Rev 72 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
72 | giacomo | 1 | /* $Id: mmath.h,v 1.2 2003-03-13 12:20:29 giacomo Exp $ */ |
55 | pj | 2 | |
3 | /* |
||
4 | * Mesa 3-D graphics library |
||
5 | * Version: 5.0 |
||
6 | * |
||
7 | * Copyright (C) 1999-2002 Brian Paul All Rights Reserved. |
||
8 | * |
||
9 | * Permission is hereby granted, free of charge, to any person obtaining a |
||
10 | * copy of this software and associated documentation files (the "Software"), |
||
11 | * to deal in the Software without restriction, including without limitation |
||
12 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
||
13 | * and/or sell copies of the Software, and to permit persons to whom the |
||
14 | * Software is furnished to do so, subject to the following conditions: |
||
15 | * |
||
16 | * The above copyright notice and this permission notice shall be included |
||
17 | * in all copies or substantial portions of the Software. |
||
18 | * |
||
19 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS |
||
20 | * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
||
21 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
||
22 | * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN |
||
23 | * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
||
24 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
||
25 | */ |
||
26 | |||
27 | |||
28 | /* |
||
29 | * Faster arithmetic functions. If the FAST_MATH preprocessor symbol is |
||
30 | * defined on the command line (-DFAST_MATH) then we'll use some (hopefully) |
||
31 | * faster functions for sqrt(), etc. |
||
32 | */ |
||
33 | |||
34 | |||
35 | #ifndef MMATH_H |
||
36 | #define MMATH_H |
||
37 | |||
38 | |||
39 | #include "glheader.h" |
||
40 | #include "imports.h" |
||
41 | /* Do not reference mtypes.h from this file. |
||
42 | */ |
||
43 | |||
44 | /* |
||
45 | * Set the x86 FPU control word to guarentee only 32 bits of presision |
||
46 | * are stored in registers. Allowing the FPU to store more introduces |
||
47 | * differences between situations where numbers are pulled out of memory |
||
48 | * vs. situations where the compiler is able to optimize register usage. |
||
49 | * |
||
50 | * In the worst case, we force the compiler to use a memory access to |
||
51 | * truncate the float, by specifying the 'volatile' keyword. |
||
52 | */ |
||
53 | #if defined(__GNUC__) && defined(__i386__) |
||
54 | |||
55 | /* Hardware default: All exceptions masked, extended double precision, |
||
56 | * round to nearest. IEEE compliant. |
||
57 | */ |
||
58 | #define DEFAULT_X86_FPU 0x037f |
||
59 | |||
60 | /* All exceptions masked, single precision, round to nearest. |
||
61 | */ |
||
62 | #define FAST_X86_FPU 0x003f |
||
63 | |||
64 | /* Set it up how we want it. The fldcw instruction will cause any |
||
65 | * pending FP exceptions to be raised prior to entering the block, and |
||
66 | * we clear any pending exceptions before exiting the block. Hence, asm |
||
67 | * code has free reign over the FPU while in the fast math block. |
||
