Rev 56 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
56 | pj | 1 | /* $Id: m_matrix.c,v 1.1 2003-02-28 11:48:05 pj Exp $ */ |
2 | |||
3 | /* |
||
4 | * Mesa 3-D graphics library |
||
5 | * Version: 4.1 |
||
6 | * |
||
7 | * Copyright (C) 1999-2002 Brian Paul All Rights Reserved. |
||
8 | * |
||
9 | * Permission is hereby granted, free of charge, to any person obtaining a |
||
10 | * copy of this software and associated documentation files (the "Software"), |
||
11 | * to deal in the Software without restriction, including without limitation |
||
12 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
||
13 | * and/or sell copies of the Software, and to permit persons to whom the |
||
14 | * Software is furnished to do so, subject to the following conditions: |
||
15 | * |
||
16 | * The above copyright notice and this permission notice shall be included |
||
17 | * in all copies or substantial portions of the Software. |
||
18 | * |
||
19 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS |
||
20 | * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
||
21 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
||
22 | * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN |
||
23 | * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
||
24 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
||
25 | */ |
||
26 | |||
27 | |||
28 | /* |
||
29 | * Matrix operations |
||
30 | * |
||
31 | * NOTES: |
||
32 | * 1. 4x4 transformation matrices are stored in memory in column major order. |
||
33 | * 2. Points/vertices are to be thought of as column vectors. |
||
34 | * 3. Transformation of a point p by a matrix M is: p' = M * p |
||
35 | */ |
||
36 | |||
37 | #include "glheader.h" |
||
38 | #include "imports.h" |
||
39 | #include "macros.h" |
||
40 | #include "imports.h" |
||
41 | #include "mmath.h" |
||
42 | |||
43 | #include "m_matrix.h" |
||
44 | |||
45 | |||
46 | static const char *types[] = { |
||
47 | "MATRIX_GENERAL", |
||
48 | "MATRIX_IDENTITY", |
||
49 | "MATRIX_3D_NO_ROT", |
||
50 | "MATRIX_PERSPECTIVE", |
||
51 | "MATRIX_2D", |
||
52 | "MATRIX_2D_NO_ROT", |
||
53 | "MATRIX_3D" |
||
54 | }; |
||
55 | |||
56 | |||
57 | static GLfloat Identity[16] = { |
||
58 | 1.0, 0.0, 0.0, 0.0, |
||
59 | 0.0, 1.0, 0.0, 0.0, |
||
60 | 0.0, 0.0, 1.0, 0.0, |
||
61 | 0.0, 0.0, 0.0, 1.0 |
||
62 | }; |
||
63 | |||
64 | |||
65 | |||
66 | |||
67 | /* |
||
68 | * This matmul was contributed by Thomas Malik |
||
69 | * |
||
70 | * Perform a 4x4 matrix multiplication (product = a x b). |
||
71 | * Input: a, b - matrices to multiply |
||
72 | * Output: product - product of a and b |
||
73 | * WARNING: (product != b) assumed |
||
74 | * NOTE: (product == a) allowed |
||
75 | * |
||
76 | * KW: 4*16 = 64 muls |
||
77 | */ |
||
78 | #define A(row,col) a[(col<<2)+row] |
||
79 | #define B(row,col) b[(col<<2)+row] |
||
80 | #define P(row,col) product[(col<<2)+row] |
||
81 | |||
82 | static void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b ) |
||
83 | { |
||
84 | GLint i; |
||
85 | for (i = 0; i < 4; i++) { |
||
86 | const GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3); |
||
87 | P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0); |
||
88 | P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1); |
||
89 | P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2); |
||
90 | P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3); |
||
91 | } |
||
92 | } |
||
93 | |||
94 | |||
95 | /* Multiply two matrices known to occupy only the top three rows, such |
||
96 | * as typical model matrices, and ortho matrices. |
||
97 | */ |
||
98 | static void matmul34( GLfloat *product, const GLfloat *a, const GLfloat *b ) |
||
99 | { |
||
100 | GLint i; |
||
101 | for (i = 0; i < 3; i++) { |
||
102 | const GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3); |
||
103 | P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0); |
||
104 | P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1); |
||
105 | P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2); |
||
106 | P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3; |
||
107 | } |
||
108 | P(3,0) = 0; |
||
109 | P(3,1) = 0; |
||
110 | P(3,2) = 0; |
||
111 | P(3,3) = 1; |
||
112 | } |
||
113 | |||
114 | |||
115 | #undef A |
||
116 | #undef B |
||
117 | #undef P |
||
118 | |||
119 | |||
120 | /* |
||
121 | * Multiply a matrix by an array of floats with known properties. |
||
122 | */ |
||
123 | static void matrix_multf( GLmatrix *mat, const GLfloat *m, GLuint flags ) |
||
124 | { |
||
125 | mat->flags |= (flags | MAT_DIRTY_TYPE | MAT_DIRTY_INVERSE); |
||
126 | |||
127 | if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) |
||
128 | matmul34( mat->m, mat->m, m ); |
||
129 | else |
||
130 | matmul4( mat->m, mat->m, m ); |
||
131 | } |
||
132 | |||
133 | |||
134 | static void print_matrix_floats( const GLfloat m[16] ) |
||
135 | { |
||
136 | int i; |
||
137 | for (i=0;i<4;i++) { |
||
138 | _mesa_debug(NULL,"\t%f %f %f %f\n", m[i], m[4+i], m[8+i], m[12+i] ); |
||
139 | } |
||
140 | } |
||
141 | |||
142 | void |
||
143 | _math_matrix_print( const GLmatrix *m ) |
||
144 | { |
||
145 | _mesa_debug(NULL, "Matrix type: %s, flags: %x\n", types[m->type], m->flags); |
