point to multi-dimensional arrays in
261
row-major order, of the size specified when the plan was created.  In
262
the case of an in-place transform, the <CODE>out</CODE> parameter is ignored
263
and the output data are stored in the <CODE>in</CODE> array.  The results are
264
stored in-order, unnormalized, with the zero-frequency component in
265
<CODE>out[0]</CODE>.
266
<A NAME="IDX47"></A>
267
A forward followed by a backward transform (or vice-versa) yields the
268
original data multiplied by the size of the array (i.e. the product of
269
the dimensions).  See Section <A HREF="fftw_3.html#SEC28">What FFTWND Really Computes</A>, for a discussion
270
of what FFTWND computes.
271
<A NAME="IDX48"></A>
272
 
273
 
274
<P>
275
For example, code to perform an in-place FFT of a three-dimensional
276
array might look like:
277
 
278
 
279
 
280
<PRE>
281
#include &#60;fftw.h&#62;
282
...
283
{
284
     fftw_complex in[L][M][N];
285
     fftwnd_plan p;
286
     ...
287
     p = fftw3d_create_plan(L, M, N, FFTW_FORWARD,
288
                            FFTW_MEASURE | FFTW_IN_PLACE);
289
     ...
290
     fftwnd_one(p, &#38;in[0][0][0], NULL);
291
     ...
292
     fftwnd_destroy_plan(p);  
293
}
294
</PRE>
295
 
296
<P>
297
Note that <CODE>in</CODE> is a statically-declared array, which is
298
automatically in row-major order, but we must take the address of the
299
first element in order to fit the type expected by <CODE>fftwnd_one</CODE>.
300
(See Section <A HREF="fftw_2.html#SEC7">Multi-dimensional Array Format</A>.)
301
 
302
 
303
 
304
 
305
<H2><A NAME="SEC5">Real One-dimensional Transforms Tutorial</A></H2>
306
<P>
307
<A NAME="IDX49"></A>
308
<A NAME="IDX50"></A>
309
<A NAME="IDX51"></A>
310
 
311
 
312
<P>
313
If the input data are purely real, you can save roughly a factor of two
314
in both time and storage by using the <EM>rfftw</EM> transforms, which are
315
FFTs specialized for real data.  The output of a such a transform is a
316
<EM>halfcomplex</EM> array, which consists of only half of the complex DFT
317
amplitudes (since the negative-frequency amplitudes for real data are
318
the complex conjugate of the positive-frequency amplitudes).
319
<A NAME="IDX52"></A>
320
 
321
 
322
<P>
323
In exchange for these speed and space advantages, the user sacrifices
324
some of the simplicity of FFTW's complex transforms.  First of all, to
325
allow maximum performance, the output format of the one-dimensional real
326
transforms is different from that used by the multi-dimensional
327
transforms.  Second, the inverse transform (halfcomplex to real) has the
328
side-effect of destroying its input array.  Neither of these
329
inconveniences should pose a serious problem for users, but it is
330
important to be aware of them.  (Both the inconvenient output format
331
and the side-effect of the inverse transform can be ameliorated for
332
one-dimensional transforms, at the expense of some performance, by using
333
instead the multi-dimensional transform routines with a rank of one.)
334
 
335
 
336
<P>
337
The computation of the plan is similar to that for the complex
338
transforms.  First, you <CODE>#include &#60;rfftw.h&#62;</CODE>.  Then, you create a
339
plan (of type <CODE>rfftw_plan</CODE>) by calling:
340
 
341
 
342
 
343
<PRE>
344
rfftw_plan rfftw_create_plan(int n, fftw_direction dir, int flags);
345
</PRE>
346
 
347
<P>
348
<A NAME="IDX53"></A>
349
<A NAME="IDX54"></A>
350
<A NAME="IDX55"></A>
351
 
352
 
353
<P>
354
<CODE>n</CODE> is the length of the <EM>real</EM> array in the transform (even
355
for halfcomplex-to-real transforms), and can be any positive integer
356
(although sizes with small factors are transformed more efficiently).
357
<CODE>dir</CODE> is either <CODE>FFTW_REAL_TO_COMPLEX</CODE> or
358
<CODE>FFTW_COMPLEX_TO_REAL</CODE>.
359
<A NAME="IDX56"></A>
360
<A NAME="IDX57"></A>
361
The <CODE>flags</CODE> parameter is the same as in <CODE>fftw_create_plan</CODE>.
362
 
363
 
364
<P>
365
Once created, a plan can be used for any number of transforms, and is
366
deallocated when you are done with it by calling
367
<CODE>rfftw_destroy_plan(plan)</CODE>.
368
<A NAME="IDX58"></A>
369
 
370
 
371
<P>
372
Given a plan, a real-to-complex or complex-to-real transform is computed
373
by calling:
374
 
375
 
376
 
377
<PRE>
378
void rfftw_one(rfftw_plan plan, fftw_real *in, fftw_real *out);
379
</PRE>
380
 
381
<P>
382
<A NAME="IDX59"></A>
383
 
384
 
385
<P>
386
(Note that <CODE>fftw_real</CODE> is an alias for the floating-point type for
387
which FFTW was compiled.)  Depending upon the direction of the plan,
388
either the input or the output array is halfcomplex, and is stored in
389
the following format:
390
<A NAME="IDX60"></A>
391
 