68 | */ |
||
69 | #if defined(NO_FAST_MATH) |
||
70 | #define START_FAST_MATH(x) \ |
||
71 | do { \ |
||
72 | static GLuint mask = DEFAULT_X86_FPU; \ |
||
73 | __asm__ ( "fnstcw %0" : "=m" (*&(x)) ); \ |
||
74 | __asm__ ( "fldcw %0" : : "m" (mask) ); \ |
||
75 | } while (0) |
||
76 | #else |
||
77 | #define START_FAST_MATH(x) \ |
||
78 | do { \ |
||
79 | static GLuint mask = FAST_X86_FPU; \ |
||
80 | __asm__ ( "fnstcw %0" : "=m" (*&(x)) ); \ |
||
81 | __asm__ ( "fldcw %0" : : "m" (mask) ); \ |
||
82 | } while (0) |
||
83 | #endif |
||
84 | |||
85 | /* Put it back how the application had it, and clear any exceptions that |
||
86 | * may have occurred in the FAST_MATH block. |
||
87 | */ |
||
88 | #define END_FAST_MATH(x) \ |
||
89 | do { \ |
||
90 | __asm__ ( "fnclex ; fldcw %0" : : "m" (*&(x)) ); \ |
||
91 | } while (0) |
||
92 | |||
93 | #define HAVE_FAST_MATH |
||
94 | |||
95 | #elif defined(__WATCOMC__) && !defined(NO_FAST_MATH) |
||
96 | |||
97 | /* This is the watcom specific inline assembly version of setcw and getcw */ |
||
98 | |||
99 | void START_FAST_MATH2(unsigned short *x); |
||
100 | #pragma aux START_FAST_MATH2 = \ |
||
101 | "fstcw word ptr [esi]" \ |
||
102 | "or word ptr [esi], 0x3f" \ |
||
103 | "fldcw word ptr [esi]" \ |
||
104 | parm [esi] \ |
||
105 | modify exact []; |
||
106 | |||
107 | void END_FAST_MATH2(unsigned short *x); |
||
108 | #pragma aux END_FAST_MATH2 = \ |
||
109 | "fldcw word ptr [esi]" \ |
||
110 | parm [esi] \ |
||
111 | modify exact []; |
||
112 | |||
113 | #define START_FAST_MATH(x) START_FAST_MATH2(& x) |
||
114 | #define END_FAST_MATH(x) END_FAST_MATH2(& x) |
||
115 | |||
116 | /* |
||
117 | __inline START_FAST_MATH(unsigned short x) |
||
118 | { |
||
119 | _asm { |
||
120 | fstcw ax |
||
121 | mov x , ax |
||
122 | or ax, 0x3f |
||
123 | fldcw ax |
||
124 | } |
||
125 | } |
||
126 | |||
127 | __inline END_FAST_MATH(unsigned short x) |
||
128 | { |
||
129 | _asm { |
||
130 | fldcw x |
||
131 | } |
||
132 | } |
||
133 | */ |
||
134 | #define HAVE_FAST_MATH |
||
135 | |||
136 | #else |
||
137 | #define START_FAST_MATH(x) x = 0 |
||
138 | #define END_FAST_MATH(x) (void)(x) |
||
139 | |||
140 | /* The mac float really is a float, with the same precision as a |
||
141 | * single precision 387 float. |
||
142 | */ |
||
143 | #if defined(macintosh) || defined(__powerpc__) |
||
144 | #define HAVE_FAST_MATH |
||
145 | #endif |
||
146 | |||
147 | #endif |
||
148 | |||
149 | |||
150 | |||
151 | /* |
||
152 | * Square root |
||
153 | */ |
||
154 | |||
155 | extern float gl_sqrt(float x); |
||
156 | |||
157 | #ifdef FAST_MATH |
||
158 | #if defined(__WATCOMC__) && defined(USE_X86_ASM) |
||
159 | # define GL_SQRT(X) asm_sqrt(X) |
||
160 | #else |
||
161 | # define GL_SQRT(X) gl_sqrt(X) |
||
162 | #endif |
||
163 | #else |
||
164 | # define GL_SQRT(X) sqrt(X) |
||
165 | #endif |
||
166 | |||
167 | |||
168 | /* |
||
169 | * Normalize a 3-element vector to unit length. |
||
170 | */ |
||
171 | #define NORMALIZE_3FV( V ) \ |
||
172 | do { \ |
||
173 | GLfloat len = (GLfloat) LEN_SQUARED_3FV(V); \ |
