Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
422 | giacomo | 1 | /* |
2 | * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details |
||
3 | */ |
||
4 | |||
5 | /* this file has an amazingly stupid |
||
6 | name, yura please fix it to be |
||
7 | reiserfs.h, and merge all the rest |
||
8 | of our .h files that are in this |
||
9 | directory into it. */ |
||
10 | |||
11 | |||
12 | #ifndef _LINUX_REISER_FS_H |
||
13 | #define _LINUX_REISER_FS_H |
||
14 | |||
15 | #include <linux/types.h> |
||
16 | #ifdef __KERNEL__ |
||
17 | #include <linux/slab.h> |
||
18 | #include <linux/interrupt.h> |
||
19 | #include <linux/workqueue.h> |
||
20 | #include <asm/unaligned.h> |
||
21 | #include <linux/bitops.h> |
||
22 | #include <linux/proc_fs.h> |
||
23 | #include <linux/smp_lock.h> |
||
24 | #include <linux/buffer_head.h> |
||
25 | #include <linux/reiserfs_fs_i.h> |
||
26 | #include <linux/reiserfs_fs_sb.h> |
||
27 | #endif |
||
28 | |||
29 | /* |
||
30 | * include/linux/reiser_fs.h |
||
31 | * |
||
32 | * Reiser File System constants and structures |
||
33 | * |
||
34 | */ |
||
35 | |||
36 | /* in reading the #defines, it may help to understand that they employ |
||
37 | the following abbreviations: |
||
38 | |||
39 | B = Buffer |
||
40 | I = Item header |
||
41 | H = Height within the tree (should be changed to LEV) |
||
42 | N = Number of the item in the node |
||
43 | STAT = stat data |
||
44 | DEH = Directory Entry Header |
||
45 | EC = Entry Count |
||
46 | E = Entry number |
||
47 | UL = Unsigned Long |
||
48 | BLKH = BLocK Header |
||
49 | UNFM = UNForMatted node |
||
50 | DC = Disk Child |
||
51 | P = Path |
||
52 | |||
53 | These #defines are named by concatenating these abbreviations, |
||
54 | where first comes the arguments, and last comes the return value, |
||
55 | of the macro. |
||
56 | |||
57 | */ |
||
58 | |||
59 | #define USE_INODE_GENERATION_COUNTER |
||
60 | |||
61 | #define REISERFS_PREALLOCATE |
||
62 | #define DISPLACE_NEW_PACKING_LOCALITIES |
||
63 | #define PREALLOCATION_SIZE 9 |
||
64 | |||
65 | /* n must be power of 2 */ |
||
66 | #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u)) |
||
67 | |||
68 | // to be ok for alpha and others we have to align structures to 8 byte |
||
69 | // boundary. |
||
70 | // FIXME: do not change 4 by anything else: there is code which relies on that |
||
71 | #define ROUND_UP(x) _ROUND_UP(x,8LL) |
||
72 | |||
73 | /* debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug |
||
74 | ** messages. |
||
75 | */ |
||
76 | #define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */ |
||
77 | |||
78 | /* assertions handling */ |
||
79 | |||
80 | /** always check a condition and panic if it's false. */ |
||
81 | #define RASSERT( cond, format, args... ) \ |
||
82 | if( !( cond ) ) \ |
||
83 | reiserfs_panic( 0, "reiserfs[%i]: assertion " #cond " failed at " \ |
||
84 | __FILE__ ":%i:%s: " format "\n", \ |
||
85 | in_interrupt() ? -1 : current -> pid, __LINE__ , __FUNCTION__ , ##args ) |
||
86 | |||
87 | #if defined( CONFIG_REISERFS_CHECK ) |
||
88 | #define RFALSE( cond, format, args... ) RASSERT( !( cond ), format, ##args ) |
||
89 | #else |
||
90 | #define RFALSE( cond, format, args... ) do {;} while( 0 ) |
||
91 | #endif |
||
92 | |||
93 | #define CONSTF __attribute__( ( const ) ) |
||
94 | /* |
||
95 | * Disk Data Structures |
||
96 | */ |
||
97 | |||
98 | /***************************************************************************/ |
||
99 | /* SUPER BLOCK */ |
||
100 | /***************************************************************************/ |
||
101 | |||
102 | /* |
||
103 | * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs |
||
104 | * the version in RAM is part of a larger structure containing fields never written to disk. |
||
105 | */ |
||
106 | #define UNSET_HASH 0 // read_super will guess about, what hash names |
||
107 | // in directories were sorted with |
||
108 | #define TEA_HASH 1 |
||
109 | #define YURA_HASH 2 |
||
110 | #define R5_HASH 3 |
||
111 | #define DEFAULT_HASH R5_HASH |
||
112 | |||
113 | |||
114 | struct journal_params { |
||
115 | __u32 jp_journal_1st_block; /* where does journal start from on its |
||
116 | * device */ |
||
117 | __u32 jp_journal_dev; /* journal device st_rdev */ |
||
118 | __u32 jp_journal_size; /* size of the journal */ |
||
119 | __u32 jp_journal_trans_max; /* max number of blocks in a transaction. */ |
||
120 | __u32 jp_journal_magic; /* random value made on fs creation (this |
||
121 | * was sb_journal_block_count) */ |
||
122 | __u32 jp_journal_max_batch; /* max number of blocks to batch into a |
||
123 | * trans */ |
||
124 | __u32 jp_journal_max_commit_age; /* in seconds, how old can an async |
||
125 | * commit be */ |
||
126 | __u32 jp_journal_max_trans_age; /* in seconds, how old can a transaction |
||
127 | * be */ |
||
128 | }; |
||
129 | |||
130 | /* this is the super from 3.5.X, where X >= 10 */ |
||
131 | struct reiserfs_super_block_v1 |
||
132 | { |
||
133 | __u32 s_block_count; /* blocks count */ |
||
134 | __u32 s_free_blocks; /* free blocks count */ |
||
135 | __u32 s_root_block; /* root block number */ |
||
136 | struct journal_params s_journal; |
||
137 | __u16 s_blocksize; /* block size */ |
||
138 | __u16 s_oid_maxsize; /* max size of object id array, see |
||
139 | * get_objectid() commentary */ |
||
140 | __u16 s_oid_cursize; /* current size of object id array */ |
||
141 | __u16 s_umount_state; /* this is set to 1 when filesystem was |
||
142 | * umounted, to 2 - when not */ |
||
143 | char s_magic[10]; /* reiserfs magic string indicates that |
||
144 | * file system is reiserfs: |
||
145 | * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */ |
||
146 | __u16 s_fs_state; /* it is set to used by fsck to mark which |
||
147 | * phase of rebuilding is done */ |
||
148 | __u32 s_hash_function_code; /* indicate, what hash function is being use |
||
149 | * to sort names in a directory*/ |
||
150 | __u16 s_tree_height; /* height of disk tree */ |
||
151 | __u16 s_bmap_nr; /* amount of bitmap blocks needed to address |
||
152 | * each block of file system */ |
||
153 | __u16 s_version; /* this field is only reliable on filesystem |
||
154 | * with non-standard journal */ |
||
155 | __u16 s_reserved_for_journal; /* size in blocks of journal area on main |
||
156 | * device, we need to keep after |
||
157 | * making fs with non-standard journal */ |
||
158 | } __attribute__ ((__packed__)); |
||