392
 
393
<p align=center>
394
r<sub>0</sub>, r<sub>1</sub>, r<sub>2</sub>, ..., r<sub>n/2</sub>, i<sub>(n+1)/2-1</sub>, ..., i<sub>2</sub>, i<sub>1</sub>
395
</p>
396
 
397
<P>
398
Here,
399
r<sub>k</sub>
400
is the real part of the kth output, and
401
i<sub>k</sub>
402
is the imaginary part.  (We follow here the C convention that integer
403
division is rounded down, e.g. 7 / 2 = 3.) For a halfcomplex
404
array <CODE>hc[]</CODE>, the kth component has its real part in
405
<CODE>hc[k]</CODE> and its imaginary part in <CODE>hc[n-k]</CODE>, with the
406
exception of <CODE>k</CODE> <CODE>==</CODE> <CODE>0</CODE> or <CODE>n/2</CODE> (the latter only
407
if n is even)---in these two cases, the imaginary part is zero due to
408
symmetries of the real-complex transform, and is not stored.  Thus, the
409
transform of <CODE>n</CODE> real values is a halfcomplex array of length
410
<CODE>n</CODE>, and vice versa.  <A NAME="DOCF1" HREF="fftw_foot.html#FOOT1">(1)</A>  This is actually only half of the DFT
411
spectrum of the data.  Although the other half can be obtained by
412
complex conjugation, it is not required by many applications such as
413
convolution and filtering.
414
 
415
 
416
<P>
417
Like the complex transforms, the RFFTW transforms are unnormalized, so a
418
forward followed by a backward transform (or vice-versa) yields the
419
original data scaled by the length of the array, <CODE>n</CODE>.
420
<A NAME="IDX61"></A>
421
 
422
 
423
<P>
424
Let us reiterate here our warning that an <CODE>FFTW_COMPLEX_TO_REAL</CODE>
425
transform has the side-effect of destroying its (halfcomplex) input.
426
The <CODE>FFTW_REAL_TO_COMPLEX</CODE> transform, however, leaves its (real)
427
input untouched, just as you would hope.
428
 
429
 
430
<P>
431
As an example, here is an outline of how you might use RFFTW to compute
432
the power spectrum of a real array (i.e. the squares of the absolute
433
values of the DFT amplitudes):
434
<A NAME="IDX62"></A>
435
 
436
 
437
 
438
<PRE>
439
#include &#60;rfftw.h&#62;
440
...
441
{
442
     fftw_real in[N], out[N], power_spectrum[N/2+1];
443
     rfftw_plan p;
444
     int k;
445
     ...
446
     p = rfftw_create_plan(N, FFTW_REAL_TO_COMPLEX, FFTW_ESTIMATE);
447
     ...
448
     rfftw_one(p, in, out);
449
     power_spectrum[0] = out[0]*out[0];  /* DC component */
450
     for (k = 1; k &#60; (N+1)/2; ++k)  /* (k &#60; N/2 rounded up) */
451
          power_spectrum[k] = out[k]*out[k] + out[N-k]*out[N-k];
452
     if (N % 2 == 0) /* N is even */
453
          power_spectrum[N/2] = out[N/2]*out[N/2];  /* Nyquist freq. */
454
     ...
455
     rfftw_destroy_plan(p);
456
}
457
</PRE>
458
 
459
<P>
460
Programs using RFFTW should link with <CODE>-lrfftw -lfftw -lm</CODE> on Unix,
461
or with the FFTW, RFFTW, and math libraries in general.
462
<A NAME="IDX63"></A>
463
 
464
 
465
 
466
 
467
<H2><A NAME="SEC6">Real Multi-dimensional Transforms Tutorial</A></H2>
468
<P>
469
<A NAME="IDX64"></A>
470
 
471
 
472
<P>
473
FFTW includes multi-dimensional transforms for real data of any rank.
474
As with the one-dimensional real transforms, they save roughly a factor
475
of two in time and storage over complex transforms of the same size.
476
Also as in one dimension, these gains come at the expense of some
477
increase in complexity--the output format is different from the
478
one-dimensional RFFTW (and is more similar to that of the complex FFTW)
479
and the inverse (complex to real) transforms have the side-effect of
480
overwriting their input data.  
481
 
482
 
483
<P>
484
To use the real multi-dimensional transforms, you first <CODE>#include
485
&#60;rfftw.h&#62;</CODE> and then create a plan for the size and direction of
486
transform that you are interested in:
487
 
488
 
489
 
490
<PRE>
491
rfftwnd_plan rfftwnd_create_plan(int rank, const int *n,
492
                                 fftw_direction dir, int flags);
493
</PRE>
494
 