||
174 | if (len) { \ |
||
175 | len = (GLfloat) (1.0 / GL_SQRT(len)); \ |
||
176 | (V)[0] = (GLfloat) ((V)[0] * len); \ |
||
177 | (V)[1] = (GLfloat) ((V)[1] * len); \ |
||
178 | (V)[2] = (GLfloat) ((V)[2] * len); \ |
||
179 | } \ |
||
180 | } while(0) |
||
181 | |||
182 | #define LEN_3FV( V ) (GL_SQRT((V)[0]*(V)[0]+(V)[1]*(V)[1]+(V)[2]*(V)[2])) |
||
183 | #define LEN_2FV( V ) (GL_SQRT((V)[0]*(V)[0]+(V)[1]*(V)[1])) |
||
184 | |||
185 | #define LEN_SQUARED_3FV( V ) ((V)[0]*(V)[0]+(V)[1]*(V)[1]+(V)[2]*(V)[2]) |
||
186 | #define LEN_SQUARED_2FV( V ) ((V)[0]*(V)[0]+(V)[1]*(V)[1]) |
||
187 | |||
188 | |||
189 | /* |
||
190 | * Single precision ceiling, floor, and absolute value functions |
||
191 | */ |
||
192 | #if defined(__sparc__) /* XXX this probably isn't the ideal test */ |
||
193 | #define CEILF(x) ceil(x) |
||
194 | #define FLOORF(x) floor(x) |
||
195 | #define FABSF(x) fabs(x) |
||
196 | #elif defined(__WIN32__) |
||
197 | #define CEILF(x) ((GLfloat)ceil(x)) |
||
198 | #define FLOORF(x) ((GLfloat)floor(x)) |
||
199 | #define FABSF(x) ((GLfloat)fabs(x)) |
||
200 | #else |
||
201 | #define CEILF(x) ceilf(x) |
||
202 | #define FLOORF(x) floorf(x) |
||
203 | #define FABSF(x) ((GLfloat)fabs(x)) |
||
204 | #endif |
||
205 | |||
206 | |||
207 | #if defined(__i386__) || defined(__sparc__) || defined(__s390x__) || \ |
||
208 | defined(__powerpc__) || \ |
||
209 | ( defined(__alpha__) && ( defined(__IEEE_FLOAT) || !defined(VMS) ) ) |
||
210 | #define USE_IEEE |
||
211 | #endif |
||
212 | |||
213 | |||
214 | |||
215 | #define GET_FLOAT_BITS(x) ((fi_type *) &(x))->i |
||
216 | |||
217 | /* |
||
218 | * Float -> Int conversions (rounding, floor, ceiling) |
||
219 | */ |
||
220 | |||
221 | #if defined(USE_SPARC_ASM) && defined(__GNUC__) && defined(__sparc__) |
||
222 | |||
223 | static INLINE int iround(float f) |
||
224 | { |
||
225 | int r; |
||
226 | __asm__ ("fstoi %1, %0" : "=f" (r) : "f" (f)); |
||
227 | return r; |
||
228 | } |
||
229 | |||
230 | #define IROUND(x) iround(x) |
||
231 | |||
232 | #elif defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__) |
||
233 | |||
234 | |||
235 | static INLINE int iround(float f) |
||
236 | { |
||
237 | int r; |
||
238 | __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st"); |
||
239 | return r; |
||
240 | } |
||
241 | |||
242 | #define IROUND(x) iround(x) |
||
243 | |||
244 | /* |
||
245 | * IEEE floor for computers that round to nearest or even. |
||
246 | * 'f' must be between -4194304 and 4194303. |
||
247 | * This floor operation is done by "(iround(f + .5) + iround(f - .5)) >> 1", |
||
248 | * but uses some IEEE specific tricks for better speed. |
||
249 | * Contributed by Josh Vanderhoof |
||
250 | */ |
||
251 | static INLINE int ifloor(float f) |
||
252 | { |
||
253 | int ai, bi; |
||
254 | double af, bf; |
||
255 | af = (3 << 22) + 0.5 + (double)f; |
||
256 | bf = (3 << 22) + 0.5 - (double)f; |
||
257 | /* GCC generates an extra fstp/fld without this. */ |
||
258 | __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st"); |