159 | |||
160 | #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1)) |
||
161 | |||
162 | /* this is the on disk super block */ |
||
163 | struct reiserfs_super_block |
||
164 | { |
||
165 | struct reiserfs_super_block_v1 s_v1; |
||
166 | __u32 s_inode_generation; |
||
167 | __u32 s_flags; /* Right now used only by inode-attributes, if enabled */ |
||
168 | unsigned char s_uuid[16]; /* filesystem unique identifier */ |
||
169 | unsigned char s_label[16]; /* filesystem volume label */ |
||
170 | char s_unused[88] ; /* zero filled by mkreiserfs and |
||
171 | * reiserfs_convert_objectid_map_v1() |
||
172 | * so any additions must be updated |
||
173 | * there as well. */ |
||
174 | } __attribute__ ((__packed__)); |
||
175 | |||
176 | #define SB_SIZE (sizeof(struct reiserfs_super_block)) |
||
177 | |||
178 | #define REISERFS_VERSION_1 0 |
||
179 | #define REISERFS_VERSION_2 2 |
||
180 | |||
181 | |||
182 | // on-disk super block fields converted to cpu form |
||
183 | #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs) |
||
184 | #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1)) |
||
185 | #define SB_BLOCKSIZE(s) \ |
||
186 | le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize)) |
||
187 | #define SB_BLOCK_COUNT(s) \ |
||
188 | le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count)) |
||
189 | #define SB_FREE_BLOCKS(s) \ |
||
190 | le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks)) |
||
191 | #define SB_REISERFS_MAGIC(s) \ |
||
192 | (SB_V1_DISK_SUPER_BLOCK(s)->s_magic) |
||
193 | #define SB_ROOT_BLOCK(s) \ |
||
194 | le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block)) |
||
195 | #define SB_TREE_HEIGHT(s) \ |
||
196 | le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height)) |
||
197 | #define SB_REISERFS_STATE(s) \ |
||
198 | le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state)) |
||
199 | #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version)) |
||
200 | #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr)) |
||
201 | |||
202 | #define PUT_SB_BLOCK_COUNT(s, val) \ |
||
203 | do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0) |
||
204 | #define PUT_SB_FREE_BLOCKS(s, val) \ |
||
205 | do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0) |
||
206 | #define PUT_SB_ROOT_BLOCK(s, val) \ |
||
207 | do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0) |
||
208 | #define PUT_SB_TREE_HEIGHT(s, val) \ |
||
209 | do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0) |
||
210 | #define PUT_SB_REISERFS_STATE(s, val) \ |
||
211 | do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0) |
||
212 | #define PUT_SB_VERSION(s, val) \ |
||
213 | do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0) |
||
214 | #define PUT_SB_BMAP_NR(s, val) \ |
||
215 | do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0) |
||
216 | |||
217 | |||
218 | #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal) |
||
219 | #define SB_ONDISK_JOURNAL_SIZE(s) \ |
||
220 | le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size)) |
||
221 | #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \ |
||
222 | le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block)) |
||
223 | #define SB_ONDISK_JOURNAL_DEVICE(s) \ |
||
224 | le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev)) |
||
225 | #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \ |
||
226 | le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal)) |
||
227 | |||
228 | #define is_block_in_log_or_reserved_area(s, block) \ |
||
229 | block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \ |
||
230 | && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \ |
||
231 | ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \ |
||
232 | SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s))) |
||
233 | |||
234 | |||
235 | |||
236 | /* used by gcc */ |
||
237 | #define REISERFS_SUPER_MAGIC 0x52654973 |
||
238 | /* used by file system utilities that |
||
239 | look at the superblock, etc. */ |
||
240 | #define REISERFS_SUPER_MAGIC_STRING "ReIsErFs" |
||
241 | #define REISER2FS_SUPER_MAGIC_STRING "ReIsEr2Fs" |
||
242 | #define REISER2FS_JR_SUPER_MAGIC_STRING "ReIsEr3Fs" |
||
243 | |||
244 | extern const char reiserfs_3_5_magic_string[]; |
||
245 | extern const char reiserfs_3_6_magic_string[]; |
||
246 | extern const char reiserfs_jr_magic_string[]; |
||
247 | |||
248 | int is_reiserfs_3_5 (struct reiserfs_super_block * rs); |
||
249 | int is_reiserfs_3_6 (struct reiserfs_super_block * rs); |
||
250 | int is_reiserfs_jr (struct reiserfs_super_block * rs); |
||
251 | |||
252 | /* ReiserFS leaves the first 64k unused, so that partition labels have |
||
253 | enough space. If someone wants to write a fancy bootloader that |
||
254 | needs more than 64k, let us know, and this will be increased in size. |
||
255 | This number must be larger than than the largest block size on any |
||
256 | platform, or code will break. -Hans */ |
||
257 | #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024) |
||
258 | #define REISERFS_FIRST_BLOCK unused_define |
||
259 | #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES |
||
260 | |||
261 | /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */ |
||
262 | #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024) |
||
263 | |||
264 | // reiserfs internal error code (used by search_by_key adn fix_nodes)) |
||
265 | #define CARRY_ON 0 |
||
266 | #define REPEAT_SEARCH -1 |
||
267 | #define IO_ERROR -2 |
||
268 | #define NO_DISK_SPACE -3 |
||
269 | #define NO_BALANCING_NEEDED (-4) |
||
270 | #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5) |
||
271 | |||
272 | typedef __u32 b_blocknr_t; |
||
273 | typedef __u32 unp_t; |
||
274 | |||
275 | struct unfm_nodeinfo { |
||
276 | unp_t unfm_nodenum; |
||
277 | unsigned short unfm_freespace; |
||
278 | }; |
||
279 | |||
280 | /* there are two formats of keys: 3.5 and 3.6 |
||
281 | */ |
||
282 | #define KEY_FORMAT_3_5 0 |
||
283 | #define KEY_FORMAT_3_6 1 |
||
284 | |||
285 | /* there are two stat datas */ |
||
286 | #define STAT_DATA_V1 0 |
||
287 | #define STAT_DATA_V2 1 |
||
288 | |||
289 | |||
290 | static inline struct reiserfs_inode_info *REISERFS_I(struct inode *inode) |
||
291 | { |
||
292 | return container_of(inode, struct reiserfs_inode_info, vfs_inode); |
||
293 | } |
||
294 | |||
295 | static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb) |
||
296 | { |
||
297 | return sb->s_fs_info; |
||