||
146 | print_matrix_floats(m->m); |
||
147 | _mesa_debug(NULL, "Inverse: \n"); |
||
148 | if (m->inv) { |
||
149 | GLfloat prod[16]; |
||
150 | print_matrix_floats(m->inv); |
||
151 | matmul4(prod, m->m, m->inv); |
||
152 | _mesa_debug(NULL, "Mat * Inverse:\n"); |
||
153 | print_matrix_floats(prod); |
||
154 | } |
||
155 | else { |
||
156 | _mesa_debug(NULL, " - not available\n"); |
||
157 | } |
||
158 | } |
||
159 | |||
160 | |||
161 | |||
162 | |||
163 | #define SWAP_ROWS(a, b) { GLfloat *_tmp = a; (a)=(b); (b)=_tmp; } |
||
164 | #define MAT(m,r,c) (m)[(c)*4+(r)] |
||
165 | |||
166 | /* |
||
167 | * Compute inverse of 4x4 transformation matrix. |
||
168 | * Code contributed by Jacques Leroy jle@star.be |
||
169 | * Return GL_TRUE for success, GL_FALSE for failure (singular matrix) |
||
170 | */ |
||
171 | static GLboolean invert_matrix_general( GLmatrix *mat ) |
||
172 | { |
||
173 | const GLfloat *m = mat->m; |
||
174 | GLfloat *out = mat->inv; |
||
175 | GLfloat wtmp[4][8]; |
||
176 | GLfloat m0, m1, m2, m3, s; |
||
177 | GLfloat *r0, *r1, *r2, *r3; |
||
178 | |||
179 | r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3]; |
||
180 | |||
181 | r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1), |
||
182 | r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3), |
||
183 | r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0, |
||
184 | |||
185 | r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1), |
||
186 | r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3), |
||
187 | r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0, |
||
188 | |||
189 | r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1), |
||
190 | r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3), |
||
191 | r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0, |
||
192 | |||
193 | r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1), |
||
194 | r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3), |
||
195 | r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0; |
||
196 | |||
197 | /* choose pivot - or die */ |
||
198 | if (fabs(r3[0])>fabs(r2[0])) SWAP_ROWS(r3, r2); |
||
199 | if (fabs(r2[0])>fabs(r1[0])) SWAP_ROWS(r2, r1); |
||
200 | if (fabs(r1[0])>fabs(r0[0])) SWAP_ROWS(r1, r0); |
||
201 | if (0.0 == r0[0]) return GL_FALSE; |
||
202 | |||
203 | /* eliminate first variable */ |
||
204 | m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0]; |
||
205 | s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s; |
||
206 | s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s; |
||
207 | s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s; |
||
208 | s = r0[4]; |
||
209 | if (s != 0.0) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; } |
||
210 | s = r0[5]; |
||
211 | if (s != 0.0) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; } |
||
212 | s = r0[6]; |
||
213 | if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; } |
||
214 | s = r0[7]; |
||
215 | if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; } |
||
216 | |||
217 | /* choose pivot - or die */ |
||
218 | if (fabs(r3[1])>fabs(r2[1])) SWAP_ROWS(r3, r2); |
||
219 | if (fabs(r2[1])>fabs(r1[1])) SWAP_ROWS(r2, r1); |
||
220 | if (0.0 == r1[1]) return GL_FALSE; |
||
221 | |||
222 | /* eliminate second variable */ |
||
223 | m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1]; |
||
224 | r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2]; |
||
225 | r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3]; |
||
226 | s = r1[4]; if (0.0 != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; } |
||
227 | s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; } |
||
228 | s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; } |
||
229 | s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; } |
||
230 | |||
231 | /* choose pivot - or die */ |
||
232 | if (fabs(r3[2])>fabs(r2[2])) SWAP_ROWS(r3, r2); |
||
233 | if (0.0 == r2[2]) return GL_FALSE; |
||
234 | |||
235 | /* eliminate third variable */ |
||
236 | m3 = r3[2]/r2[2]; |
||
237 | r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4], |
||
238 | r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6], |
||
239 | r3[7] -= m3 * r2[7]; |
||
240 | |||
241 | /* last check */ |
||
242 | if (0.0 == r3[3]) return GL_FALSE; |
||
243 | |||
244 | s = 1.0F/r3[3]; /* now back substitute row 3 */ |
||
245 | r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s; |
||
246 | |||
247 | m2 = r2[3]; /* now back substitute row 2 */ |
||
248 | s = 1.0F/r2[2]; |
||
249 | r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2), |
||
250 | r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2); |
||
251 | m1 = r1[3]; |
||
252 | r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1, |
||
253 | r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1; |
||
254 | m0 = r0[3]; |
||
255 | r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0, |
||
256 | r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0; |
||
257 | |||
258 | m1 = r1[2]; /* now back substitute row 1 */ |
||
259 | s = 1.0F/r1[1]; |
||
260 | r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1), |
||
261 | r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1); |
||