||
259 | __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st"); |
||
260 | return (ai - bi) >> 1; |
||
261 | } |
||
262 | |||
263 | #define IFLOOR(x) ifloor(x) |
||
264 | |||
265 | /* |
||
266 | * IEEE ceil for computers that round to nearest or even. |
||
267 | * 'f' must be between -4194304 and 4194303. |
||
268 | * This ceil operation is done by "(iround(f + .5) + iround(f - .5) + 1) >> 1", |
||
269 | * but uses some IEEE specific tricks for better speed. |
||
270 | * Contributed by Josh Vanderhoof |
||
271 | */ |
||
272 | static INLINE int iceil(float f) |
||
273 | { |
||
274 | int ai, bi; |
||
275 | double af, bf; |
||
276 | af = (3 << 22) + 0.5 + (double)f; |
||
277 | bf = (3 << 22) + 0.5 - (double)f; |
||
278 | /* GCC generates an extra fstp/fld without this. */ |
||
279 | __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st"); |
||
280 | __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st"); |
||
281 | return (ai - bi + 1) >> 1; |
||
282 | } |
||
283 | |||
284 | #define ICEIL(x) iceil(x) |
||
285 | |||
286 | |||
287 | #elif defined(USE_X86_ASM) && defined(__MSC__) && defined(__WIN32__) |
||
288 | |||
289 | |||
290 | static INLINE int iround(float f) |
||
291 | { |
||
292 | int r; |
||
293 | _asm { |
||
294 | fld f |
||
295 | fistp r |
||
296 | } |
||
297 | return r; |
||
298 | } |
||
299 | |||
300 | #define IROUND(x) iround(x) |
||
301 | |||
302 | |||
303 | #elif defined(USE_X86_ASM) && defined(__WATCOMC__) |
||
304 | |||
305 | |||
306 | long iround(float f); |
||
307 | #pragma aux iround = \ |
||
308 | "push eax" \ |
||
309 | "fistp dword ptr [esp]" \ |
||
310 | "pop eax" \ |
||
311 | parm [8087] \ |
||
312 | value [eax] \ |
||
313 | modify exact [eax]; |
||
314 | |||
315 | #define IROUND(x) iround(x) |
||
316 | |||
317 | float asm_sqrt (float x); |
||
318 | #pragma aux asm_sqrt = \ |
||
319 | "fsqrt" \ |
||
320 | parm [8087] \ |
||
321 | value [8087] \ |
||
322 | modify exact []; |
||
323 | |||
324 | |||
325 | #endif /* assembly/optimized IROUND, IROUND_POS, IFLOOR, ICEIL macros */ |
||
326 | |||
327 | |||
328 | /* default IROUND macro */ |
||
329 | #ifndef IROUND |
||
330 | #define IROUND(f) ((int) (((f) >= 0.0F) ? ((f) + 0.5F) : ((f) - 0.5F))) |
||
331 | #endif |
||
332 | |||
333 | |||
334 | /* default IROUND_POS macro */ |
||
335 | #ifndef IROUND_POS |
||
336 | #ifdef DEBUG |
||
72 | giacomo | 337 | #define IROUND_POS(f) (IROUND(f)) |
55 | pj | 338 | #else |
339 | #define IROUND_POS(f) (IROUND(f)) |
||
340 | #endif |
||
341 | #endif /* IROUND_POS */ |
||
342 | |||
343 | |||
344 | /* default IFLOOR macro */ |
||
345 | #ifndef IFLOOR |
||
346 | static INLINE int ifloor(float f) |
||
347 | { |
||
348 | #ifdef USE_IEEE |
||
349 | int ai, bi; |
||
350 | double af, bf; |
||
351 | union { int i; float f; } u; |
||
352 | |||
353 | af = (3 << 22) + 0.5 + (double)f; |
||
354 | bf = (3 << 22) + 0.5 - (double)f; |
||
355 | u.f = af; ai = u.i; |
||
356 | u.f = bf; bi = u.i; |
||
357 | return (ai - bi) >> 1; |
||
358 | #else |
||
359 | int i = IROUND(f); |
||
360 | return (i > f) ? i - 1 : i; |