298 | } |
||
299 | |||
300 | /** this says about version of key of all items (but stat data) the |
||
301 | object consists of */ |
||
302 | #define get_inode_item_key_version( inode ) \ |
||
303 | ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5) |
||
304 | |||
305 | #define set_inode_item_key_version( inode, version ) \ |
||
306 | ({ if((version)==KEY_FORMAT_3_6) \ |
||
307 | REISERFS_I(inode)->i_flags |= i_item_key_version_mask; \ |
||
308 | else \ |
||
309 | REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; }) |
||
310 | |||
311 | #define get_inode_sd_version(inode) \ |
||
312 | ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1) |
||
313 | |||
314 | #define set_inode_sd_version(inode, version) \ |
||
315 | ({ if((version)==STAT_DATA_V2) \ |
||
316 | REISERFS_I(inode)->i_flags |= i_stat_data_version_mask; \ |
||
317 | else \ |
||
318 | REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; }) |
||
319 | |||
320 | /* This is an aggressive tail suppression policy, I am hoping it |
||
321 | improves our benchmarks. The principle behind it is that percentage |
||
322 | space saving is what matters, not absolute space saving. This is |
||
323 | non-intuitive, but it helps to understand it if you consider that the |
||
324 | cost to access 4 blocks is not much more than the cost to access 1 |
||
325 | block, if you have to do a seek and rotate. A tail risks a |
||
326 | non-linear disk access that is significant as a percentage of total |
||
327 | time cost for a 4 block file and saves an amount of space that is |
||
328 | less significant as a percentage of space, or so goes the hypothesis. |
||
329 | -Hans */ |
||
330 | #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \ |
||
331 | (\ |
||
332 | (!(n_tail_size)) || \ |
||
333 | (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \ |
||
334 | ( (n_file_size) >= (n_block_size) * 4 ) || \ |
||
335 | ( ( (n_file_size) >= (n_block_size) * 3 ) && \ |
||
336 | ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \ |
||
337 | ( ( (n_file_size) >= (n_block_size) * 2 ) && \ |
||
338 | ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \ |
||
339 | ( ( (n_file_size) >= (n_block_size) ) && \ |
||
340 | ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \ |
||
341 | ) |
||
342 | |||
343 | /* Another strategy for tails, this one means only create a tail if all the |
||
344 | file would fit into one DIRECT item. |
||
345 | Primary intention for this one is to increase performance by decreasing |
||
346 | seeking. |
||
347 | */ |
||
348 | #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \ |
||
349 | (\ |
||
350 | (!(n_tail_size)) || \ |
||
351 | (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \ |
||
352 | ) |
||
353 | |||
354 | |||
355 | |||
356 | /* |
||
357 | * values for s_umount_state field |
||
358 | */ |
||
359 | #define REISERFS_VALID_FS 1 |
||
360 | #define REISERFS_ERROR_FS 2 |
||
361 | |||
362 | // |
||
363 | // there are 5 item types currently |
||
364 | // |
||
365 | #define TYPE_STAT_DATA 0 |
||
366 | #define TYPE_INDIRECT 1 |
||
367 | #define TYPE_DIRECT 2 |
||
368 | #define TYPE_DIRENTRY 3 |
||
369 | #define TYPE_MAXTYPE 3 |
||
370 | #define TYPE_ANY 15 // FIXME: comment is required |
||
371 | |||
372 | /***************************************************************************/ |
||
373 | /* KEY & ITEM HEAD */ |
||
374 | /***************************************************************************/ |
||
375 | |||
376 | // |
||
377 | // directories use this key as well as old files |
||
378 | // |
||
379 | struct offset_v1 { |
||
380 | __u32 k_offset; |
||
381 | __u32 k_uniqueness; |
||
382 | } __attribute__ ((__packed__)); |
||
383 | |||
384 | struct offset_v2 { |
||
385 | #ifdef __LITTLE_ENDIAN |
||
386 | /* little endian version */ |
||
387 | __u64 k_offset:60; |
||
388 | __u64 k_type: 4; |
||
389 | #else |
||
390 | /* big endian version */ |
||
391 | __u64 k_type: 4; |
||
392 | __u64 k_offset:60; |
||
393 | #endif |
||
394 | } __attribute__ ((__packed__)); |
||
395 | |||
396 | #ifndef __LITTLE_ENDIAN |
||
397 | typedef union { |
||
398 | struct offset_v2 offset_v2; |
||
399 | __u64 linear; |
||
400 | } __attribute__ ((__packed__)) offset_v2_esafe_overlay; |
||
401 | |||
402 | static inline __u16 offset_v2_k_type( const struct offset_v2 *v2 ) |
||
403 | { |
||
404 | offset_v2_esafe_overlay tmp = *(const offset_v2_esafe_overlay *)v2; |
||
405 | tmp.linear = le64_to_cpu( tmp.linear ); |
||
406 | return (tmp.offset_v2.k_type <= TYPE_MAXTYPE)?tmp.offset_v2.k_type:TYPE_ANY; |
||
407 | } |
||
408 | |||
409 | static inline void set_offset_v2_k_type( struct offset_v2 *v2, int type ) |
||
410 | { |
||
411 | offset_v2_esafe_overlay *tmp = (offset_v2_esafe_overlay *)v2; |
||
412 | tmp->linear = le64_to_cpu(tmp->linear); |
||
413 | tmp->offset_v2.k_type = type; |
||
414 | tmp->linear = cpu_to_le64(tmp->linear); |
||
415 | } |
||
416 | |||
417 | static inline loff_t offset_v2_k_offset( const struct offset_v2 *v2 ) |
||
418 | { |
||
419 | offset_v2_esafe_overlay tmp = *(const offset_v2_esafe_overlay *)v2; |
||
420 | tmp.linear = le64_to_cpu( tmp.linear ); |
||
421 | return tmp.offset_v2.k_offset; |
||
422 | } |
||
423 | |||
424 | static inline void set_offset_v2_k_offset( struct offset_v2 *v2, loff_t offset ){ |
||
425 | offset_v2_esafe_overlay *tmp = (offset_v2_esafe_overlay *)v2; |
||
426 | tmp->linear = le64_to_cpu(tmp->linear); |
||
427 | tmp->offset_v2.k_offset = offset; |
||
428 | tmp->linear = cpu_to_le64(tmp->linear); |
||
429 | } |
||
430 | #else |
||
431 | # define offset_v2_k_type(v2) ((v2)->k_type) |
||
432 | # define set_offset_v2_k_type(v2,val) (offset_v2_k_type(v2) = (val)) |
||
433 | # define offset_v2_k_offset(v2) ((v2)->k_offset) |
||
434 | # define set_offset_v2_k_offset(v2,val) (offset_v2_k_offset(v2) = (val)) |
||
435 | #endif |
||
436 | |||
437 | /* Key of an item determines its location in the S+tree, and |
||
438 | is composed of 4 components */ |
||
439 | struct key { |
||
440 | __u32 k_dir_id; /* packing locality: by default parent |
||
441 | directory object id */ |
||
442 | __u32 k_objectid; /* object identifier */ |
||
443 | union { |
||
444 | struct offset_v1 k_offset_v1; |
||
445 | struct offset_v2 k_offset_v2; |
||
446 | } __attribute__ ((__packed__)) u; |
||
447 | } __attribute__ ((__packed__)); |
||
448 | |||
449 | |||
450 | struct cpu_key { |
||
451 | struct key on_disk_key; |
||
452 | int version; |
||