495
<P>
496
<A NAME="IDX65"></A>
497
<A NAME="IDX66"></A>
498
 
499
 
500
<P>
501
The first two parameters describe the size of the real data (not the
502
halfcomplex data, which will have different dimensions).  The last two
503
parameters are the same as those for <CODE>rfftw_create_plan</CODE>.  Just as
504
for fftwnd, there are two alternate versions of this routine,
505
<CODE>rfftw2d_create_plan</CODE> and <CODE>rfftw3d_create_plan</CODE>, that are
506
sometimes more convenient for two- and three-dimensional transforms.
507
<A NAME="IDX67"></A>
508
<A NAME="IDX68"></A>
509
Also as in fftwnd, rfftwnd supports true in-place transforms, specified
510
by including <CODE>FFTW_IN_PLACE</CODE> in the flags.
511
 
512
 
513
<P>
514
Once created, a plan can be used for any number of transforms, and is
515
deallocated by calling <CODE>rfftwnd_destroy_plan(plan)</CODE>.
516
 
517
 
518
<P>
519
Given a plan, the transform is computed by calling one of the following
520
two routines:
521
 
522
 
523
 
524
<PRE>
525
void rfftwnd_one_real_to_complex(rfftwnd_plan plan,
526
                                 fftw_real *in, fftw_complex *out);
527
void rfftwnd_one_complex_to_real(rfftwnd_plan plan,
528
                                 fftw_complex *in, fftw_real *out);
529
</PRE>
530
 
531
<P>
532
<A NAME="IDX69"></A>
533
<A NAME="IDX70"></A>
534
 
535
 
536
<P>
537
As is clear from their names and parameter types, the former function is
538
for <CODE>FFTW_REAL_TO_COMPLEX</CODE> transforms and the latter is for
539
<CODE>FFTW_COMPLEX_TO_REAL</CODE> transforms.  (We could have used only a
540
single routine, since the direction of the transform is encoded in the
541
plan, but we wanted to correctly express the datatypes of the
542
parameters.)  The latter routine, as we discuss elsewhere, has the
543
side-effect of overwriting its input (except when the rank of the array
544
is one).  In both cases, the <CODE>out</CODE> parameter is ignored for
545
in-place transforms.
546
 
547
 
548
<P>
549
The format of the complex arrays deserves careful attention.
550
<A NAME="IDX71"></A>
551
Suppose that the real data has dimensions
552
n<sub>1</sub> x n<sub>2</sub> x ... x n<sub>d</sub>
553
(in row-major order).  Then, after a real-to-complex transform, the
554
output is an
555
n<sub>1</sub> x n<sub>2</sub> x ... x (n<sub>d</sub>/2+1)
556
array of <CODE>fftw_complex</CODE> values in row-major order, corresponding to
557
slightly over half of the output of the corresponding complex transform.
558
(Note that the division is rounded down.)  The ordering of the data is
559
otherwise exactly the same as in the complex case.  (In principle, the
560
output could be exactly half the size of the complex transform output,
561
but in more than one dimension this requires too complicated a format to
562
be practical.)  Note that, unlike the one-dimensional RFFTW, the real
563
and imaginary parts of the DFT amplitudes are here stored together in
564
the natural way.
565
 
566
 
567
<P>
568
Since the complex data is slightly larger than the real data, some
569
complications arise for in-place transforms.  In this case, the final
570
dimension of the real data must be padded with extra values to
571
accommodate the size of the complex data--two extra if the last
572
dimension is even and one if it is odd.
573
<A NAME="IDX72"></A>
574
That is, the last dimension of the real data must physically contain
575
2 * (n<sub>d</sub>/2+1)
576
<CODE>fftw_real</CODE> values (exactly enough to hold the complex data).
577
This physical array size does not, however, change the <EM>logical</EM>
578
array size--only
579
n<sub>d</sub>
580
values are actually stored in the last dimension, and
581
n<sub>d</sub>
582
is the last dimension passed to <CODE>rfftwnd_create_plan</CODE>.
583
 
584
 
585
<P>
586
For example, consider the transform of a two-dimensional real array of
587
size <CODE>nx</CODE> by <CODE>ny</CODE>.  The output of the <CODE>rfftwnd</CODE> transform
588
is a two-dimensional real array of size <CODE>nx</CODE> by <CODE>ny/2+1</CODE>,
589
where the <CODE>y</CODE> dimension has been cut nearly in half because of
590
redundancies in the output.  Because <CODE>fftw_complex</CODE> is twice the
591
size of <CODE>fftw_real</CODE>, the output array is slightly bigger than the
592
input array.  Thus, if we want to compute the transform in place, we
593
must <EM>pad</EM> the input array so that it is of size <CODE>nx</CODE> by
594
<CODE>2*(ny/2+1)</CODE>.  If <CODE>ny</CODE> is even, then there are two padding
595
elements at the end of each row (which need not be initialized, as they
596
are only used for output).
597
The following illustration depicts the input and output arrays just
598
described, for both the out-of-place and in-place transforms (with the
599
arrows indicating consecutive memory locations):
600
 
601
<p align=center><img src="rfftwnd.gif" width=389 height=583>
602
 
603
 
604
<P>
605
Figure 1 depicts the input and output arrays just
606
described, for both the out-of-place and in-place transforms (with the
607
arrows indicating consecutive memory locations).
608
 