262 | m0 = r0[2]; |
||
263 | r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0, |
||
264 | r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0; |
||
265 | |||
266 | m0 = r0[1]; /* now back substitute row 0 */ |
||
267 | s = 1.0F/r0[0]; |
||
268 | r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0), |
||
269 | r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0); |
||
270 | |||
271 | MAT(out,0,0) = r0[4]; MAT(out,0,1) = r0[5], |
||
272 | MAT(out,0,2) = r0[6]; MAT(out,0,3) = r0[7], |
||
273 | MAT(out,1,0) = r1[4]; MAT(out,1,1) = r1[5], |
||
274 | MAT(out,1,2) = r1[6]; MAT(out,1,3) = r1[7], |
||
275 | MAT(out,2,0) = r2[4]; MAT(out,2,1) = r2[5], |
||
276 | MAT(out,2,2) = r2[6]; MAT(out,2,3) = r2[7], |
||
277 | MAT(out,3,0) = r3[4]; MAT(out,3,1) = r3[5], |
||
278 | MAT(out,3,2) = r3[6]; MAT(out,3,3) = r3[7]; |
||
279 | |||
280 | return GL_TRUE; |
||
281 | } |
||
282 | #undef SWAP_ROWS |
||
283 | |||
284 | |||
285 | /* Adapted from graphics gems II. |
||
286 | */ |
||
287 | static GLboolean invert_matrix_3d_general( GLmatrix *mat ) |
||
288 | { |
||
289 | const GLfloat *in = mat->m; |
||
290 | GLfloat *out = mat->inv; |
||
291 | GLfloat pos, neg, t; |
||
292 | GLfloat det; |
||
293 | |||
294 | /* Calculate the determinant of upper left 3x3 submatrix and |
||
295 | * determine if the matrix is singular. |
||
296 | */ |
||
297 | pos = neg = 0.0; |
||
298 | t = MAT(in,0,0) * MAT(in,1,1) * MAT(in,2,2); |
||
299 | if (t >= 0.0) pos += t; else neg += t; |
||
300 | |||
301 | t = MAT(in,1,0) * MAT(in,2,1) * MAT(in,0,2); |
||
302 | if (t >= 0.0) pos += t; else neg += t; |
||
303 | |||
304 | t = MAT(in,2,0) * MAT(in,0,1) * MAT(in,1,2); |
||
305 | if (t >= 0.0) pos += t; else neg += t; |
||
306 | |||
307 | t = -MAT(in,2,0) * MAT(in,1,1) * MAT(in,0,2); |
||
308 | if (t >= 0.0) pos += t; else neg += t; |
||
309 | |||
310 | t = -MAT(in,1,0) * MAT(in,0,1) * MAT(in,2,2); |
||
311 | if (t >= 0.0) pos += t; else neg += t; |
||
312 | |||
313 | t = -MAT(in,0,0) * MAT(in,2,1) * MAT(in,1,2); |
||
314 | if (t >= 0.0) pos += t; else neg += t; |
||
315 | |||
316 | det = pos + neg; |
||
317 | |||
318 | if (det*det < 1e-25) |
||
319 | return GL_FALSE; |
||
320 | |||
321 | det = 1.0F / det; |
||
322 | MAT(out,0,0) = ( (MAT(in,1,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,1,2) )*det); |
||
323 | MAT(out,0,1) = (- (MAT(in,0,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,0,2) )*det); |
||
324 | MAT(out,0,2) = ( (MAT(in,0,1)*MAT(in,1,2) - MAT(in,1,1)*MAT(in,0,2) )*det); |
||
325 | MAT(out,1,0) = (- (MAT(in,1,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,1,2) )*det); |
||
326 | MAT(out,1,1) = ( (MAT(in,0,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,0,2) )*det); |
||
327 | MAT(out,1,2) = (- (MAT(in,0,0)*MAT(in,1,2) - MAT(in,1,0)*MAT(in,0,2) )*det); |
||
328 | MAT(out,2,0) = ( (MAT(in,1,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,1,1) )*det); |
||
329 | MAT(out,2,1) = (- (MAT(in,0,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,0,1) )*det); |
||
330 | MAT(out,2,2) = ( (MAT(in,0,0)*MAT(in,1,1) - MAT(in,1,0)*MAT(in,0,1) )*det); |
||
331 | |||
332 | /* Do the translation part */ |
||
333 | MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) + |
||
334 | MAT(in,1,3) * MAT(out,0,1) + |
||
335 | MAT(in,2,3) * MAT(out,0,2) ); |
||
336 | MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) + |
||
337 | MAT(in,1,3) * MAT(out,1,1) + |
||
338 | MAT(in,2,3) * MAT(out,1,2) ); |
||
339 | MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) + |
||
340 | MAT(in,1,3) * MAT(out,2,1) + |
||
341 | MAT(in,2,3) * MAT(out,2,2) ); |
||
342 | |||
343 | return GL_TRUE; |
||
344 | } |
||
345 | |||
346 | |||
347 | static GLboolean invert_matrix_3d( GLmatrix *mat ) |
||
348 | { |
||
349 | const GLfloat *in = mat->m; |
||
350 | GLfloat *out = mat->inv; |
||
351 | |||
352 | if (!TEST_MAT_FLAGS(mat, MAT_FLAGS_ANGLE_PRESERVING)) { |
||
353 | return invert_matrix_3d_general( mat ); |
||
354 | } |
||
355 | |||
356 | if (mat->flags & MAT_FLAG_UNIFORM_SCALE) { |
||
357 | GLfloat scale = (MAT(in,0,0) * MAT(in,0,0) + |
||
358 | MAT(in,0,1) * MAT(in,0,1) + |
||
359 | MAT(in,0,2) * MAT(in,0,2)); |
||
360 | |||
361 | if (scale == 0.0) |
||
362 | return GL_FALSE; |
||
363 | |||
364 | scale = 1.0F / scale; |
||
365 | |||
366 | /* Transpose and scale the 3 by 3 upper-left submatrix. */ |
||
367 | MAT(out,0,0) = scale * MAT(in,0,0); |
||
368 | MAT(out,1,0) = scale * MAT(in,0,1); |
||
369 | MAT(out,2,0) = scale * MAT(in,0,2); |
||
370 | MAT(out,0,1) = scale * MAT(in,1,0); |
||
371 | MAT(out,1,1) = scale * MAT(in,1,1); |
||
372 | MAT(out,2,1) = scale * MAT(in,1,2); |
||
373 | MAT(out,0,2) = scale * MAT(in,2,0); |
||
374 | MAT(out,1,2) = scale * MAT(in,2,1); |
||
375 | MAT(out,2,2) = scale * MAT(in,2,2); |
||
376 | } |
||
377 | else if (mat->flags & MAT_FLAG_ROTATION) { |
||
378 | /* Transpose the 3 by 3 upper-left submatrix. */ |
||
379 | MAT(out,0,0) = MAT(in,0,0); |
||
380 | MAT(out,1,0) = MAT(in,0,1); |
||
381 | MAT(out,2,0) = MAT(in,0,2); |
||
382 | MAT(out,0,1) = MAT(in,1,0); |
||
383 | MAT(out,1,1) = MAT(in,1,1); |
||
384 | MAT(out,2,1) = MAT(in,1,2); |
||
385 | MAT(out,0,2) = MAT(in,2,0); |
||