453 | int key_length; /* 3 in all cases but direct2indirect and |
||
454 | indirect2direct conversion */ |
||
455 | }; |
||
456 | |||
457 | /* Our function for comparing keys can compare keys of different |
||
458 | lengths. It takes as a parameter the length of the keys it is to |
||
459 | compare. These defines are used in determining what is to be passed |
||
460 | to it as that parameter. */ |
||
461 | #define REISERFS_FULL_KEY_LEN 4 |
||
462 | #define REISERFS_SHORT_KEY_LEN 2 |
||
463 | |||
464 | /* The result of the key compare */ |
||
465 | #define FIRST_GREATER 1 |
||
466 | #define SECOND_GREATER -1 |
||
467 | #define KEYS_IDENTICAL 0 |
||
468 | #define KEY_FOUND 1 |
||
469 | #define KEY_NOT_FOUND 0 |
||
470 | |||
471 | #define KEY_SIZE (sizeof(struct key)) |
||
472 | #define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32)) |
||
473 | |||
474 | /* return values for search_by_key and clones */ |
||
475 | #define ITEM_FOUND 1 |
||
476 | #define ITEM_NOT_FOUND 0 |
||
477 | #define ENTRY_FOUND 1 |
||
478 | #define ENTRY_NOT_FOUND 0 |
||
479 | #define DIRECTORY_NOT_FOUND -1 |
||
480 | #define REGULAR_FILE_FOUND -2 |
||
481 | #define DIRECTORY_FOUND -3 |
||
482 | #define BYTE_FOUND 1 |
||
483 | #define BYTE_NOT_FOUND 0 |
||
484 | #define FILE_NOT_FOUND -1 |
||
485 | |||
486 | #define POSITION_FOUND 1 |
||
487 | #define POSITION_NOT_FOUND 0 |
||
488 | |||
489 | // return values for reiserfs_find_entry and search_by_entry_key |
||
490 | #define NAME_FOUND 1 |
||
491 | #define NAME_NOT_FOUND 0 |
||
492 | #define GOTO_PREVIOUS_ITEM 2 |
||
493 | #define NAME_FOUND_INVISIBLE 3 |
||
494 | |||
495 | /* Everything in the filesystem is stored as a set of items. The |
||
496 | item head contains the key of the item, its free space (for |
||
497 | indirect items) and specifies the location of the item itself |
||
498 | within the block. */ |
||
499 | |||
500 | struct item_head |
||
501 | { |
||
502 | /* Everything in the tree is found by searching for it based on |
||
503 | * its key.*/ |
||
504 | struct key ih_key; |
||
505 | union { |
||
506 | /* The free space in the last unformatted node of an |
||
507 | indirect item if this is an indirect item. This |
||
508 | equals 0xFFFF iff this is a direct item or stat data |
||
509 | item. Note that the key, not this field, is used to |
||
510 | determine the item type, and thus which field this |
||
511 | union contains. */ |
||
512 | __u16 ih_free_space_reserved; |
||
513 | /* Iff this is a directory item, this field equals the |
||
514 | number of directory entries in the directory item. */ |
||
515 | __u16 ih_entry_count; |
||
516 | } __attribute__ ((__packed__)) u; |
||
517 | __u16 ih_item_len; /* total size of the item body */ |
||
518 | __u16 ih_item_location; /* an offset to the item body |
||
519 | * within the block */ |
||
520 | __u16 ih_version; /* 0 for all old items, 2 for new |
||
521 | ones. Highest bit is set by fsck |
||
522 | temporary, cleaned after all |
||
523 | done */ |
||
524 | } __attribute__ ((__packed__)); |
||
525 | /* size of item header */ |
||
526 | #define IH_SIZE (sizeof(struct item_head)) |
||
527 | |||
528 | #define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved) |
||
529 | #define ih_version(ih) le16_to_cpu((ih)->ih_version) |
||
530 | #define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count) |
||
531 | #define ih_location(ih) le16_to_cpu((ih)->ih_item_location) |
||
532 | #define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len) |
||
533 | |||
534 | #define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0) |
||
535 | #define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0) |
||
536 | #define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0) |
||
537 | #define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0) |
||
538 | #define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0) |
||
539 | |||
540 | |||
541 | #define unreachable_item(ih) (ih_version(ih) & (1 << 15)) |
||
542 | |||
543 | #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih)) |
||
544 | #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val))) |
||
545 | |||
546 | /* these operate on indirect items, where you've got an array of ints |
||
547 | ** at a possibly unaligned location. These are a noop on ia32 |
||
548 | ** |
||
549 | ** p is the array of __u32, i is the index into the array, v is the value |
||
550 | ** to store there. |
||
551 | */ |
||
552 | #define get_block_num(p, i) le32_to_cpu(get_unaligned((p) + (i))) |
||
553 | #define put_block_num(p, i, v) put_unaligned(cpu_to_le32(v), (p) + (i)) |
||
554 | |||
555 | // |
||
556 | // in old version uniqueness field shows key type |
||
557 | // |
||
558 | #define V1_SD_UNIQUENESS 0 |
||
559 | #define V1_INDIRECT_UNIQUENESS 0xfffffffe |
||
560 | #define V1_DIRECT_UNIQUENESS 0xffffffff |
||
561 | #define V1_DIRENTRY_UNIQUENESS 500 |
||
562 | #define V1_ANY_UNIQUENESS 555 // FIXME: comment is required |
||
563 | |||
564 | extern void reiserfs_warning (const char * fmt, ...); |
||
565 | /* __attribute__( ( format ( printf, 1, 2 ) ) ); */ |
||
566 | |||
567 | // |
||
568 | // here are conversion routines |
||
569 | // |
||
570 | static inline int uniqueness2type (__u32 uniqueness) CONSTF; |
||
571 | static inline int uniqueness2type (__u32 uniqueness) |
||
572 | { |
||
573 | switch ((int)uniqueness) { |
||
574 | case V1_SD_UNIQUENESS: return TYPE_STAT_DATA; |
||
575 | case V1_INDIRECT_UNIQUENESS: return TYPE_INDIRECT; |
||
576 | case V1_DIRECT_UNIQUENESS: return TYPE_DIRECT; |
||
577 | case V1_DIRENTRY_UNIQUENESS: return TYPE_DIRENTRY; |
||
578 | default: |
||
579 | reiserfs_warning( "vs-500: unknown uniqueness %d\n", uniqueness); |
||
580 | case V1_ANY_UNIQUENESS: |
||
581 | return TYPE_ANY; |
||
582 | } |
||
583 | } |
||
584 | |||
585 | static inline __u32 type2uniqueness (int type) CONSTF; |
||
586 | static inline __u32 type2uniqueness (int type) |
||
587 | { |
||
588 | switch (type) { |
||
589 | case TYPE_STAT_DATA: return V1_SD_UNIQUENESS; |
||
590 | case TYPE_INDIRECT: return V1_INDIRECT_UNIQUENESS; |
||
591 | case TYPE_DIRECT: return V1_DIRECT_UNIQUENESS; |
||
592 | case TYPE_DIRENTRY: return V1_DIRENTRY_UNIQUENESS; |
||
593 | default: |
||
594 | reiserfs_warning( "vs-501: unknown type %d\n", type); |
||
595 | case TYPE_ANY: |
||
596 | return V1_ANY_UNIQUENESS; |
||
597 | } |
||
598 | } |
||
599 | |||
600 | // |
||
601 | // key is pointer to on disk key which is stored in le, result is cpu, |
||