609
 
610
<P>
611
The RFFTWND transforms are unnormalized, so a forward followed by a
612
backward transform will result in the original data scaled by the number
613
of real data elements--that is, the product of the (logical) dimensions
614
of the real data.
615
<A NAME="IDX73"></A>
616
 
617
 
618
<P>
619
Below, we illustrate the use of RFFTWND by showing how you might use it
620
to compute the (cyclic) convolution of two-dimensional real arrays
621
<CODE>a</CODE> and <CODE>b</CODE> (using the identity that a convolution corresponds
622
to a pointwise product of the Fourier transforms).  For variety,
623
in-place transforms are used for the forward FFTs and an out-of-place
624
transform is used for the inverse transform.
625
<A NAME="IDX74"></A>
626
<A NAME="IDX75"></A>
627
 
628
 
629
 
630
<PRE>
631
#include &#60;rfftw.h&#62;
632
...
633
{
634
     fftw_real a[M][2*(N/2+1)], b[M][2*(N/2+1)], c[M][N];
635
     fftw_complex *A, *B, C[M][N/2+1];
636
     rfftwnd_plan p, pinv;
637
     fftw_real scale = 1.0 / (M * N);
638
     int i, j;
639
     ...
640
     p    = rfftw2d_create_plan(M, N, FFTW_REAL_TO_COMPLEX,
641
                                FFTW_ESTIMATE | FFTW_IN_PLACE);
642
     pinv = rfftw2d_create_plan(M, N, FFTW_COMPLEX_TO_REAL,
643
                                FFTW_ESTIMATE);
644
 
645
     /* aliases for accessing complex transform outputs: */
646
     A = (fftw_complex*) &#38;a[0][0];
647
     B = (fftw_complex*) &#38;b[0][0];
648
     ...
649
     for (i = 0; i &#60; M; ++i)
650
          for (j = 0; j &#60; N; ++j) {
651
               a[i][j] = ... ;
652
               b[i][j] = ... ;
653
          }
654
     ...
655
     rfftwnd_one_real_to_complex(p, &#38;a[0][0], NULL);
656
     rfftwnd_one_real_to_complex(p, &#38;b[0][0], NULL);
657
 
658
     for (i = 0; i &#60; M; ++i)
659
          for (j = 0; j &#60; N/2+1; ++j) {
660
               int ij = i*(N/2+1) + j;
661
               C[i][j].re = (A[ij].re * B[ij].re
662
                             - A[ij].im * B[ij].im) * scale;
663
               C[i][j].im = (A[ij].re * B[ij].im
664
                             + A[ij].im * B[ij].re) * scale;
665
          }
666
 
667
     /* inverse transform to get c, the convolution of a and b;
668
        this has the side effect of overwriting C */
669
     rfftwnd_one_complex_to_real(pinv, &#38;C[0][0], &#38;c[0][0]);
670
     ...
671
     rfftwnd_destroy_plan(p);
672
     rfftwnd_destroy_plan(pinv);
673
}
674
</PRE>
675
 
676
<P>
677
We access the complex outputs of the in-place transforms by casting
678
each real array to a <CODE>fftw_complex</CODE> pointer.  Because this is a
679
"flat" pointer, we have to compute the row-major index <CODE>ij</CODE>
680
explicitly in the convolution product loop.
681
<A NAME="IDX76"></A>
682
In order to normalize the convolution, we must multiply by a scale
683
factor--we can do so either before or after the inverse transform, and
684
choose the former because it obviates the necessity of an additional
685
loop.
686
<A NAME="IDX77"></A>
687
Notice the limits of the loops and the dimensions of the various arrays.
688
 
689
 
690
<P>
691
As with the one-dimensional RFFTW, an out-of-place
692
<CODE>FFTW_COMPLEX_TO_REAL</CODE> transform has the side-effect of overwriting
693
its input array.  (The real-to-complex transform, on the other hand,
694
leaves its input array untouched.)  If you use RFFTWND for a rank-one
695
transform, however, this side-effect does not occur.  Because of this
696
fact (and the simpler output format), users may find the RFFTWND
697
interface more convenient than RFFTW for one-dimensional transforms.
698
However, RFFTWND in one dimension is slightly slower than RFFTW because
699
RFFTWND uses an extra buffer array internally.
700
 
701
 
702
 
703
 
704
<H2><A NAME="SEC7">Multi-dimensional Array Format</A></H2>
705
 
706
<P>
707
This section describes the format in which multi-dimensional arrays are
708
stored.  We felt that a detailed discussion of this topic was necessary,
709
since it is often a source of confusion among users and several
710
different formats are common.  Although the comments below refer to
711
<CODE>fftwnd</CODE>, they are also applicable to the <CODE>rfftwnd</CODE> routines.
712
 
713
 
714
 
715
 
716
<H3><A NAME="SEC8">Row-major Format</A></H3>
717
<P>
718
<A NAME="IDX78"></A>
719
 
720
 
721
<P>
722
The multi-dimensional arrays passed to <CODE>fftwnd</CODE> are expected to be
723
stored as a single contiguous block in <EM>row-major</EM> order (sometimes
724
called "C order").  Basically, this means that as you step through
725
adjacent memory locations, the first dimension's index varies most
726
slowly and the last dimension's index varies most quickly.
727
 