386 | MAT(out,1,2) = MAT(in,2,1); |
||
387 | MAT(out,2,2) = MAT(in,2,2); |
||
388 | } |
||
389 | else { |
||
390 | /* pure translation */ |
||
391 | MEMCPY( out, Identity, sizeof(Identity) ); |
||
392 | MAT(out,0,3) = - MAT(in,0,3); |
||
393 | MAT(out,1,3) = - MAT(in,1,3); |
||
394 | MAT(out,2,3) = - MAT(in,2,3); |
||
395 | return GL_TRUE; |
||
396 | } |
||
397 | |||
398 | if (mat->flags & MAT_FLAG_TRANSLATION) { |
||
399 | /* Do the translation part */ |
||
400 | MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) + |
||
401 | MAT(in,1,3) * MAT(out,0,1) + |
||
402 | MAT(in,2,3) * MAT(out,0,2) ); |
||
403 | MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) + |
||
404 | MAT(in,1,3) * MAT(out,1,1) + |
||
405 | MAT(in,2,3) * MAT(out,1,2) ); |
||
406 | MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) + |
||
407 | MAT(in,1,3) * MAT(out,2,1) + |
||
408 | MAT(in,2,3) * MAT(out,2,2) ); |
||
409 | } |
||
410 | else { |
||
411 | MAT(out,0,3) = MAT(out,1,3) = MAT(out,2,3) = 0.0; |
||
412 | } |
||
413 | |||
414 | return GL_TRUE; |
||
415 | } |
||
416 | |||
417 | |||
418 | |||
419 | static GLboolean invert_matrix_identity( GLmatrix *mat ) |
||
420 | { |
||
421 | MEMCPY( mat->inv, Identity, sizeof(Identity) ); |
||
422 | return GL_TRUE; |
||
423 | } |
||
424 | |||
425 | |||
426 | static GLboolean invert_matrix_3d_no_rot( GLmatrix *mat ) |
||
427 | { |
||
428 | const GLfloat *in = mat->m; |
||
429 | GLfloat *out = mat->inv; |
||
430 | |||
431 | if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0 || MAT(in,2,2) == 0 ) |
||
432 | return GL_FALSE; |
||
433 | |||
434 | MEMCPY( out, Identity, 16 * sizeof(GLfloat) ); |
||
435 | MAT(out,0,0) = 1.0F / MAT(in,0,0); |
||
436 | MAT(out,1,1) = 1.0F / MAT(in,1,1); |
||
437 | MAT(out,2,2) = 1.0F / MAT(in,2,2); |
||
438 | |||
439 | if (mat->flags & MAT_FLAG_TRANSLATION) { |
||
440 | MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0)); |
||
441 | MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1)); |
||
442 | MAT(out,2,3) = - (MAT(in,2,3) * MAT(out,2,2)); |
||
443 | } |
||
444 | |||
445 | return GL_TRUE; |
||
446 | } |
||
447 | |||
448 | |||
449 | static GLboolean invert_matrix_2d_no_rot( GLmatrix *mat ) |
||
450 | { |
||
451 | const GLfloat *in = mat->m; |
||
452 | GLfloat *out = mat->inv; |
||
453 | |||
454 | if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0) |
||
455 | return GL_FALSE; |
||
456 | |||
457 | MEMCPY( out, Identity, 16 * sizeof(GLfloat) ); |
||
458 | MAT(out,0,0) = 1.0F / MAT(in,0,0); |
||
459 | MAT(out,1,1) = 1.0F / MAT(in,1,1); |
||
460 | |||
461 | if (mat->flags & MAT_FLAG_TRANSLATION) { |
||
462 | MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0)); |
||
463 | MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1)); |
||
464 | } |
||
465 | |||
466 | return GL_TRUE; |
||
467 | } |
||
468 | |||
469 | |||
470 | #if 0 |
||
471 | /* broken */ |
||
472 | static GLboolean invert_matrix_perspective( GLmatrix *mat ) |
||
473 | { |
||
474 | const GLfloat *in = mat->m; |
||
475 | GLfloat *out = mat->inv; |
||
476 | |||
477 | if (MAT(in,2,3) == 0) |
||
478 | return GL_FALSE; |
||
479 | |||
480 | MEMCPY( out, Identity, 16 * sizeof(GLfloat) ); |
||
481 | |||
482 | MAT(out,0,0) = 1.0F / MAT(in,0,0); |
||
483 | MAT(out,1,1) = 1.0F / MAT(in,1,1); |
||
484 | |||
485 | MAT(out,0,3) = MAT(in,0,2); |
||
486 | MAT(out,1,3) = MAT(in,1,2); |
||
487 | |||
488 | MAT(out,2,2) = 0; |
||
489 | MAT(out,2,3) = -1; |
||
490 | |||
491 | MAT(out,3,2) = 1.0F / MAT(in,2,3); |
||
492 | MAT(out,3,3) = MAT(in,2,2) * MAT(out,3,2); |
||
493 | |||
494 | return GL_TRUE; |
||
495 | } |
||
496 | #endif |
||
497 | |||
498 | |||
499 | typedef GLboolean (*inv_mat_func)( GLmatrix *mat ); |
||
500 | |||
501 | |||
502 | static inv_mat_func inv_mat_tab[7] = { |
||
503 | invert_matrix_general, |
||
504 | invert_matrix_identity, |
||
505 | invert_matrix_3d_no_rot, |
||
506 | #if 0 |
||
507 | /* Don't use this function for now - it fails when the projection matrix |
||
508 | * is premultiplied by a translation (ala Chromium's tilesort SPU). |
||
509 | */ |
||
510 | invert_matrix_perspective, |
||
511 | #else |
||
512 | invert_matrix_general, |
||
513 | #endif |
||
514 | invert_matrix_3d, /* lazy! */ |
||
515 | invert_matrix_2d_no_rot, |
||
516 | invert_matrix_3d |
||
517 | }; |
||
518 | |||
519 | |||
520 | static GLboolean matrix_invert( GLmatrix *mat ) |
||
521 | { |
||
522 | if (inv_mat_tab[mat->type](mat)) { |
||
523 | mat->flags &= ~MAT_FLAG_SINGULAR; |
||
524 | return GL_TRUE; |
||
525 | } else { |
||
526 | mat->flags |= MAT_FLAG_SINGULAR; |
||
527 | MEMCPY( mat->inv, Identity, sizeof(Identity) ); |
||
528 | return GL_FALSE; |
||
529 | } |
||
530 | } |
||
531 | |||
532 | |||
533 | |||
534 | |||
535 | |||
536 | |||
537 | /* |
||
538 | * Generate a 4x4 transformation matrix from glRotate parameters, and |
||
539 | * postmultiply the input matrix by it. |
||
540 | * This function contributed by Erich Boleyn (erich@uruk.org). |
||
541 | * Optimizatios contributed by Rudolf Opalla (rudi@khm.de). |
||
542 | */ |
||
543 | void |
||
544 | _math_matrix_rotate( GLmatrix *mat, |
||
545 | GLfloat angle, GLfloat x, GLfloat y, GLfloat z ) |
||
546 | { |
||