602 | // there is no way to get version of object from key, so, provide |
||
603 | // version to these defines |
||
604 | // |
||
605 | static inline loff_t le_key_k_offset (int version, const struct key * key) |
||
606 | { |
||
607 | return (version == KEY_FORMAT_3_5) ? |
||
608 | le32_to_cpu( key->u.k_offset_v1.k_offset ) : |
||
609 | offset_v2_k_offset( &(key->u.k_offset_v2) ); |
||
610 | } |
||
611 | |||
612 | static inline loff_t le_ih_k_offset (const struct item_head * ih) |
||
613 | { |
||
614 | return le_key_k_offset (ih_version (ih), &(ih->ih_key)); |
||
615 | } |
||
616 | |||
617 | static inline loff_t le_key_k_type (int version, const struct key * key) |
||
618 | { |
||
619 | return (version == KEY_FORMAT_3_5) ? |
||
620 | uniqueness2type( le32_to_cpu( key->u.k_offset_v1.k_uniqueness)) : |
||
621 | offset_v2_k_type( &(key->u.k_offset_v2) ); |
||
622 | } |
||
623 | |||
624 | static inline loff_t le_ih_k_type (const struct item_head * ih) |
||
625 | { |
||
626 | return le_key_k_type (ih_version (ih), &(ih->ih_key)); |
||
627 | } |
||
628 | |||
629 | |||
630 | static inline void set_le_key_k_offset (int version, struct key * key, loff_t offset) |
||
631 | { |
||
632 | (version == KEY_FORMAT_3_5) ? |
||
633 | (key->u.k_offset_v1.k_offset = cpu_to_le32 (offset)) : /* jdm check */ |
||
634 | (set_offset_v2_k_offset( &(key->u.k_offset_v2), offset )); |
||
635 | } |
||
636 | |||
637 | |||
638 | static inline void set_le_ih_k_offset (struct item_head * ih, loff_t offset) |
||
639 | { |
||
640 | set_le_key_k_offset (ih_version (ih), &(ih->ih_key), offset); |
||
641 | } |
||
642 | |||
643 | |||
644 | static inline void set_le_key_k_type (int version, struct key * key, int type) |
||
645 | { |
||
646 | (version == KEY_FORMAT_3_5) ? |
||
647 | (key->u.k_offset_v1.k_uniqueness = cpu_to_le32(type2uniqueness(type))): |
||
648 | (set_offset_v2_k_type( &(key->u.k_offset_v2), type )); |
||
649 | } |
||
650 | static inline void set_le_ih_k_type (struct item_head * ih, int type) |
||
651 | { |
||
652 | set_le_key_k_type (ih_version (ih), &(ih->ih_key), type); |
||
653 | } |
||
654 | |||
655 | |||
656 | #define is_direntry_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRENTRY) |
||
657 | #define is_direct_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRECT) |
||
658 | #define is_indirect_le_key(version,key) (le_key_k_type (version, key) == TYPE_INDIRECT) |
||
659 | #define is_statdata_le_key(version,key) (le_key_k_type (version, key) == TYPE_STAT_DATA) |
||
660 | |||
661 | // |
||
662 | // item header has version. |
||
663 | // |
||
664 | #define is_direntry_le_ih(ih) is_direntry_le_key (ih_version (ih), &((ih)->ih_key)) |
||
665 | #define is_direct_le_ih(ih) is_direct_le_key (ih_version (ih), &((ih)->ih_key)) |
||
666 | #define is_indirect_le_ih(ih) is_indirect_le_key (ih_version(ih), &((ih)->ih_key)) |
||
667 | #define is_statdata_le_ih(ih) is_statdata_le_key (ih_version (ih), &((ih)->ih_key)) |
||
668 | |||
669 | |||
670 | |||
671 | // |
||
672 | // key is pointer to cpu key, result is cpu |
||
673 | // |
||
674 | static inline loff_t cpu_key_k_offset (const struct cpu_key * key) |
||
675 | { |
||
676 | return (key->version == KEY_FORMAT_3_5) ? |
||
677 | key->on_disk_key.u.k_offset_v1.k_offset : |
||
678 | key->on_disk_key.u.k_offset_v2.k_offset; |
||
679 | } |
||
680 | |||
681 | static inline loff_t cpu_key_k_type (const struct cpu_key * key) |
||
682 | { |
||
683 | return (key->version == KEY_FORMAT_3_5) ? |
||
684 | uniqueness2type (key->on_disk_key.u.k_offset_v1.k_uniqueness) : |
||
685 | key->on_disk_key.u.k_offset_v2.k_type; |
||
686 | } |
||
687 | |||
688 | static inline void set_cpu_key_k_offset (struct cpu_key * key, loff_t offset) |
||
689 | { |
||
690 | (key->version == KEY_FORMAT_3_5) ? |
||
691 | (key->on_disk_key.u.k_offset_v1.k_offset = offset) : |
||
692 | (key->on_disk_key.u.k_offset_v2.k_offset = offset); |
||
693 | } |
||
694 | |||
695 | |||
696 | static inline void set_cpu_key_k_type (struct cpu_key * key, int type) |
||
697 | { |
||
698 | (key->version == KEY_FORMAT_3_5) ? |
||
699 | (key->on_disk_key.u.k_offset_v1.k_uniqueness = type2uniqueness (type)): |
||
700 | (key->on_disk_key.u.k_offset_v2.k_type = type); |
||
701 | } |
||
702 | |||
703 | |||
704 | static inline void cpu_key_k_offset_dec (struct cpu_key * key) |
||
705 | { |
||
706 | if (key->version == KEY_FORMAT_3_5) |
||
707 | key->on_disk_key.u.k_offset_v1.k_offset --; |
||
708 | else |
||
709 | key->on_disk_key.u.k_offset_v2.k_offset --; |
||
710 | } |
||
711 | |||
712 | |||
713 | #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY) |
||
714 | #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT) |
||
715 | #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT) |
||
716 | #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA) |
||
717 | |||
718 | |||
719 | /* are these used ? */ |
||
720 | #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key))) |
||
721 | #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key))) |
||
722 | #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key))) |
||
723 | #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key))) |
||
724 | |||
725 | |||
726 | |||
727 | |||
728 | |||
729 | #define I_K_KEY_IN_ITEM(p_s_ih, p_s_key, n_blocksize) \ |
||
730 | ( ! COMP_SHORT_KEYS(p_s_ih, p_s_key) && \ |
||
731 | I_OFF_BYTE_IN_ITEM(p_s_ih, k_offset (p_s_key), n_blocksize) ) |
||
732 | |||
733 | /* maximal length of item */ |
||
734 | #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE) |
||
735 | #define MIN_ITEM_LEN 1 |
||
736 | |||
737 | |||
738 | /* object identifier for root dir */ |
||
739 | #define REISERFS_ROOT_OBJECTID 2 |
||
740 | #define REISERFS_ROOT_PARENT_OBJECTID 1 |
||
741 | extern struct key root_key; |
||
742 | |||
743 | |||
744 | |||
745 | |||
746 | /* |
||
747 | * Picture represents a leaf of the S+tree |
||
748 | * ______________________________________________________ |
||
749 | * | | Array of | | | |
||
750 | * |Block | Object-Item | F r e e | Objects- | |
||
751 | * | head | Headers | S p a c e | Items | |
||
752 | * |______|_______________|___________________|___________| |
||
753 | */ |
||
754 | |||
755 | /* Header of a disk block. More precisely, header of a formatted leaf |
||
756 | or internal node, and not the header of an unformatted node. */ |
||
757 | struct block_head { |
||
758 | __u16 blk_level; /* Level of a block in the tree. */ |
||
759 | __u16 blk_nr_item; /* Number of keys/items in a block. */ |