728
 
729
<P>
730
To be more explicit, let us consider an array of rank d whose
731
dimensions are
732
n<sub>1</sub> x n<sub>2</sub> x n<sub>3</sub> x ... x n<sub>d</sub>.
733
Now, we specify a location in the array by a sequence of (zero-based) indices,
734
one for each dimension:
735
(i<sub>1</sub>, i<sub>2</sub>, i<sub>3</sub>,..., i<sub>d</sub>).
736
If the array is stored in row-major
737
order, then this element is located at the position
738
i<sub>d</sub> + n<sub>d</sub> * (i<sub>d-1</sub> + n<sub>d-1</sub> * (... + n<sub>2</sub> * i<sub>1</sub>)).
739
 
740
 
741
<P>
742
Note that each element of the array must be of type <CODE>fftw_complex</CODE>;
743
i.e. a (real, imaginary) pair of (double-precision) numbers. Note also
744
that, in <CODE>fftwnd</CODE>, the expression above is multiplied by the stride
745
to get the actual array index--this is useful in situations where each
746
element of the multi-dimensional array is actually a data structure or
747
another array, and you just want to transform a single field. In most
748
cases, however, you use a stride of 1.
749
<A NAME="IDX79"></A>
750
 
751
 
752
 
753
 
754
<H3><A NAME="SEC9">Column-major Format</A></H3>
755
<P>
756
<A NAME="IDX80"></A>
757
 
758
 
759
<P>
760
Readers from the Fortran world are used to arrays stored in
761
<EM>column-major</EM> order (sometimes called "Fortran order").  This is
762
essentially the exact opposite of row-major order in that, here, the
763
<EM>first</EM> dimension's index varies most quickly.
764
 
765
 
766
<P>
767
If you have an array stored in column-major order and wish to transform
768
it using <CODE>fftwnd</CODE>, it is quite easy to do.  When creating the plan,
769
simply pass the dimensions of the array to <CODE>fftwnd_create_plan</CODE> in
770
<EM>reverse order</EM>.  For example, if your array is a rank three
771
<CODE>N x M x L</CODE> matrix in column-major order, you should pass the
772
dimensions of the array as if it were an <CODE>L x M x N</CODE> matrix (which
773
it is, from perspective of <CODE>fftwnd</CODE>).  This is done for you
774
automatically by the FFTW Fortran wrapper routines (see Section <A HREF="fftw_5.html#SEC62">Calling FFTW from Fortran</A>).
775
<A NAME="IDX81"></A>
776
 
777
 
778
 
779
 
780
<H3><A NAME="SEC10">Static Arrays in C</A></H3>
781
<P>
782
<A NAME="IDX82"></A>
783
 
784
 
785
<P>
786
Multi-dimensional arrays declared statically (that is, at compile time,
787
not necessarily with the <CODE>static</CODE> keyword) in C are <EM>already</EM>
788
in row-major order.  You don't have to do anything special to transform
789
them.  (See Section <A HREF="fftw_2.html#SEC4">Complex Multi-dimensional Transforms Tutorial</A>, for an
790
example of this sort of code.)
791
 
792
 
793
 
794
 
795
<H3><A NAME="SEC11">Dynamic Arrays in C</A></H3>
796
 
797
<P>
798
Often, especially for large arrays, it is desirable to allocate the
799
arrays dynamically, at runtime.  This isn't too hard to do, although it
800
is not as straightforward for multi-dimensional arrays as it is for
801
one-dimensional arrays.
802
 
803
 
804
<P>
805
Creating the array is simple: using a dynamic-allocation routine like
806
<CODE>malloc</CODE>, allocate an array big enough to store N <CODE>fftw_complex</CODE>
807
values, where N is the product of the sizes of the array dimensions
808
(i.e. the total number of complex values in the array).  For example,
809
here is code to allocate a 5x12x27 rank 3 array:
810
<A NAME="IDX83"></A>
811
 
812
 
813
 
814
<PRE>
815
fftw_complex *an_array;
816
 
817
an_array = (fftw_complex *) malloc(5 * 12 * 27 * sizeof(fftw_complex));
818
</PRE>
819
 
820
<P>
821
Accessing the array elements, however, is more tricky--you can't simply
822
use multiple applications of the <SAMP>`[]'</SAMP> operator like you could for
823
static arrays.  Instead, you have to explicitly compute the offset into
824
the array using the formula given earlier for row-major arrays.  For
825
example, to reference the (i,j,k)-th element of the array
826
allocated above, you would use the expression <CODE>an_array[k + 27 * (j
827
+ 12 * i)]</CODE>.
828
 
829
 
830
<P>
831
This pain can be alleviated somewhat by defining appropriate macros, or,
832
in C++, creating a class and overloading the <SAMP>`()'</SAMP> operator.
833
 
834
 
835
 
836
 
837
<H3><A NAME="SEC12">Dynamic Arrays in C--The Wrong Way</A></H3>
838
 
839
<P>
840
A different method for allocating multi-dimensional arrays in C is often
841
suggested that is incompatible with <CODE>fftwnd</CODE>: <EM>using it will
842
cause FFTW to die a painful death</EM>.  We discuss the technique here,
843
however, because it is so commonly known and used.  This method is to
844
create arrays of pointers of arrays of pointers of ...etcetera.  For
845
example, the analogue in this method to the example above is:
846
 