547 | GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c, s, c; |
||
548 | GLfloat m[16]; |
||
549 | GLboolean optimized; |
||
550 | |||
551 | s = (GLfloat) sin( angle * DEG2RAD ); |
||
552 | c = (GLfloat) cos( angle * DEG2RAD ); |
||
553 | |||
554 | MEMCPY(m, Identity, sizeof(GLfloat)*16); |
||
555 | optimized = GL_FALSE; |
||
556 | |||
557 | #define M(row,col) m[col*4+row] |
||
558 | |||
559 | if (x == 0.0F) { |
||
560 | if (y == 0.0F) { |
||
561 | if (z != 0.0F) { |
||
562 | optimized = GL_TRUE; |
||
563 | /* rotate only around z-axis */ |
||
564 | M(0,0) = c; |
||
565 | M(1,1) = c; |
||
566 | if (z < 0.0F) { |
||
567 | M(0,1) = s; |
||
568 | M(1,0) = -s; |
||
569 | } |
||
570 | else { |
||
571 | M(0,1) = -s; |
||
572 | M(1,0) = s; |
||
573 | } |
||
574 | } |
||
575 | } |
||
576 | else if (z == 0.0F) { |
||
577 | optimized = GL_TRUE; |
||
578 | /* rotate only around y-axis */ |
||
579 | M(0,0) = c; |
||
580 | M(2,2) = c; |
||
581 | if (y < 0.0F) { |
||
582 | M(0,2) = -s; |
||
583 | M(2,0) = s; |
||
584 | } |
||
585 | else { |
||
586 | M(0,2) = s; |
||
587 | M(2,0) = -s; |
||
588 | } |
||
589 | } |
||
590 | } |
||
591 | else if (y == 0.0F) { |
||
592 | if (z == 0.0F) { |
||
593 | optimized = GL_TRUE; |
||
594 | /* rotate only around x-axis */ |
||
595 | M(1,1) = c; |
||
596 | M(2,2) = c; |
||
597 | if (y < 0.0F) { |
||
598 | M(1,2) = s; |
||
599 | M(2,1) = -s; |
||
600 | } |
||
601 | else { |
||
602 | M(1,2) = -s; |
||
603 | M(2,1) = s; |
||
604 | } |
||
605 | } |
||
606 | } |
||
607 | |||
608 | if (!optimized) { |
||
609 | const GLfloat mag = (GLfloat) GL_SQRT(x * x + y * y + z * z); |
||
610 | |||
611 | if (mag <= 1.0e-4) { |
||
612 | /* no rotation, leave mat as-is */ |
||
613 | return; |
||
614 | } |
||
615 | |||
616 | x /= mag; |
||
617 | y /= mag; |
||
618 | z /= mag; |
||
619 | |||
620 | |||
621 | /* |
||
622 | * Arbitrary axis rotation matrix. |
||
623 | * |
||
624 | * This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied |
||
625 | * like so: Rz * Ry * T * Ry' * Rz'. T is the final rotation |
||
626 | * (which is about the X-axis), and the two composite transforms |
||
627 | * Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary |
||
628 | * from the arbitrary axis to the X-axis then back. They are |
||
629 | * all elementary rotations. |
||
630 | * |
||
631 | * Rz' is a rotation about the Z-axis, to bring the axis vector |
||
632 | * into the x-z plane. Then Ry' is applied, rotating about the |
||
633 | * Y-axis to bring the axis vector parallel with the X-axis. The |
||
634 | * rotation about the X-axis is then performed. Ry and Rz are |
||
635 | * simply the respective inverse transforms to bring the arbitrary |
||
636 | * axis back to it's original orientation. The first transforms |
||
637 | * Rz' and Ry' are considered inverses, since the data from the |
||
638 | * arbitrary axis gives you info on how to get to it, not how |
||
639 | * to get away from it, and an inverse must be applied. |
||
640 | * |
||
641 | * The basic calculation used is to recognize that the arbitrary |
||
642 | * axis vector (x, y, z), since it is of unit length, actually |
||
643 | * represents the sines and cosines of the angles to rotate the |
||
644 | * X-axis to the same orientation, with theta being the angle about |
||
645 | * Z and phi the angle about Y (in the order described above) |
||
646 | * as follows: |
||
647 | * |
||
648 | * cos ( theta ) = x / sqrt ( 1 - z^2 ) |
||
649 | * sin ( theta ) = y / sqrt ( 1 - z^2 ) |
||
650 | * |
||
651 | * cos ( phi ) = sqrt ( 1 - z^2 ) |
||
652 | * sin ( phi ) = z |
||
653 | * |
||
654 | * Note that cos ( phi ) can further be inserted to the above |
||
655 | * formulas: |
||
656 | * |
||
657 | * cos ( theta ) = x / cos ( phi ) |
||
658 | * sin ( theta ) = y / sin ( phi ) |
||
659 | * |
||
660 | * ...etc. Because of those relations and the standard trigonometric |
||
661 | * relations, it is pssible to reduce the transforms down to what |
||
662 | * is used below. It may be that any primary axis chosen will give the |
||
663 | * same results (modulo a sign convention) using thie method. |
||
664 | * |
||
665 | * Particularly nice is to notice that all divisions that might |
||
666 | * have caused trouble when parallel to certain planes or |
||
667 | * axis go away with care paid to reducing the expressions. |
||
668 | * After checking, it does perform correctly under all cases, since |
||
669 | * in all the cases of division where the denominator would have |
||
670 | * been zero, the numerator would have been zero as well, giving |
||
671 | * the expected result. |
||
672 | */ |
||
673 | |||
674 | xx = x * x; |
||
675 | yy = y * y; |
||
676 | zz = z * z; |
||
677 | xy = x * y; |
||
678 | yz = y * z; |
||
679 | zx = z * x; |
||
680 | xs = x * s; |
||
681 | ys = y * s; |
||
682 | zs = z * s; |
||
683 | one_c = 1.0F - c; |
||
684 | |||
685 | /* We already hold the identity-matrix so we can skip some statements */ |
||
686 | M(0,0) = (one_c * xx) + c; |
||
687 | M(0,1) = (one_c * xy) - zs; |
||
688 | M(0,2) = (one_c * zx) + ys; |
||
689 | /* M(0,3) = 0.0F; */ |
||
690 | |||
691 | M(1,0) = (one_c * xy) + zs; |
||
692 | M(1,1) = (one_c * yy) + c; |
||
693 | M(1,2) = (one_c * yz) - xs; |