||
760 | __u16 blk_free_space; /* Block free space in bytes. */ |
||
761 | __u16 blk_reserved; |
||
762 | /* dump this in v4/planA */ |
||
763 | struct key blk_right_delim_key; /* kept only for compatibility */ |
||
764 | }; |
||
765 | |||
766 | #define BLKH_SIZE (sizeof(struct block_head)) |
||
767 | #define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level)) |
||
768 | #define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item)) |
||
769 | #define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space)) |
||
770 | #define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved)) |
||
771 | #define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val)) |
||
772 | #define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val)) |
||
773 | #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val)) |
||
774 | #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val)) |
||
775 | #define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key) |
||
776 | #define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val) |
||
777 | |||
778 | /* |
||
779 | * values for blk_level field of the struct block_head |
||
780 | */ |
||
781 | |||
782 | #define FREE_LEVEL 0 /* when node gets removed from the tree its |
||
783 | blk_level is set to FREE_LEVEL. It is then |
||
784 | used to see whether the node is still in the |
||
785 | tree */ |
||
786 | |||
787 | #define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level.*/ |
||
788 | |||
789 | /* Given the buffer head of a formatted node, resolve to the block head of that node. */ |
||
790 | #define B_BLK_HEAD(p_s_bh) ((struct block_head *)((p_s_bh)->b_data)) |
||
791 | /* Number of items that are in buffer. */ |
||
792 | #define B_NR_ITEMS(p_s_bh) (blkh_nr_item(B_BLK_HEAD(p_s_bh))) |
||
793 | #define B_LEVEL(p_s_bh) (blkh_level(B_BLK_HEAD(p_s_bh))) |
||
794 | #define B_FREE_SPACE(p_s_bh) (blkh_free_space(B_BLK_HEAD(p_s_bh))) |
||
795 | |||
796 | #define PUT_B_NR_ITEMS(p_s_bh,val) do { set_blkh_nr_item(B_BLK_HEAD(p_s_bh),val); } while (0) |
||
797 | #define PUT_B_LEVEL(p_s_bh,val) do { set_blkh_level(B_BLK_HEAD(p_s_bh),val); } while (0) |
||
798 | #define PUT_B_FREE_SPACE(p_s_bh,val) do { set_blkh_free_space(B_BLK_HEAD(p_s_bh),val); } while (0) |
||
799 | |||
800 | |||
801 | /* Get right delimiting key. -- little endian */ |
||
802 | #define B_PRIGHT_DELIM_KEY(p_s_bh) (&(blk_right_delim_key(B_BLK_HEAD(p_s_bh)) |
||
803 | |||
804 | /* Does the buffer contain a disk leaf. */ |
||
805 | #define B_IS_ITEMS_LEVEL(p_s_bh) (B_LEVEL(p_s_bh) == DISK_LEAF_NODE_LEVEL) |
||
806 | |||
807 | /* Does the buffer contain a disk internal node */ |
||
808 | #define B_IS_KEYS_LEVEL(p_s_bh) (B_LEVEL(p_s_bh) > DISK_LEAF_NODE_LEVEL \ |
||
809 | && B_LEVEL(p_s_bh) <= MAX_HEIGHT) |
||
810 | |||
811 | |||
812 | |||
813 | |||
814 | /***************************************************************************/ |
||
815 | /* STAT DATA */ |
||
816 | /***************************************************************************/ |
||
817 | |||
818 | |||
819 | // |
||
820 | // old stat data is 32 bytes long. We are going to distinguish new one by |
||
821 | // different size |
||
822 | // |
||
823 | struct stat_data_v1 |
||
824 | { |
||
825 | __u16 sd_mode; /* file type, permissions */ |
||
826 | __u16 sd_nlink; /* number of hard links */ |
||
827 | __u16 sd_uid; /* owner */ |
||
828 | __u16 sd_gid; /* group */ |
||
829 | __u32 sd_size; /* file size */ |
||
830 | __u32 sd_atime; /* time of last access */ |
||
831 | __u32 sd_mtime; /* time file was last modified */ |
||
832 | __u32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */ |
||
833 | union { |
||
834 | __u32 sd_rdev; |
||
835 | __u32 sd_blocks; /* number of blocks file uses */ |
||
836 | } __attribute__ ((__packed__)) u; |
||
837 | __u32 sd_first_direct_byte; /* first byte of file which is stored |
||
838 | in a direct item: except that if it |
||
839 | equals 1 it is a symlink and if it |
||
840 | equals ~(__u32)0 there is no |
||
841 | direct item. The existence of this |
||
842 | field really grates on me. Let's |
||
843 | replace it with a macro based on |
||
844 | sd_size and our tail suppression |
||
845 | policy. Someday. -Hans */ |
||
846 | } __attribute__ ((__packed__)); |
||
847 | |||
848 | #define SD_V1_SIZE (sizeof(struct stat_data_v1)) |
||
849 | #define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5) |
||
850 | #define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode)) |
||
851 | #define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v)) |
||
852 | #define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink)) |
||
853 | #define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v)) |
||
854 | #define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid)) |
||
855 | #define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v)) |
||
856 | #define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid)) |
||
857 | #define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v)) |
||
858 | #define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size)) |
||
859 | #define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v)) |
||
860 | #define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime)) |
||
861 | #define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v)) |
||
862 | #define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime)) |
||
863 | #define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v)) |
||
864 | #define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime)) |
||
865 | #define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v)) |
||
866 | #define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev)) |
||
867 | #define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v)) |
||
868 | #define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks)) |
||
869 | #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v)) |
||
870 | #define sd_v1_first_direct_byte(sdp) \ |
||
871 | (le32_to_cpu((sdp)->sd_first_direct_byte)) |
||
872 | #define set_sd_v1_first_direct_byte(sdp,v) \ |
||
873 | ((sdp)->sd_first_direct_byte = cpu_to_le32(v)) |
||
874 | |||
875 | #include <linux/ext2_fs.h> |
||
876 | |||
877 | /* inode flags stored in sd_attrs (nee sd_reserved) */ |
||
878 | |||
879 | /* we want common flags to have the same values as in ext2, |
||
880 | so chattr(1) will work without problems */ |
||
881 | #define REISERFS_IMMUTABLE_FL EXT2_IMMUTABLE_FL |