847
 
848
 
849
<PRE>
850
int i,j;
851
fftw_complex ***a_bad_array;  /* another way to make a 5x12x27 array */
852
 
853
a_bad_array = (fftw_complex ***) malloc(5 * sizeof(fftw_complex **));
854
for (i = 0; i &#60; 5; ++i) {
855
     a_bad_array[i] =
856
        (fftw_complex **) malloc(12 * sizeof(fftw_complex *));
857
     for (j = 0; j &#60; 12; ++j)
858
          a_bad_array[i][j] =
859
                (fftw_complex *) malloc(27 * sizeof(fftw_complex));
860
}
861
</PRE>
862
 
863
<P>
864
As you can see, this sort of array is inconvenient to allocate (and
865
deallocate).  On the other hand, it has the advantage that the
866
(i,j,k)-th element can be referenced simply by
867
<CODE>a_bad_array[i][j][k]</CODE>.
868
 
869
 
870
<P>
871
If you like this technique and want to maximize convenience in accessing
872
the array, but still want to pass the array to FFTW, you can use a
873
hybrid method.  Allocate the array as one contiguous block, but also
874
declare an array of arrays of pointers that point to appropriate places
875
in the block.  That sort of trick is beyond the scope of this
876
documentation; for more information on multi-dimensional arrays in C,
877
see the <CODE>comp.lang.c</CODE>
878
<A HREF="http://www.eskimo.com/~scs/C-faq/s6.html">FAQ</A>.
879
 
880
 
881
 
882
 
883
<H2><A NAME="SEC13">Words of Wisdom</A></H2>
884
<P>
885
<A NAME="IDX84"></A>
886
<A NAME="IDX85"></A>
887
 
888
 
889
<P>
890
FFTW implements a method for saving plans to disk and restoring them.
891
In fact, what FFTW does is more general than just saving and loading
892
plans.  The mechanism is called <EM><CODE>wisdom</CODE></EM>.  Here, we describe
893
this feature at a high level. See Section <A HREF="fftw_3.html#SEC16">FFTW Reference</A>, for a less casual
894
(but more complete) discussion of how to use <CODE>wisdom</CODE> in FFTW.
895
 
896
 
897
<P>
898
Plans created with the <CODE>FFTW_MEASURE</CODE> option produce near-optimal
899
FFT performance, but it can take a long time to compute a plan because
900
FFTW must actually measure the runtime of many possible plans and select
901
the best one.  This is designed for the situations where so many
902
transforms of the same size must be computed that the start-up time is
903
irrelevant.  For short initialization times but slightly slower
904
transforms, we have provided <CODE>FFTW_ESTIMATE</CODE>.  The <CODE>wisdom</CODE>
905
mechanism is a way to get the best of both worlds.  There are, however,
906
certain caveats that the user must be aware of in using <CODE>wisdom</CODE>.
907
For this reason, <CODE>wisdom</CODE> is an optional feature which is not
908
enabled by default.
909
 
910
 
911
<P>
912
At its simplest, <CODE>wisdom</CODE> provides a way of saving plans to disk so
913
that they can be reused in other program runs.  You create a plan with
914
the flags <CODE>FFTW_MEASURE</CODE> and <CODE>FFTW_USE_WISDOM</CODE>, and then save
915
the <CODE>wisdom</CODE> using <CODE>fftw_export_wisdom</CODE>:
916
<A NAME="IDX86"></A>
917
 
918
 
919
 
920
<PRE>
921
     plan = fftw_create_plan(..., ... | FFTW_MEASURE | FFTW_USE_WISDOM);
922
     fftw_export_wisdom(...);
923
</PRE>
924
 
925
<P>
926
<A NAME="IDX87"></A>
927
 
928
 
929
<P>
930
The next time you run the program, you can restore the <CODE>wisdom</CODE>
931
with <CODE>fftw_import_wisdom</CODE>, and then recreate the plan using the
932
same flags as before.  This time, however, the same optimal plan will be
933
created very quickly without measurements. (FFTW still needs some time
934
to compute trigonometric tables, however.)  The basic outline is:
935
 
936
 
937
 
938
<PRE>
939
     fftw_import_wisdom(...);
940
     plan = fftw_create_plan(..., ... | FFTW_USE_WISDOM);
941
</PRE>
942
 
943
<P>
944
<A NAME="IDX88"></A>
945
 
946
 
947
<P>
948
Wisdom is more than mere rote memorization, however.  FFTW's
949
<CODE>wisdom</CODE> encompasses all of the knowledge and measurements that
950
were used to create the plan for a given size.  Therefore, existing
951
<CODE>wisdom</CODE> is also applied to the creation of other plans of
952
different sizes.
953
 