||
361 | #endif |
||
362 | } |
||
363 | #define IFLOOR(x) ifloor(x) |
||
364 | #endif /* IFLOOR */ |
||
365 | |||
366 | |||
367 | /* default ICEIL macro */ |
||
368 | #ifndef ICEIL |
||
369 | static INLINE int iceil(float f) |
||
370 | { |
||
371 | #ifdef USE_IEEE |
||
372 | int ai, bi; |
||
373 | double af, bf; |
||
374 | union { int i; float f; } u; |
||
375 | af = (3 << 22) + 0.5 + (double)f; |
||
376 | bf = (3 << 22) + 0.5 - (double)f; |
||
377 | u.f = af; ai = u.i; |
||
378 | u.f = bf; bi = u.i; |
||
379 | return (ai - bi + 1) >> 1; |
||
380 | #else |
||
381 | int i = IROUND(f); |
||
382 | return (i < f) ? i + 1 : i; |
||
383 | #endif |
||
384 | } |
||
385 | #define ICEIL(x) iceil(x) |
||
386 | #endif /* ICEIL */ |
||
387 | |||
388 | |||
389 | |||
390 | /* |
||
391 | * Convert unclamped or clamped ([0,1]) floats to ubytes for color |
||
392 | * conversion only. These functions round to the nearest int. |
||
393 | */ |
||
394 | #define IEEE_ONE 0x3f800000 |
||
395 | #define IEEE_0996 0x3f7f0000 /* 0.996 or something??? used in macro |
||
396 | below only */ |
||
397 | |||
398 | #if defined(USE_IEEE) && !defined(DEBUG) |
||
399 | |||
400 | /* |
||
401 | * This function/macro is sensitive to precision. Test carefully |
||
402 | * if you change it. |
||
403 | */ |
||
404 | #define UNCLAMPED_FLOAT_TO_UBYTE(ub, f) \ |
||
405 | do { \ |
||
406 | union { GLfloat r; GLuint i; } __tmp; \ |
||
407 | __tmp.r = (f); \ |
||
408 | ub = ((__tmp.i >= IEEE_0996) \ |
||
409 | ? ((GLint)__tmp.i < 0) ? (GLubyte)0 : (GLubyte)255 \ |
||
410 | : (__tmp.r = __tmp.r*(255.0F/256.0F) + 32768.0F, \ |
||
411 | (GLubyte)__tmp.i)); \ |
||
412 | } while (0) |
||
413 | |||
414 | #define CLAMPED_FLOAT_TO_UBYTE(ub, f) \ |
||
415 | UNCLAMPED_FLOAT_TO_UBYTE(ub, f) |
||
416 | |||
417 | #define COPY_FLOAT( dst, src ) \ |
||
418 | ((fi_type *) &(dst))->i = ((fi_type *) &(src))->i |
||
419 | |||
420 | #else /* USE_IEEE */ |
||
421 | |||
422 | #define UNCLAMPED_FLOAT_TO_UBYTE(ub, f) \ |
||
423 | ub = ((GLubyte) IROUND(CLAMP((f), 0.0F, 1.0F) * 255.0F)) |
||
424 | |||
425 | #define CLAMPED_FLOAT_TO_UBYTE(ub, f) \ |
||
426 | ub = ((GLubyte) IROUND((f) * 255.0F)) |
||
427 | |||
428 | #define COPY_FLOAT( dst, src ) (dst) = (src) |
||
429 | |||
430 | #endif /* USE_IEEE */ |
||
431 | |||
432 | |||
433 | |||
434 | /* |
||
435 | * Integer / float conversion for colors, normals, etc. |
||
436 | */ |
||
437 | |||
438 | /* Convert GLubyte in [0,255] to GLfloat in [0.0,1.0] */ |
||
439 | extern float _mesa_ubyte_to_float_color_tab[256]; |
||
440 | #define UBYTE_TO_FLOAT(u) _mesa_ubyte_to_float_color_tab[(unsigned int)(u)] |
||
441 | |||
442 | /* Convert GLfloat in [0.0,1.0] to GLubyte in [0,255] */ |
||
443 | #define FLOAT_TO_UBYTE(X) ((GLubyte) (GLint) ((X) * 255.0F)) |
||
444 | |||
445 | |||
446 | /* Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0] */ |
||
447 | #define BYTE_TO_FLOAT(B) ((2.0F * (B) + 1.0F) * (1.0F/255.0F)) |
||
448 | |||
449 | /* Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127] */ |
||