||
694 | /* M(1,3) = 0.0F; */ |
||
695 | |||
696 | M(2,0) = (one_c * zx) - ys; |
||
697 | M(2,1) = (one_c * yz) + xs; |
||
698 | M(2,2) = (one_c * zz) + c; |
||
699 | /* M(2,3) = 0.0F; */ |
||
700 | |||
701 | /* |
||
702 | M(3,0) = 0.0F; |
||
703 | M(3,1) = 0.0F; |
||
704 | M(3,2) = 0.0F; |
||
705 | M(3,3) = 1.0F; |
||
706 | */ |
||
707 | } |
||
708 | #undef M |
||
709 | |||
710 | matrix_multf( mat, m, MAT_FLAG_ROTATION ); |
||
711 | } |
||
712 | |||
713 | |||
714 | |||
715 | void |
||
716 | _math_matrix_frustum( GLmatrix *mat, |
||
717 | GLfloat left, GLfloat right, |
||
718 | GLfloat bottom, GLfloat top, |
||
719 | GLfloat nearval, GLfloat farval ) |
||
720 | { |
||
721 | GLfloat x, y, a, b, c, d; |
||
722 | GLfloat m[16]; |
||
723 | |||
724 | x = (2.0F*nearval) / (right-left); |
||
725 | y = (2.0F*nearval) / (top-bottom); |
||
726 | a = (right+left) / (right-left); |
||
727 | b = (top+bottom) / (top-bottom); |
||
728 | c = -(farval+nearval) / ( farval-nearval); |
||
729 | d = -(2.0F*farval*nearval) / (farval-nearval); /* error? */ |
||
730 | |||
731 | #define M(row,col) m[col*4+row] |
||
732 | M(0,0) = x; M(0,1) = 0.0F; M(0,2) = a; M(0,3) = 0.0F; |
||
733 | M(1,0) = 0.0F; M(1,1) = y; M(1,2) = b; M(1,3) = 0.0F; |
||
734 | M(2,0) = 0.0F; M(2,1) = 0.0F; M(2,2) = c; M(2,3) = d; |
||
735 | M(3,0) = 0.0F; M(3,1) = 0.0F; M(3,2) = -1.0F; M(3,3) = 0.0F; |
||
736 | #undef M |
||
737 | |||
738 | matrix_multf( mat, m, MAT_FLAG_PERSPECTIVE ); |
||
739 | } |
||
740 | |||
741 | void |
||
742 | _math_matrix_ortho( GLmatrix *mat, |
||
743 | GLfloat left, GLfloat right, |
||
744 | GLfloat bottom, GLfloat top, |
||
745 | GLfloat nearval, GLfloat farval ) |
||
746 | { |
||
747 | GLfloat x, y, z; |
||
748 | GLfloat tx, ty, tz; |
||
749 | GLfloat m[16]; |
||
750 | |||
751 | x = 2.0F / (right-left); |
||
752 | y = 2.0F / (top-bottom); |
||
753 | z = -2.0F / (farval-nearval); |
||
754 | tx = -(right+left) / (right-left); |
||
755 | ty = -(top+bottom) / (top-bottom); |
||
756 | tz = -(farval+nearval) / (farval-nearval); |
||
757 | |||
758 | #define M(row,col) m[col*4+row] |
||
759 | M(0,0) = x; M(0,1) = 0.0F; M(0,2) = 0.0F; M(0,3) = tx; |
||
760 | M(1,0) = 0.0F; M(1,1) = y; M(1,2) = 0.0F; M(1,3) = ty; |
||
761 | M(2,0) = 0.0F; M(2,1) = 0.0F; M(2,2) = z; M(2,3) = tz; |
||
762 | M(3,0) = 0.0F; M(3,1) = 0.0F; M(3,2) = 0.0F; M(3,3) = 1.0F; |
||
763 | #undef M |
||
764 | |||
765 | matrix_multf( mat, m, (MAT_FLAG_GENERAL_SCALE|MAT_FLAG_TRANSLATION)); |
||
766 | } |
||
767 | |||
768 | |||
769 | #define ZERO(x) (1<<x) |
||
770 | #define ONE(x) (1<<(x+16)) |
||
771 | |||
772 | #define MASK_NO_TRX (ZERO(12) | ZERO(13) | ZERO(14)) |
||
773 | #define MASK_NO_2D_SCALE ( ONE(0) | ONE(5)) |
||
774 | |||
775 | #define MASK_IDENTITY ( ONE(0) | ZERO(4) | ZERO(8) | ZERO(12) |\ |
||
776 | ZERO(1) | ONE(5) | ZERO(9) | ZERO(13) |\ |
||
777 | ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\ |
||
778 | ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) |
||
779 | |||
780 | #define MASK_2D_NO_ROT ( ZERO(4) | ZERO(8) | \ |
||
781 | ZERO(1) | ZERO(9) | \ |
||
782 | ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\ |
||
783 | ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) |
||
784 | |||
785 | #define MASK_2D ( ZERO(8) | \ |
||
786 | ZERO(9) | \ |
||
787 | ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\ |
||
788 | ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) |
||
789 | |||
790 | |||
791 | #define MASK_3D_NO_ROT ( ZERO(4) | ZERO(8) | \ |
||
792 | ZERO(1) | ZERO(9) | \ |
||
793 | ZERO(2) | ZERO(6) | \ |
||
794 | ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) |
||
795 | |||
796 | #define MASK_3D ( \ |
||
797 | \ |
||
798 | \ |
||
799 | ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) |
||
800 | |||
801 | |||
802 | #define MASK_PERSPECTIVE ( ZERO(4) | ZERO(12) |\ |
||
803 | ZERO(1) | ZERO(13) |\ |
||
804 | ZERO(2) | ZERO(6) | \ |
||
805 | ZERO(3) | ZERO(7) | ZERO(15) ) |
||
806 | |||
807 | #define SQ(x) ((x)*(x)) |
||
808 | |||
809 | /* Determine type and flags from scratch. This is expensive enough to |
||
810 | * only want to do it once. |
||
811 | */ |
||
812 | static void analyse_from_scratch( GLmatrix *mat ) |
||
813 | { |
||
814 | const GLfloat *m = mat->m; |
||
815 | GLuint mask = 0; |
||
816 | GLuint i; |
||
817 | |||
818 | for (i = 0 ; i < 16 ; i++) { |
||
819 | if (m[i] == 0.0) mask |= (1<<i); |
||
820 | } |
||
821 | |||
822 | if (m[0] == 1.0F) mask |= (1<<16); |
||
823 | if (m[5] == 1.0F) mask |= (1<<21); |
||
824 | if (m[10] == 1.0F) mask |= (1<<26); |
||
825 | if (m[15] == 1.0F) mask |= (1<<31); |
||
826 | |||
827 | mat->flags &= ~MAT_FLAGS_GEOMETRY; |
||
828 | |||
829 | /* Check for translation - no-one really cares |
||
830 | */ |
||
831 | if ((mask & MASK_NO_TRX) != MASK_NO_TRX) |
||
832 | mat->flags |= MAT_FLAG_TRANSLATION; |
||
833 | |||
834 | /* Do the real work |
||
835 | */ |
||
836 | if (mask == (GLuint) MASK_IDENTITY) { |
||
837 | mat->type = MATRIX_IDENTITY; |
||
838 | } |
||
839 | else if ((mask & MASK_2D_NO_ROT) == (GLuint) MASK_2D_NO_ROT) { |
||
840 | mat->type = MATRIX_2D_NO_ROT; |
||
841 | |||
842 | if ((mask & MASK_NO_2D_SCALE) != MASK_NO_2D_SCALE) |
||
