Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
422 | giacomo | 1 | /* |
2 | * Written by Pat Gaughen (gone@us.ibm.com) Mar 2002 |
||
3 | * |
||
4 | */ |
||
5 | |||
6 | #ifndef _ASM_MMZONE_H_ |
||
7 | #define _ASM_MMZONE_H_ |
||
8 | |||
9 | #include <asm/smp.h> |
||
10 | |||
11 | #ifdef CONFIG_DISCONTIGMEM |
||
12 | |||
13 | extern struct pglist_data *node_data[]; |
||
14 | |||
15 | /* |
||
16 | * Following are macros that are specific to this numa platform. |
||
17 | */ |
||
18 | #define reserve_bootmem(addr, size) \ |
||
19 | reserve_bootmem_node(NODE_DATA(0), (addr), (size)) |
||
20 | #define alloc_bootmem(x) \ |
||
21 | __alloc_bootmem_node(NODE_DATA(0), (x), SMP_CACHE_BYTES, __pa(MAX_DMA_ADDRESS)) |
||
22 | #define alloc_bootmem_low(x) \ |
||
23 | __alloc_bootmem_node(NODE_DATA(0), (x), SMP_CACHE_BYTES, 0) |
||
24 | #define alloc_bootmem_pages(x) \ |
||
25 | __alloc_bootmem_node(NODE_DATA(0), (x), PAGE_SIZE, __pa(MAX_DMA_ADDRESS)) |
||
26 | #define alloc_bootmem_low_pages(x) \ |
||
27 | __alloc_bootmem_node(NODE_DATA(0), (x), PAGE_SIZE, 0) |
||
28 | #define alloc_bootmem_node(ignore, x) \ |
||
29 | __alloc_bootmem_node(NODE_DATA(0), (x), SMP_CACHE_BYTES, __pa(MAX_DMA_ADDRESS)) |
||
30 | #define alloc_bootmem_pages_node(ignore, x) \ |
||
31 | __alloc_bootmem_node(NODE_DATA(0), (x), PAGE_SIZE, __pa(MAX_DMA_ADDRESS)) |
||
32 | #define alloc_bootmem_low_pages_node(ignore, x) \ |
||
33 | __alloc_bootmem_node(NODE_DATA(0), (x), PAGE_SIZE, 0) |
||
34 | |||
35 | #define node_localnr(pfn, nid) ((pfn) - node_data[nid]->node_start_pfn) |
||
36 | |||
37 | /* |
||
38 | * Following are macros that each numa implmentation must define. |
||
39 | */ |
||
40 | |||
41 | /* |
||
42 | * Given a kernel address, find the home node of the underlying memory. |
||
43 | */ |
||
44 | #define kvaddr_to_nid(kaddr) pfn_to_nid(__pa(kaddr) >> PAGE_SHIFT) |
||
45 | |||
46 | /* |
||
47 | * Return a pointer to the node data for node n. |
||
48 | */ |
||
49 | #define NODE_DATA(nid) (node_data[nid]) |
||
50 | |||
51 | #define node_mem_map(nid) (NODE_DATA(nid)->node_mem_map) |
||
52 | #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) |
||
53 | #define node_end_pfn(nid) \ |
||
54 | ({ \ |
||
55 | pg_data_t *__pgdat = NODE_DATA(nid); \ |
||
56 | __pgdat->node_start_pfn + __pgdat->node_spanned_pages; \ |
||
57 | }) |
||
58 | |||
59 | #define local_mapnr(kvaddr) \ |
||
60 | ({ \ |
||
61 | unsigned long __pfn = __pa(kvaddr) >> PAGE_SHIFT; \ |
||
62 | (__pfn - node_start_pfn(pfn_to_nid(__pfn))); \ |
||
63 | }) |
||
64 | |||
65 | #define kern_addr_valid(kaddr) \ |
||
66 | ({ \ |
||
67 | unsigned long __kaddr = (unsigned long)(kaddr); \ |
||
68 | pg_data_t *__pgdat = NODE_DATA(kvaddr_to_nid(__kaddr)); \ |
||
69 | test_bit(local_mapnr(__kaddr), __pgdat->valid_addr_bitmap); \ |
||
70 | }) |
||
71 | |||
72 | #define pfn_to_page(pfn) \ |