450 | #define FLOAT_TO_BYTE(X) ( (((GLint) (255.0F * (X))) - 1) / 2 ) |
||
451 | |||
452 | |||
453 | /* Convert GLushort in [0,65536] to GLfloat in [0.0,1.0] */ |
||
454 | #define USHORT_TO_FLOAT(S) ((GLfloat) (S) * (1.0F / 65535.0F)) |
||
455 | |||
456 | /* Convert GLfloat in [0.0,1.0] to GLushort in [0,65536] */ |
||
457 | #define FLOAT_TO_USHORT(X) ((GLushort) (GLint) ((X) * 65535.0F)) |
||
458 | |||
459 | |||
460 | /* Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0] */ |
||
461 | #define SHORT_TO_FLOAT(S) ((2.0F * (S) + 1.0F) * (1.0F/65535.0F)) |
||
462 | |||
463 | /* Convert GLfloat in [0.0,1.0] to GLshort in [-32768,32767] */ |
||
464 | #define FLOAT_TO_SHORT(X) ( (((GLint) (65535.0F * (X))) - 1) / 2 ) |
||
465 | |||
466 | |||
467 | /* Convert GLuint in [0,4294967295] to GLfloat in [0.0,1.0] */ |
||
468 | #define UINT_TO_FLOAT(U) ((GLfloat) (U) * (1.0F / 4294967295.0F)) |
||
469 | |||
470 | /* Convert GLfloat in [0.0,1.0] to GLuint in [0,4294967295] */ |
||
471 | #define FLOAT_TO_UINT(X) ((GLuint) ((X) * 4294967295.0)) |
||
472 | |||
473 | |||
474 | /* Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0] */ |
||
475 | #define INT_TO_FLOAT(I) ((2.0F * (I) + 1.0F) * (1.0F/4294967294.0F)) |
||
476 | |||
477 | /* Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647] */ |
||
478 | /* causes overflow: |
||
479 | #define FLOAT_TO_INT(X) ( (((GLint) (4294967294.0F * (X))) - 1) / 2 ) |
||
480 | */ |
||
481 | /* a close approximation: */ |
||
482 | #define FLOAT_TO_INT(X) ( (GLint) (2147483647.0 * (X)) ) |
||
483 | |||
484 | |||
485 | #define BYTE_TO_UBYTE(b) ((GLubyte) ((b) < 0 ? 0 : (GLubyte) (b))) |
||
486 | #define SHORT_TO_UBYTE(s) ((GLubyte) ((s) < 0 ? 0 : (GLubyte) ((s) >> 7))) |
||
487 | #define USHORT_TO_UBYTE(s) ((GLubyte) ((s) >> 8)) |
||
488 | #define INT_TO_UBYTE(i) ((GLubyte) ((i) < 0 ? 0 : (GLubyte) ((i) >> 23))) |
||
489 | #define UINT_TO_UBYTE(i) ((GLubyte) ((i) >> 24)) |
||
490 | |||
491 | |||
492 | #define BYTE_TO_USHORT(b) ((b) < 0 ? 0 : ((GLushort) (((b) * 65535) / 255))) |
||
493 | #define UBYTE_TO_USHORT(b) (((GLushort) (b) << 8) | (GLushort) (b)) |
||
494 | #define SHORT_TO_USHORT(s) ((s) < 0 ? 0 : ((GLushort) (((s) * 65535 / 32767)))) |
||
495 | #define INT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 15))) |
||
496 | #define UINT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 16))) |
||
497 | #define UNCLAMPED_FLOAT_TO_USHORT(us, f) \ |
||
498 | us = ( (GLushort) IROUND( CLAMP((f), 0.0, 1.0) * 65535.0F) ) |
||
499 | #define CLAMPED_FLOAT_TO_USHORT(us, f) \ |
||
500 | us = ( (GLushort) IROUND( (f) * 65535.0F) ) |
||
501 | |||
502 | |||
503 | |||
504 | /* |
||
505 | * Linear interpolation |
||
506 | * NOTE: OUT argument is evaluated twice! |
||
507 | * NOTE: Be wary of using *coord++ as an argument to any of these macros! |
||
508 | */ |
||
509 | #define LINTERP(T, OUT, IN) ((OUT) + (T) * ((IN) - (OUT))) |
||
510 | |||
511 | /* Can do better with integer math: |
||
512 | */ |
||
513 | #define INTERP_UB( t, dstub, outub, inub ) \ |
||
514 | do { \ |
||
515 | GLfloat inf = UBYTE_TO_FLOAT( inub ); \ |