954
 
955
<P>
956
Whenever a plan is created with the <CODE>FFTW_MEASURE</CODE> and
957
<CODE>FFTW_USE_WISDOM</CODE> flags, <CODE>wisdom</CODE> is generated.  Thereafter,
958
plans for any transform with a similar factorization will be computed
959
more quickly, so long as they use the <CODE>FFTW_USE_WISDOM</CODE> flag.  In
960
fact, for transforms with the same factors and of equal or lesser size,
961
no measurements at all need to be made and an optimal plan can be
962
created with negligible delay!
963
 
964
 
965
<P>
966
For example, suppose that you create a plan for
967
N&nbsp;=&nbsp;2<sup>16</sup>.
968
Then, for any equal or smaller power of two, FFTW can create a
969
plan (with the same direction and flags) quickly, using the
970
precomputed <CODE>wisdom</CODE>. Even for larger powers of two, or sizes that
971
are a power of two times some other prime factors, plans will be
972
computed more quickly than they would otherwise (although some
973
measurements still have to be made).
974
 
975
 
976
<P>
977
The <CODE>wisdom</CODE> is cumulative, and is stored in a global, private data
978
structure managed internally by FFTW.  The storage space required is
979
minimal, proportional to the logarithm of the sizes the <CODE>wisdom</CODE> was
980
generated from.  The <CODE>wisdom</CODE> can be forgotten (and its associated
981
memory freed) by a call to <CODE>fftw_forget_wisdom()</CODE>; otherwise, it is
982
remembered until the program terminates.  It can also be exported to a
983
file, a string, or any other medium using <CODE>fftw_export_wisdom</CODE> and
984
restored during a subsequent execution of the program (or a different
985
program) using <CODE>fftw_import_wisdom</CODE> (these functions are described
986
below).
987
 
988
 
989
<P>
990
Because <CODE>wisdom</CODE> is incorporated into FFTW at a very low level, the
991
same <CODE>wisdom</CODE> can be used for one-dimensional transforms,
992
multi-dimensional transforms, and even the parallel extensions to FFTW.
993
Just include <CODE>FFTW_USE_WISDOM</CODE> in the flags for whatever plans you
994
create (i.e., always plan wisely).
995
 
996
 
997
<P>
998
Plans created with the <CODE>FFTW_ESTIMATE</CODE> plan can use <CODE>wisdom</CODE>,
999
but cannot generate it;  only <CODE>FFTW_MEASURE</CODE> plans actually produce
1000
<CODE>wisdom</CODE>.  Also, plans can only use <CODE>wisdom</CODE> generated from
1001
plans created with the same direction and flags.  For example, a size
1002
<CODE>42</CODE> <CODE>FFTW_BACKWARD</CODE> transform will not use <CODE>wisdom</CODE>
1003
produced by a size <CODE>42</CODE> <CODE>FFTW_FORWARD</CODE> transform.  The only
1004
exception to this rule is that <CODE>FFTW_ESTIMATE</CODE> plans can use
1005
<CODE>wisdom</CODE> from <CODE>FFTW_MEASURE</CODE> plans.
1006
 
1007
 
1008
 
1009
 
1010
<H3><A NAME="SEC14">Caveats in Using Wisdom</A></H3>
1011
<P>
1012
<A NAME="IDX89"></A>
1013
 
1014
 
1015
 
1016
<BLOCKQUOTE>
1017
<i>
1018
<P>
1019
For in much wisdom is much grief, and he that increaseth knowledge
1020
increaseth sorrow.
1021
</i>
1022
[Ecclesiastes 1:18]
1023
<A NAME="IDX90"></A>
1024
</BLOCKQUOTE>
1025
 
1026
<P>
1027
There are pitfalls to using <CODE>wisdom</CODE>, in that it can negate FFTW's
1028
ability to adapt to changing hardware and other conditions. For example,
1029
it would be perfectly possible to export <CODE>wisdom</CODE> from a program
1030
running on one processor and import it into a program running on another
1031
processor.  Doing so, however, would mean that the second program would
1032
use plans optimized for the first processor, instead of the one it is
1033
running on.
1034
 
1035
 
1036
<P>
1037
It should be safe to reuse <CODE>wisdom</CODE> as long as the hardware and
1038
program binaries remain unchanged. (Actually, the optimal plan may
1039
change even between runs of the same binary on identical hardware, due
1040
to differences in the virtual memory environment, etcetera.  Users
1041
seriously interested in performance should worry about this problem,
1042
too.)  It is likely that, if the same <CODE>wisdom</CODE> is used for two
1043
different program binaries, even running on the same machine, the plans
1044
may be sub-optimal because of differing code alignments.  It is
1045
therefore wise to recreate <CODE>wisdom</CODE> every time an application is
1046
recompiled.  The more the underlying hardware and software changes
1047
between the creation of <CODE>wisdom</CODE> and its use, the greater grows the
1048
risk of sub-optimal plans.
1049
 
1050
 
1051
 
1052
 
1053
<H3><A NAME="SEC15">Importing and Exporting Wisdom</A></H3>
1054
<P>
1055
<A NAME="IDX91"></A>
1056
 
1057
 
1058
 
1059
<PRE>
1060
void fftw_export_wisdom_to_file(FILE *output_file);
1061
fftw_status fftw_import_wisdom_from_file(FILE *input_file);
1062
</PRE>
1063
 