||
73 | ({ \ |
||
74 | unsigned long __pfn = pfn; \ |
||
75 | int __node = pfn_to_nid(__pfn); \ |
||
76 | &node_mem_map(__node)[node_localnr(__pfn,__node)]; \ |
||
77 | }) |
||
78 | |||
79 | #define page_to_pfn(pg) \ |
||
80 | ({ \ |
||
81 | struct page *__page = pg; \ |
||
82 | struct zone *__zone = page_zone(__page); \ |
||
83 | (unsigned long)(__page - __zone->zone_mem_map) \ |
||
84 | + __zone->zone_start_pfn; \ |
||
85 | }) |
||
86 | #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) |
||
87 | /* |
||
88 | * pfn_valid should be made as fast as possible, and the current definition |
||
89 | * is valid for machines that are NUMA, but still contiguous, which is what |
||
90 | * is currently supported. A more generalised, but slower definition would |
||
91 | * be something like this - mbligh: |
||
92 | * ( pfn_to_pgdat(pfn) && ((pfn) < node_end_pfn(pfn_to_nid(pfn))) ) |
||
93 | */ |
||
94 | #define pfn_valid(pfn) ((pfn) < num_physpages) |
||
95 | |||
96 | /* |
||
97 | * generic node memory support, the following assumptions apply: |
||
98 | * |
||
99 | * 1) memory comes in 256Mb contigious chunks which are either present or not |
||
100 | * 2) we will not have more than 64Gb in total |
||
101 | * |
||
102 | * for now assume that 64Gb is max amount of RAM for whole system |
||
103 | * 64Gb / 4096bytes/page = 16777216 pages |
||
104 | */ |
||
105 | #define MAX_NR_PAGES 16777216 |
||
106 | #define MAX_ELEMENTS 256 |
||
107 | #define PAGES_PER_ELEMENT (MAX_NR_PAGES/MAX_ELEMENTS) |
||
108 | |||
109 | extern u8 physnode_map[]; |
||
110 | |||
111 | static inline int pfn_to_nid(unsigned long pfn) |
||
112 | { |
||
113 | return(physnode_map[(pfn) / PAGES_PER_ELEMENT]); |
||
114 | } |
||
115 | static inline struct pglist_data *pfn_to_pgdat(unsigned long pfn) |
||
116 | { |
||
117 | return(NODE_DATA(pfn_to_nid(pfn))); |
||
118 | } |
||
119 | |||
120 | #ifdef CONFIG_X86_NUMAQ |
||
121 | #include <asm/numaq.h> |
||
122 | #elif CONFIG_ACPI_SRAT |
||
123 | #include <asm/srat.h> |
||
124 | #elif CONFIG_X86_PC |
||
125 | #define get_zholes_size(n) (0) |
||
126 | #else |
||
127 | #define pfn_to_nid(pfn) (0) |
||
128 | #endif /* CONFIG_X86_NUMAQ */ |
||
129 | |||
130 | extern int get_memcfg_numa_flat(void ); |
||
131 | /* |
||
132 | * This allows any one NUMA architecture to be compiled |
||
133 | * for, and still fall back to the flat function if it |
||
134 | * fails. |
||
135 | */ |
||
136 | static inline void get_memcfg_numa(void) |
||
137 | { |
||
138 | #ifdef CONFIG_X86_NUMAQ |
||
139 | if (get_memcfg_numaq()) |
||
140 | return; |
||
141 | #elif CONFIG_ACPI_SRAT |
||
142 | if (get_memcfg_from_srat()) |
||
143 | return; |
||
144 | #endif |
||
145 | |||
146 | get_memcfg_numa_flat(); |
||
147 | } |
||
148 | |||
149 | #endif /* CONFIG_DISCONTIGMEM */ |
||
150 | #endif /* _ASM_MMZONE_H_ */ |