||
516 | GLfloat outf = UBYTE_TO_FLOAT( outub ); \ |
||
517 | GLfloat dstf = LINTERP( t, outf, inf ); \ |
||
518 | UNCLAMPED_FLOAT_TO_UBYTE( dstub, dstf ); \ |
||
519 | } while (0) |
||
520 | |||
521 | #define INTERP_CHAN( t, dstc, outc, inc ) \ |
||
522 | do { \ |
||
523 | GLfloat inf = CHAN_TO_FLOAT( inc ); \ |
||
524 | GLfloat outf = CHAN_TO_FLOAT( outc ); \ |
||
525 | GLfloat dstf = LINTERP( t, outf, inf ); \ |
||
526 | UNCLAMPED_FLOAT_TO_CHAN( dstc, dstf ); \ |
||
527 | } while (0) |
||
528 | |||
529 | #define INTERP_UI( t, dstui, outui, inui ) \ |
||
530 | dstui = (GLuint) (GLint) LINTERP( (t), (GLfloat) (outui), (GLfloat) (inui) ) |
||
531 | |||
532 | #define INTERP_F( t, dstf, outf, inf ) \ |
||
533 | dstf = LINTERP( t, outf, inf ) |
||
534 | |||
535 | #define INTERP_4F( t, dst, out, in ) \ |
||
536 | do { \ |
||
537 | dst[0] = LINTERP( (t), (out)[0], (in)[0] ); \ |
||
538 | dst[1] = LINTERP( (t), (out)[1], (in)[1] ); \ |
||
539 | dst[2] = LINTERP( (t), (out)[2], (in)[2] ); \ |
||
540 | dst[3] = LINTERP( (t), (out)[3], (in)[3] ); \ |
||
541 | } while (0) |
||
542 | |||
543 | #define INTERP_3F( t, dst, out, in ) \ |
||
544 | do { \ |
||
545 | dst[0] = LINTERP( (t), (out)[0], (in)[0] ); \ |
||
546 | dst[1] = LINTERP( (t), (out)[1], (in)[1] ); \ |
||
547 | dst[2] = LINTERP( (t), (out)[2], (in)[2] ); \ |
||
548 | } while (0) |
||
549 | |||
550 | #define INTERP_4CHAN( t, dst, out, in ) \ |
||
551 | do { \ |
||
552 | INTERP_CHAN( (t), (dst)[0], (out)[0], (in)[0] ); \ |
||
553 | INTERP_CHAN( (t), (dst)[1], (out)[1], (in)[1] ); \ |
||
554 | INTERP_CHAN( (t), (dst)[2], (out)[2], (in)[2] ); \ |
||
555 | INTERP_CHAN( (t), (dst)[3], (out)[3], (in)[3] ); \ |
||
556 | } while (0) |
||
557 | |||
558 | #define INTERP_3CHAN( t, dst, out, in ) \ |
||
559 | do { \ |
||
560 | INTERP_CHAN( (t), (dst)[0], (out)[0], (in)[0] ); \ |
||
561 | INTERP_CHAN( (t), (dst)[1], (out)[1], (in)[1] ); \ |
||
562 | INTERP_CHAN( (t), (dst)[2], (out)[2], (in)[2] ); \ |
||
563 | } while (0) |
||
564 | |||
565 | #define INTERP_SZ( t, vec, to, out, in, sz ) \ |
||
566 | do { \ |
||
567 | switch (sz) { \ |
||
568 | case 4: vec[to][3] = LINTERP( (t), (vec)[out][3], (vec)[in][3] ); \ |
||
569 | case 3: vec[to][2] = LINTERP( (t), (vec)[out][2], (vec)[in][2] ); \ |
||
570 | case 2: vec[to][1] = LINTERP( (t), (vec)[out][1], (vec)[in][1] ); \ |
||
571 | case 1: vec[to][0] = LINTERP( (t), (vec)[out][0], (vec)[in][0] ); \ |
||
572 | } \ |
||
573 | } while(0) |
||
574 | |||
575 | |||
576 | /* |
||
577 | * Fixed point arithmetic macros |
||
578 | */ |
||
579 | #ifdef FIXED_14 |
||
580 | #define FIXED_ONE 0x00004000 |
||
581 | #define FIXED_HALF 0x00002000 |
||
582 | #define FIXED_FRAC_MASK 0x00003FFF |
||
583 | #define FIXED_SCALE 16384.0f |
||
584 | #define FIXED_SHIFT 14 |
||
585 | #else |
||
586 | #define FIXED_ONE 0x00000800 |
||
587 | #define FIXED_HALF 0x00000400 |
||
588 | #define FIXED_FRAC_MASK 0x000007FF |
||
589 | #define FIXED_SCALE 2048.0f |
||
590 | #define FIXED_SHIFT 11 |
||
591 | #endif |
||