1064
<P>
1065
<A NAME="IDX92"></A>
1066
<A NAME="IDX93"></A>
1067
 
1068
 
1069
<P>
1070
<CODE>fftw_export_wisdom_to_file</CODE> writes the <CODE>wisdom</CODE> to
1071
<CODE>output_file</CODE>, which must be a file open for
1072
writing. <CODE>fftw_import_wisdom_from_file</CODE> reads the <CODE>wisdom</CODE>
1073
from <CODE>input_file</CODE>, which must be a file open for reading, and
1074
returns <CODE>FFTW_SUCCESS</CODE> if successful and <CODE>FFTW_FAILURE</CODE>
1075
otherwise. In both cases, the file is left open and must be closed by
1076
the caller.  It is perfectly fine if other data lie before or after the
1077
<CODE>wisdom</CODE> in the file, as long as the file is positioned at the
1078
beginning of the <CODE>wisdom</CODE> data before import.
1079
 
1080
 
1081
 
1082
<PRE>
1083
char *fftw_export_wisdom_to_string(void);
1084
fftw_status fftw_import_wisdom_from_string(const char *input_string)
1085
</PRE>
1086
 
1087
<P>
1088
<A NAME="IDX94"></A>
1089
<A NAME="IDX95"></A>
1090
 
1091
 
1092
<P>
1093
<CODE>fftw_export_wisdom_to_string</CODE> allocates a string, exports the
1094
<CODE>wisdom</CODE> to it in <CODE>NULL</CODE>-terminated format, and returns a
1095
pointer to the string.  If there is an error in allocating or writing
1096
the data, it returns <CODE>NULL</CODE>.  The caller is responsible for
1097
deallocating the string (with <CODE>fftw_free</CODE>) when she is done with
1098
it. <CODE>fftw_import_wisdom_from_string</CODE> imports the <CODE>wisdom</CODE> from
1099
<CODE>input_string</CODE>, returning <CODE>FFTW_SUCCESS</CODE> if successful and
1100
<CODE>FFTW_FAILURE</CODE> otherwise.
1101
 
1102
 
1103
<P>
1104
Exporting <CODE>wisdom</CODE> does not affect the store of <CODE>wisdom</CODE>. Imported
1105
<CODE>wisdom</CODE> supplements the current store rather than replacing it
1106
(except when there is conflicting <CODE>wisdom</CODE>, in which case the older
1107
<CODE>wisdom</CODE> is discarded). The format of the exported <CODE>wisdom</CODE> is
1108
"nerd-readable" LISP-like ASCII text; we will not document it here
1109
except to note that it is insensitive to white space (interested users
1110
can contact us for more details).
1111
<A NAME="IDX96"></A>
1112
<A NAME="IDX97"></A>
1113
 
1114
 
1115
<P>
1116
See Section <A HREF="fftw_3.html#SEC16">FFTW Reference</A>, for more information, and for a description of
1117
how you can implement <CODE>wisdom</CODE> import/export for other media
1118
besides files and strings.
1119
 
1120
 
1121
<P>
1122
The following is a brief example in which the <CODE>wisdom</CODE> is read from
1123
a file, a plan is created (possibly generating more <CODE>wisdom</CODE>), and
1124
then the <CODE>wisdom</CODE> is exported to a string and printed to
1125
<CODE>stdout</CODE>.
1126
 
1127
 
1128
 
1129
<PRE>
1130
{
1131
     fftw_plan plan;
1132
     char *wisdom_string;
1133
     FILE *input_file;
1134
 
1135
     /* open file to read wisdom from */
1136
     input_file = fopen("sample.wisdom", "r");
1137
     if (FFTW_FAILURE == fftw_import_wisdom_from_file(input_file))
1138
          printf("Error reading wisdom!\n");
1139
     fclose(input_file); /* be sure to close the file! */
1140
 
1141
     /* create a plan for N=64, possibly creating and/or using wisdom */
1142
     plan = fftw_create_plan(64,FFTW_FORWARD,
1143
                             FFTW_MEASURE | FFTW_USE_WISDOM);
1144
 
1145
     /* ... do some computations with the plan ... */
1146
 
1147
     /* always destroy plans when you are done */
1148
     fftw_destroy_plan(plan);
1149
 
1150
     /* write the wisdom to a string */
1151
     wisdom_string = fftw_export_wisdom_to_string();
1152
     if (wisdom_string != NULL) {
1153
          printf("Accumulated wisdom: %s\n",wisdom_string);
1154
 
1155
          /* Just for fun, destroy and restore the wisdom */
1156
          fftw_forget_wisdom(); /* all gone! */
1157
          fftw_import_wisdom_from_string(wisdom_string);
1158
          /* wisdom is back! */
1159
 
1160
          fftw_free(wisdom_string); /* deallocate it since we're done */
1161
     }
1162
}
1163
</PRE>
1164
 
1165
<P><HR><P>
1166
Go to the <A HREF="fftw_1.html">first</A>, <A HREF="fftw_1.html">previous</A>, <A HREF="fftw_3.html">next</A>, <A HREF="fftw_10.html">last</A> section, <A HREF="fftw_toc.html">table of contents</A>.
1167
</BODY>
1168
</HTML>