||
882 | #define REISERFS_APPEND_FL EXT2_APPEND_FL |
||
883 | #define REISERFS_SYNC_FL EXT2_SYNC_FL |
||
884 | #define REISERFS_NOATIME_FL EXT2_NOATIME_FL |
||
885 | #define REISERFS_NODUMP_FL EXT2_NODUMP_FL |
||
886 | #define REISERFS_SECRM_FL EXT2_SECRM_FL |
||
887 | #define REISERFS_UNRM_FL EXT2_UNRM_FL |
||
888 | #define REISERFS_COMPR_FL EXT2_COMPR_FL |
||
889 | #define REISERFS_NOTAIL_FL EXT2_NOTAIL_FL |
||
890 | |||
891 | /* persistent flags that file inherits from the parent directory */ |
||
892 | #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \ |
||
893 | REISERFS_SYNC_FL | \ |
||
894 | REISERFS_NOATIME_FL | \ |
||
895 | REISERFS_NODUMP_FL | \ |
||
896 | REISERFS_SECRM_FL | \ |
||
897 | REISERFS_COMPR_FL | \ |
||
898 | REISERFS_NOTAIL_FL ) |
||
899 | |||
900 | /* Stat Data on disk (reiserfs version of UFS disk inode minus the |
||
901 | address blocks) */ |
||
902 | struct stat_data { |
||
903 | __u16 sd_mode; /* file type, permissions */ |
||
904 | __u16 sd_attrs; /* persistent inode flags */ |
||
905 | __u32 sd_nlink; /* number of hard links */ |
||
906 | __u64 sd_size; /* file size */ |
||
907 | __u32 sd_uid; /* owner */ |
||
908 | __u32 sd_gid; /* group */ |
||
909 | __u32 sd_atime; /* time of last access */ |
||
910 | __u32 sd_mtime; /* time file was last modified */ |
||
911 | __u32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */ |
||
912 | __u32 sd_blocks; |
||
913 | union { |
||
914 | __u32 sd_rdev; |
||
915 | __u32 sd_generation; |
||
916 | //__u32 sd_first_direct_byte; |
||
917 | /* first byte of file which is stored in a |
||
918 | direct item: except that if it equals 1 |
||
919 | it is a symlink and if it equals |
||
920 | ~(__u32)0 there is no direct item. The |
||
921 | existence of this field really grates |
||
922 | on me. Let's replace it with a macro |
||
923 | based on sd_size and our tail |
||
924 | suppression policy? */ |
||
925 | } __attribute__ ((__packed__)) u; |
||
926 | } __attribute__ ((__packed__)); |
||
927 | // |
||
928 | // this is 44 bytes long |
||
929 | // |
||
930 | #define SD_SIZE (sizeof(struct stat_data)) |
||
931 | #define SD_V2_SIZE SD_SIZE |
||
932 | #define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6) |
||
933 | #define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode)) |
||
934 | #define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v)) |
||
935 | /* sd_reserved */ |
||
936 | /* set_sd_reserved */ |
||
937 | #define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink)) |
||
938 | #define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v)) |
||
939 | #define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size)) |
||
940 | #define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v)) |
||
941 | #define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid)) |
||
942 | #define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v)) |
||
943 | #define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid)) |
||
944 | #define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v)) |
||
945 | #define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime)) |
||
946 | #define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v)) |
||
947 | #define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime)) |
||
948 | #define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v)) |
||
949 | #define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime)) |
||
950 | #define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v)) |
||
951 | #define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks)) |
||
952 | #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v)) |
||
953 | #define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev)) |
||
954 | #define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v)) |
||
955 | #define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation)) |
||
956 | #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v)) |
||
957 | #define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs)) |
||
958 | #define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v)) |
||
959 | |||
960 | |||
961 | /***************************************************************************/ |
||
962 | /* DIRECTORY STRUCTURE */ |
||
963 | /***************************************************************************/ |
||
964 | /* |
||
965 | Picture represents the structure of directory items |
||
966 | ________________________________________________ |
||
967 | | Array of | | | | | | |
||
968 | | directory |N-1| N-2 | .... | 1st |0th| |
||
969 | | entry headers | | | | | | |
||
970 | |_______________|___|_____|________|_______|___| |
||
971 | <---- directory entries ------> |
||
972 | |||
973 | First directory item has k_offset component 1. We store "." and ".." |
||
974 | in one item, always, we never split "." and ".." into differing |
||
975 | items. This makes, among other things, the code for removing |
||
976 | directories simpler. */ |
||
977 | #define SD_OFFSET 0 |
||
978 | #define SD_UNIQUENESS 0 |
||
979 | #define DOT_OFFSET 1 |
||
980 | #define DOT_DOT_OFFSET 2 |
||
981 | #define DIRENTRY_UNIQUENESS 500 |
||
982 | |||
983 | /* */ |
||
984 | #define FIRST_ITEM_OFFSET 1 |
||
985 | |||
986 | /* |
||
987 | Q: How to get key of object pointed to by entry from entry? |
||
988 | |||
989 | A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key |
||
990 | of object, entry points to */ |
||
991 | |||
992 | /* NOT IMPLEMENTED: |
||
993 | Directory will someday contain stat data of object */ |
||
994 | |||
995 | |||
996 | |||
997 | struct reiserfs_de_head |
||
998 | { |
||
999 | __u32 deh_offset; /* third component of the directory entry key */ |
||
1000 | __u32 deh_dir_id; /* objectid of the parent directory of the object, that is referenced |
||
1001 | by directory entry */ |
||
1002 | __u32 deh_objectid; /* objectid of the object, that is referenced by directory entry */ |
||
1003 | __u16 deh_location; /* offset of name in the whole item */ |
||
1004 | __u16 deh_state; /* whether 1) entry contains stat data (for future), and 2) whether |
||
1005 | entry is hidden (unlinked) */ |
||
1006 | } __attribute__ ((__packed__)); |
||
1007 | #define DEH_SIZE sizeof(struct reiserfs_de_head) |
||
1008 | #define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset)) |
||
1009 | #define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id)) |
||
1010 | #define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid)) |