592 | #define FIXED_INT_MASK (~FIXED_FRAC_MASK) |
||
593 | #define FIXED_EPSILON 1 |
||
594 | #define FloatToFixed(X) (IROUND((X) * FIXED_SCALE)) |
||
595 | #define IntToFixed(I) ((I) << FIXED_SHIFT) |
||
596 | #define FixedToInt(X) ((X) >> FIXED_SHIFT) |
||
597 | #define FixedToUns(X) (((unsigned int)(X)) >> FIXED_SHIFT) |
||
598 | #define FixedCeil(X) (((X) + FIXED_ONE - FIXED_EPSILON) & FIXED_INT_MASK) |
||
599 | #define FixedFloor(X) ((X) & FIXED_INT_MASK) |
||
600 | #define FixedToFloat(X) ((X) * (1.0F / FIXED_SCALE)) |
||
601 | #define PosFloatToFixed(X) FloatToFixed(X) |
||
602 | #define SignedFloatToFixed(X) FloatToFixed(X) |
||
603 | |||
604 | /* Returns TRUE for x == Inf or x == NaN. */ |
||
605 | #ifdef USE_IEEE |
||
606 | static INLINE int IS_INF_OR_NAN( float x ) |
||
607 | { |
||
608 | union {float f; int i;} tmp; |
||
609 | tmp.f = x; |
||
610 | return !(int)((unsigned int)((tmp.i & 0x7fffffff)-0x7f800000) >> 31); |
||
611 | } |
||
612 | #elif defined(isfinite) |
||
613 | #define IS_INF_OR_NAN(x) (!isfinite(x)) |
||
614 | #elif defined(finite) |
||
615 | #define IS_INF_OR_NAN(x) (!finite(x)) |
||
616 | #elif __VMS |
||
617 | #define IS_INF_OR_NAN(x) (!finite(x)) |
||
618 | #elif defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L |
||
619 | #define IS_INF_OR_NAN(x) (!isfinite(x)) |
||
620 | #else |
||
621 | #define IS_INF_OR_NAN(x) (!finite(x)) |
||
622 | #endif |
||
623 | |||
624 | |||
625 | /* |
||
626 | * Return log_base_2(x). |
||
627 | */ |
||
628 | #ifdef USE_IEEE |
||
629 | |||
630 | #if 0 |
||
631 | /* This is pretty fast, but not accurate enough (only 2 fractional bits). |
||
632 | * Based on code from http://www.stereopsis.com/log2.html |
||
633 | */ |
||
634 | static INLINE GLfloat LOG2(GLfloat x) |
||
635 | { |
||
636 | const GLfloat y = x * x * x * x; |
||
637 | const GLuint ix = *((GLuint *) &y); |
||
638 | const GLuint exp = (ix >> 23) & 0xFF; |
||
639 | const GLint log2 = ((GLint) exp) - 127; |
||
640 | return (GLfloat) log2 * (1.0 / 4.0); /* 4, because of x^4 above */ |
||
641 | } |
||
642 | #endif |
||
643 | |||
644 | /* Pretty fast, and accurate. |
||
645 | * Based on code from http://www.flipcode.com/totd/ |
||
646 | */ |
||
647 | static INLINE GLfloat LOG2(GLfloat val) |
||
648 | { |
||
649 | GLint *exp_ptr = (GLint *) &val; |
||
650 | GLint x = *exp_ptr; |
||
651 | const GLint log_2 = ((x >> 23) & 255) - 128; |
||
652 | x &= ~(255 << 23); |
||
653 | x += 127 << 23; |
||
654 | *exp_ptr = x; |
||
655 | val = ((-1.0f/3) * val + 2) * val - 2.0f/3; |
||
656 | return val + log_2; |
||
657 | } |
||
658 | |||
659 | #else /* USE_IEEE */ |
||
660 | |||
661 | /* Slow, portable solution. |
||
662 | * NOTE: log_base_2(x) = log(x) / log(2) |
||
663 | * NOTE: 1.442695 = 1/log(2). |
||
664 | */ |
||
665 | #define LOG2(x) ((GLfloat) (log(x) * 1.442695F)) |
||
666 | |||
667 | #endif /* USE_IEEE */ |
||
668 | |||
669 | |||
670 | extern void |
||
671 | _mesa_init_math(void); |
||
672 | |||
673 | |||
674 | extern GLuint |
||
675 | _mesa_bitcount(GLuint n); |
||
676 | |||
677 | |||
678 | #endif |