843 | mat->flags = MAT_FLAG_GENERAL_SCALE; |
||
844 | } |
||
845 | else if ((mask & MASK_2D) == (GLuint) MASK_2D) { |
||
846 | GLfloat mm = DOT2(m, m); |
||
847 | GLfloat m4m4 = DOT2(m+4,m+4); |
||
848 | GLfloat mm4 = DOT2(m,m+4); |
||
849 | |||
850 | mat->type = MATRIX_2D; |
||
851 | |||
852 | /* Check for scale */ |
||
853 | if (SQ(mm-1) > SQ(1e-6) || |
||
854 | SQ(m4m4-1) > SQ(1e-6)) |
||
855 | mat->flags |= MAT_FLAG_GENERAL_SCALE; |
||
856 | |||
857 | /* Check for rotation */ |
||
858 | if (SQ(mm4) > SQ(1e-6)) |
||
859 | mat->flags |= MAT_FLAG_GENERAL_3D; |
||
860 | else |
||
861 | mat->flags |= MAT_FLAG_ROTATION; |
||
862 | |||
863 | } |
||
864 | else if ((mask & MASK_3D_NO_ROT) == (GLuint) MASK_3D_NO_ROT) { |
||
865 | mat->type = MATRIX_3D_NO_ROT; |
||
866 | |||
867 | /* Check for scale */ |
||
868 | if (SQ(m[0]-m[5]) < SQ(1e-6) && |
||
869 | SQ(m[0]-m[10]) < SQ(1e-6)) { |
||
870 | if (SQ(m[0]-1.0) > SQ(1e-6)) { |
||
871 | mat->flags |= MAT_FLAG_UNIFORM_SCALE; |
||
872 | } |
||
873 | } |
||
874 | else { |
||
875 | mat->flags |= MAT_FLAG_GENERAL_SCALE; |
||
876 | } |
||
877 | } |
||
878 | else if ((mask & MASK_3D) == (GLuint) MASK_3D) { |
||
879 | GLfloat c1 = DOT3(m,m); |
||
880 | GLfloat c2 = DOT3(m+4,m+4); |
||
881 | GLfloat c3 = DOT3(m+8,m+8); |
||
882 | GLfloat d1 = DOT3(m, m+4); |
||
883 | GLfloat cp[3]; |
||
884 | |||
885 | mat->type = MATRIX_3D; |
||
886 | |||
887 | /* Check for scale */ |
||
888 | if (SQ(c1-c2) < SQ(1e-6) && SQ(c1-c3) < SQ(1e-6)) { |
||
889 | if (SQ(c1-1.0) > SQ(1e-6)) |
||
890 | mat->flags |= MAT_FLAG_UNIFORM_SCALE; |
||
891 | /* else no scale at all */ |
||
892 | } |
||
893 | else { |
||
894 | mat->flags |= MAT_FLAG_GENERAL_SCALE; |
||
895 | } |
||
896 | |||
897 | /* Check for rotation */ |
||
898 | if (SQ(d1) < SQ(1e-6)) { |
||
899 | CROSS3( cp, m, m+4 ); |
||
900 | SUB_3V( cp, cp, (m+8) ); |
||
901 | if (LEN_SQUARED_3FV(cp) < SQ(1e-6)) |
||
902 | mat->flags |= MAT_FLAG_ROTATION; |
||
903 | else |
||
904 | mat->flags |= MAT_FLAG_GENERAL_3D; |
||
905 | } |
||
906 | else { |
||
907 | mat->flags |= MAT_FLAG_GENERAL_3D; /* shear, etc */ |
||
908 | } |
||
909 | } |
||
910 | else if ((mask & MASK_PERSPECTIVE) == MASK_PERSPECTIVE && m[11]==-1.0F) { |
||
911 | mat->type = MATRIX_PERSPECTIVE; |
||
912 | mat->flags |= MAT_FLAG_GENERAL; |
||
913 | } |
||
914 | else { |
||
915 | mat->type = MATRIX_GENERAL; |
||
916 | mat->flags |= MAT_FLAG_GENERAL; |
||
917 | } |
||
918 | } |
||
919 | |||
920 | |||
921 | /* Analyse a matrix given that its flags are accurate - this is the |
||
922 | * more common operation, hopefully. |
||
923 | */ |
||
924 | static void analyse_from_flags( GLmatrix *mat ) |
||
925 | { |
||
926 | const GLfloat *m = mat->m; |
||
927 | |||
928 | if (TEST_MAT_FLAGS(mat, 0)) { |
||
929 | mat->type = MATRIX_IDENTITY; |
||
930 | } |
||
931 | else if (TEST_MAT_FLAGS(mat, (MAT_FLAG_TRANSLATION | |
||
932 | MAT_FLAG_UNIFORM_SCALE | |
||
933 | MAT_FLAG_GENERAL_SCALE))) { |
||
934 | if ( m[10]==1.0F && m[14]==0.0F ) { |
||
935 | mat->type = MATRIX_2D_NO_ROT; |
||
936 | } |
||
937 | else { |
||
938 | mat->type = MATRIX_3D_NO_ROT; |
||
939 | } |
||
940 | } |
||
941 | else if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) { |
||
942 | if ( m[ 8]==0.0F |
||
943 | && m[ 9]==0.0F |
||
944 | && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F) { |
||
945 | mat->type = MATRIX_2D; |
||
946 | } |
||
947 | else { |
||
948 | mat->type = MATRIX_3D; |
||
949 | } |
||
950 | } |
||
951 | else if ( m[4]==0.0F && m[12]==0.0F |
||
952 | && m[1]==0.0F && m[13]==0.0F |
||
953 | && m[2]==0.0F && m[6]==0.0F |
||
954 | && m[3]==0.0F && m[7]==0.0F && m[11]==-1.0F && m[15]==0.0F) { |
||
955 | mat->type = MATRIX_PERSPECTIVE; |
||
956 | } |
||
957 | else { |
||
958 | mat->type = MATRIX_GENERAL; |
||
959 | } |
||
960 | } |
||
961 | |||
962 | |||
963 | void |
||
964 | _math_matrix_analyse( GLmatrix *mat ) |
||
965 | { |
||
966 | if (mat->flags & MAT_DIRTY_TYPE) { |
||
967 | if (mat->flags & MAT_DIRTY_FLAGS) |
||
968 | analyse_from_scratch( mat ); |
||
969 | else |
||
970 | analyse_from_flags( mat ); |
||
971 | } |
||
972 | |||
973 | if (mat->inv && (mat->flags & MAT_DIRTY_INVERSE)) { |
||
974 | matrix_invert( mat ); |
||
975 | } |
||
976 | |||
977 | mat->flags &= ~(MAT_DIRTY_FLAGS| |
||
978 | MAT_DIRTY_TYPE| |
||
979 | MAT_DIRTY_INVERSE); |
||
980 | } |
||
981 | |||
982 | |||
983 | void |
||
984 | _math_matrix_copy( GLmatrix *to, const GLmatrix *from ) |
||
985 | { |
||
986 | MEMCPY( to->m, from->m, sizeof(Identity) ); |
||
987 | to->flags = from->flags; |
||
988 | to->type = from->type; |
||
989 | |||
990 | if (to->inv != 0) { |
||
991 | if (from->inv == 0) { |
||
992 | matrix_invert( to ); |
||
993 | } |
||
994 | else { |
||
995 | MEMCPY(to->inv, from->inv, sizeof(GLfloat)*16); |
||
996 | } |
||
997 | } |
||
998 | } |
||
999 | |||
1000 | |||
1001 | void |
||
1002 | _math_matrix_scale( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z ) |
||
1003 | { |
||
1004 | GLfloat *m = mat->m; |
||
1005 | m[0] *= x; m[4] *= y; m[8] *= z; |
||
1006 | m[1] *= x; m[5] *= y; m[9] *= z; |
||
1007 | m[2] *= x; m[6] *= y; m[10] *= z; |
||
1008 | m[3] *= x; m[7] *= y; m[11] *= z; |
||
1009 | |||
1010 | if (fabs(x - y) < 1e-8 && fabs(x - z) < 1e-8) |
