Subversion Repositories shark

Rev

Rev 56 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
56 pj 1
/* $Id: m_eval.h,v 1.1 2003-02-28 11:48:05 pj Exp $ */
2
 
3
/*
4
 * Mesa 3-D graphics library
5
 * Version:  3.5
6
 *
7
 * Copyright (C) 1999-2001  Brian Paul   All Rights Reserved.
8
 *
9
 * Permission is hereby granted, free of charge, to any person obtaining a
10
 * copy of this software and associated documentation files (the "Software"),
11
 * to deal in the Software without restriction, including without limitation
12
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13
 * and/or sell copies of the Software, and to permit persons to whom the
14
 * Software is furnished to do so, subject to the following conditions:
15
 *
16
 * The above copyright notice and this permission notice shall be included
17
 * in all copies or substantial portions of the Software.
18
 *
19
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
22
 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23
 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
 */
26
 
27
#ifndef _M_EVAL_H
28
#define _M_EVAL_H
29
 
30
#include "glheader.h"
31
 
32
void _math_init_eval( void );
33
 
34
 
35
/*
36
 * Horner scheme for Bezier curves
37
 *
38
 * Bezier curves can be computed via a Horner scheme.
39
 * Horner is numerically less stable than the de Casteljau
40
 * algorithm, but it is faster. For curves of degree n
41
 * the complexity of Horner is O(n) and de Casteljau is O(n^2).
42
 * Since stability is not important for displaying curve
43
 * points I decided to use the Horner scheme.
44
 *
45
 * A cubic Bezier curve with control points b0, b1, b2, b3 can be
46
 * written as
47
 *
48
 *        (([3]        [3]     )     [3]       )     [3]
49
 * c(t) = (([0]*s*b0 + [1]*t*b1)*s + [2]*t^2*b2)*s + [3]*t^2*b3
50
 *
51
 *                                           [n]
52
 * where s=1-t and the binomial coefficients [i]. These can
53
 * be computed iteratively using the identity:
54
 *
55
 * [n]               [n  ]             [n]
56
 * [i] = (n-i+1)/i * [i-1]     and     [0] = 1
57
 */
58
 
59
 
60
void
61
_math_horner_bezier_curve(const GLfloat *cp, GLfloat *out, GLfloat t,
62
                          GLuint dim, GLuint order);
63
 
64
 
65
/*
66
 * Tensor product Bezier surfaces
67
 *
68
 * Again the Horner scheme is used to compute a point on a
69
 * TP Bezier surface. First a control polygon for a curve
70
 * on the surface in one parameter direction is computed,
71
 * then the point on the curve for the other parameter
72
 * direction is evaluated.
73
 *
74
 * To store the curve control polygon additional storage
75
 * for max(uorder,vorder) points is needed in the
76
 * control net cn.
77
 */
78
 
79
void
80
_math_horner_bezier_surf(GLfloat *cn, GLfloat *out, GLfloat u, GLfloat v,
81
                         GLuint dim, GLuint uorder, GLuint vorder);
82
 
83
 
84
/*
85
 * The direct de Casteljau algorithm is used when a point on the
86
 * surface and the tangent directions spanning the tangent plane
87
 * should be computed (this is needed to compute normals to the
88
 * surface). In this case the de Casteljau algorithm approach is
89
 * nicer because a point and the partial derivatives can be computed
90
 * at the same time. To get the correct tangent length du and dv
91
 * must be multiplied with the (u2-u1)/uorder-1 and (v2-v1)/vorder-1.
92
 * Since only the directions are needed, this scaling step is omitted.
93
 *
94
 * De Casteljau needs additional storage for uorder*vorder
95
 * values in the control net cn.
96
 */
97
 
98
void
99
_math_de_casteljau_surf(GLfloat *cn, GLfloat *out, GLfloat *du, GLfloat *dv,
100
                        GLfloat u, GLfloat v, GLuint dim,
101
                        GLuint uorder, GLuint vorder);
102
 
103
 
104
#endif