||
1011 | mat->flags |= MAT_FLAG_UNIFORM_SCALE; |
||
1012 | else |
||
1013 | mat->flags |= MAT_FLAG_GENERAL_SCALE; |
||
1014 | |||
1015 | mat->flags |= (MAT_DIRTY_TYPE | |
||
1016 | MAT_DIRTY_INVERSE); |
||
1017 | } |
||
1018 | |||
1019 | |||
1020 | void |
||
1021 | _math_matrix_translate( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z ) |
||
1022 | { |
||
1023 | GLfloat *m = mat->m; |
||
1024 | m[12] = m[0] * x + m[4] * y + m[8] * z + m[12]; |
||
1025 | m[13] = m[1] * x + m[5] * y + m[9] * z + m[13]; |
||
1026 | m[14] = m[2] * x + m[6] * y + m[10] * z + m[14]; |
||
1027 | m[15] = m[3] * x + m[7] * y + m[11] * z + m[15]; |
||
1028 | |||
1029 | mat->flags |= (MAT_FLAG_TRANSLATION | |
||
1030 | MAT_DIRTY_TYPE | |
||
1031 | MAT_DIRTY_INVERSE); |
||
1032 | } |
||
1033 | |||
1034 | |||
1035 | void |
||
1036 | _math_matrix_loadf( GLmatrix *mat, const GLfloat *m ) |
||
1037 | { |
||
1038 | MEMCPY( mat->m, m, 16*sizeof(GLfloat) ); |
||
1039 | mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY); |
||
1040 | } |
||
1041 | |||
1042 | void |
||
1043 | _math_matrix_ctr( GLmatrix *m ) |
||
1044 | { |
||
1045 | m->m = (GLfloat *) ALIGN_MALLOC( 16 * sizeof(GLfloat), 16 ); |
||
1046 | if (m->m) |
||
1047 | MEMCPY( m->m, Identity, sizeof(Identity) ); |
||
1048 | m->inv = NULL; |
||
1049 | m->type = MATRIX_IDENTITY; |
||
1050 | m->flags = 0; |
||
1051 | } |
||
1052 | |||
1053 | void |
||
1054 | _math_matrix_dtr( GLmatrix *m ) |
||
1055 | { |
||
1056 | if (m->m) { |
||
1057 | ALIGN_FREE( m->m ); |
||
1058 | m->m = NULL; |
||
1059 | } |
||
1060 | if (m->inv) { |
||
1061 | ALIGN_FREE( m->inv ); |
||
1062 | m->inv = NULL; |
||
1063 | } |
||
1064 | } |
||
1065 | |||
1066 | |||
1067 | void |
||
1068 | _math_matrix_alloc_inv( GLmatrix *m ) |
||
1069 | { |
||
1070 | if (!m->inv) { |
||
1071 | m->inv = (GLfloat *) ALIGN_MALLOC( 16 * sizeof(GLfloat), 16 ); |
||
1072 | if (m->inv) |
||
1073 | MEMCPY( m->inv, Identity, 16 * sizeof(GLfloat) ); |
||
1074 | } |
||
1075 | } |
||
1076 | |||
1077 | |||
1078 | void |
||
1079 | _math_matrix_mul_matrix( GLmatrix *dest, const GLmatrix *a, const GLmatrix *b ) |
||
1080 | { |
||
1081 | dest->flags = (a->flags | |
||
1082 | b->flags | |
||
1083 | MAT_DIRTY_TYPE | |
||
1084 | MAT_DIRTY_INVERSE); |
||
1085 | |||
1086 | if (TEST_MAT_FLAGS(dest, MAT_FLAGS_3D)) |
||
1087 | matmul34( dest->m, a->m, b->m ); |
||
1088 | else |
||
1089 | matmul4( dest->m, a->m, b->m ); |
||
1090 | } |
||
1091 | |||
1092 | |||
1093 | void |
||
1094 | _math_matrix_mul_floats( GLmatrix *dest, const GLfloat *m ) |
||
1095 | { |
||
1096 | dest->flags |= (MAT_FLAG_GENERAL | |
||
1097 | MAT_DIRTY_TYPE | |
||
1098 | MAT_DIRTY_INVERSE); |
||
1099 | |||
1100 | matmul4( dest->m, dest->m, m ); |
||
1101 | } |
||
1102 | |||
1103 | void |
||
1104 | _math_matrix_set_identity( GLmatrix *mat ) |
||
1105 | { |
||
1106 | MEMCPY( mat->m, Identity, 16*sizeof(GLfloat) ); |
||
1107 | |||
1108 | if (mat->inv) |
||
1109 | MEMCPY( mat->inv, Identity, 16*sizeof(GLfloat) ); |
||
1110 | |||
1111 | mat->type = MATRIX_IDENTITY; |
||
1112 | mat->flags &= ~(MAT_DIRTY_FLAGS| |
||
1113 | MAT_DIRTY_TYPE| |
||
1114 | MAT_DIRTY_INVERSE); |
||
1115 | } |
||
1116 | |||
1117 | |||
1118 | |||
1119 | void |
||
1120 | _math_transposef( GLfloat to[16], const GLfloat from[16] ) |
||
1121 | { |
||
1122 | to[0] = from[0]; |
||
1123 | to[1] = from[4]; |
||
1124 | to[2] = from[8]; |
||
1125 | to[3] = from[12]; |
||
1126 | to[4] = from[1]; |
||
1127 | to[5] = from[5]; |
||
1128 | to[6] = from[9]; |
||
1129 | to[7] = from[13]; |
||
1130 | to[8] = from[2]; |
||
1131 | to[9] = from[6]; |
||
1132 | to[10] = from[10]; |
||
1133 | to[11] = from[14]; |
||
1134 | to[12] = from[3]; |
||
1135 | to[13] = from[7]; |
||
1136 | to[14] = from[11]; |
||
1137 | to[15] = from[15]; |
||
1138 | } |
||
1139 | |||
1140 | |||
1141 | void |
||
1142 | _math_transposed( GLdouble to[16], const GLdouble from[16] ) |
||
1143 | { |
||
1144 | to[0] = from[0]; |
||
1145 | to[1] = from[4]; |
||
1146 | to[2] = from[8]; |
||
1147 | to[3] = from[12]; |
||
1148 | to[4] = from[1]; |
||
1149 | to[5] = from[5]; |
||
1150 | to[6] = from[9]; |
||
1151 | to[7] = from[13]; |
||
1152 | to[8] = from[2]; |
||
1153 | to[9] = from[6]; |
||
1154 | to[10] = from[10]; |
||
1155 | to[11] = from[14]; |
||
1156 | to[12] = from[3]; |
||
1157 | to[13] = from[7]; |
||
1158 | to[14] = from[11]; |
||
1159 | to[15] = from[15]; |
||
1160 | } |
||
1161 | |||
1162 | void |
||
1163 | _math_transposefd( GLfloat to[16], const GLdouble from[16] ) |
||
1164 | { |
||
1165 | to[0] = (GLfloat) from[0]; |
||
1166 | to[1] = (GLfloat) from[4]; |
||
1167 | to[2] = (GLfloat) from[8]; |
||
1168 | to[3] = (GLfloat) from[12]; |
||
1169 | to[4] = (GLfloat) from[1]; |
||
1170 | to[5] = (GLfloat) from[5]; |
||
1171 | to[6] = (GLfloat) from[9]; |
||
1172 | to[7] = (GLfloat) from[13]; |
||
1173 | to[8] = (GLfloat) from[2]; |
||
1174 | to[9] = (GLfloat) from[6]; |
||
1175 | to[10] = (GLfloat) from[10]; |
||
1176 | to[11] = (GLfloat) from[14]; |
||
1177 | to[12] = (GLfloat) from[3]; |
||
1178 | to[13] = (GLfloat) from[7]; |
||
1179 | to[14] = (GLfloat) from[11]; |
||
1180 | to[15] = (GLfloat) from[15]; |
||
1181 | } |