||
1011 | #define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location)) |
||
1012 | #define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state)) |
||
1013 | |||
1014 | #define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v))) |
||
1015 | #define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v))) |
||
1016 | #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v))) |
||
1017 | #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v))) |
||
1018 | #define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v))) |
||
1019 | |||
1020 | /* empty directory contains two entries "." and ".." and their headers */ |
||
1021 | #define EMPTY_DIR_SIZE \ |
||
1022 | (DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen (".."))) |
||
1023 | |||
1024 | /* old format directories have this size when empty */ |
||
1025 | #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3) |
||
1026 | |||
1027 | #define DEH_Statdata 0 /* not used now */ |
||
1028 | #define DEH_Visible 2 |
||
1029 | |||
1030 | /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */ |
||
1031 | #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__) |
||
1032 | # define ADDR_UNALIGNED_BITS (3) |
||
1033 | #endif |
||
1034 | |||
1035 | /* These are only used to manipulate deh_state. |
||
1036 | * Because of this, we'll use the ext2_ bit routines, |
||
1037 | * since they are little endian */ |
||
1038 | #ifdef ADDR_UNALIGNED_BITS |
||
1039 | |||
1040 | # define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1))) |
||
1041 | # define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3) |
||
1042 | |||
1043 | # define set_bit_unaligned(nr, addr) ext2_set_bit((nr) + unaligned_offset(addr), aligned_address(addr)) |
||
1044 | # define clear_bit_unaligned(nr, addr) ext2_clear_bit((nr) + unaligned_offset(addr), aligned_address(addr)) |
||
1045 | # define test_bit_unaligned(nr, addr) ext2_test_bit((nr) + unaligned_offset(addr), aligned_address(addr)) |
||
1046 | |||
1047 | #else |
||
1048 | |||
1049 | # define set_bit_unaligned(nr, addr) ext2_set_bit(nr, addr) |
||
1050 | # define clear_bit_unaligned(nr, addr) ext2_clear_bit(nr, addr) |
||
1051 | # define test_bit_unaligned(nr, addr) ext2_test_bit(nr, addr) |
||
1052 | |||
1053 | #endif |
||
1054 | |||
1055 | #define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) |
||
1056 | #define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) |
||
1057 | #define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state)) |
||
1058 | #define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state)) |
||
1059 | |||
1060 | #define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) |
||
1061 | #define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) |
||
1062 | #define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) |
||
1063 | |||
1064 | extern void make_empty_dir_item_v1 (char * body, __u32 dirid, __u32 objid, |
||
1065 | __u32 par_dirid, __u32 par_objid); |
||
1066 | extern void make_empty_dir_item (char * body, __u32 dirid, __u32 objid, |
||
1067 | __u32 par_dirid, __u32 par_objid); |
||
1068 | |||
1069 | /* array of the entry headers */ |
||
1070 | /* get item body */ |
||
1071 | #define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) ) |
||
1072 | #define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih))) |
||
1073 | |||
1074 | /* length of the directory entry in directory item. This define |
||
1075 | calculates length of i-th directory entry using directory entry |
||
1076 | locations from dir entry head. When it calculates length of 0-th |
||
1077 | directory entry, it uses length of whole item in place of entry |
||
1078 | location of the non-existent following entry in the calculation. |
||
1079 | See picture above.*/ |
||
1080 | /* |
||
1081 | #define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \ |
||
1082 | ((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh)))) |
||
1083 | */ |
||
1084 | static inline int entry_length (const struct buffer_head * bh, |
||
1085 | const struct item_head * ih, int pos_in_item) |
||
1086 | { |
||
1087 | struct reiserfs_de_head * deh; |
||
1088 | |||
1089 | deh = B_I_DEH (bh, ih) + pos_in_item; |
||
1090 | if (pos_in_item) |
||
1091 | return deh_location(deh-1) - deh_location(deh); |
||
1092 | |||
1093 | return ih_item_len(ih) - deh_location(deh); |
||
1094 | } |
||
1095 | |||
1096 | |||
1097 | |||
1098 | /* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */ |
||
1099 | #define I_ENTRY_COUNT(ih) (ih_entry_count((ih))) |
||
1100 | |||
1101 | |||
1102 | /* name by bh, ih and entry_num */ |
||
1103 | #define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num)))) |
||
1104 | |||
1105 | // two entries per block (at least) |
||
1106 | #define REISERFS_MAX_NAME(block_size) 255 |
||
1107 | |||
1108 | |||
1109 | /* this structure is used for operations on directory entries. It is |
||
1110 | not a disk structure. */ |
||
1111 | /* When reiserfs_find_entry or search_by_entry_key find directory |
||
1112 | entry, they return filled reiserfs_dir_entry structure */ |
||
1113 | struct reiserfs_dir_entry |
||
1114 | { |
||
1115 | struct buffer_head * de_bh; |
||
1116 | int de_item_num; |
||
1117 | struct item_head * de_ih; |
||
1118 | int de_entry_num; |
||
1119 | struct reiserfs_de_head * de_deh; |
||
1120 | int de_entrylen; |
||
1121 | int de_namelen; |
||
1122 | char * de_name; |
||
1123 | char * de_gen_number_bit_string; |
||
1124 | |||
1125 | __u32 de_dir_id; |
||
1126 | __u32 de_objectid; |
||
1127 | |||
1128 | struct cpu_key de_entry_key; |
||
1129 | }; |
||
1130 | |||
1131 | /* these defines are useful when a particular member of a reiserfs_dir_entry is needed */ |
||
1132 | |||
1133 | /* pointer to file name, stored in entry */ |
||
1134 | #define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh)) |
||
1135 | |||
1136 | /* length of name */ |
||
1137 | #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \ |
||
1138 | (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0)) |
||
1139 | |||
1140 | |||
1141 | |||
1142 | /* hash value occupies bits from 7 up to 30 */ |
||
1143 | #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL) |
||
1144 | /* generation number occupies 7 bits starting from 0 up to 6 */ |
||
1145 | #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL) |
||
1146 | #define MAX_GENERATION_NUMBER 127 |
||
1147 | |||
1148 | #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number)) |
||
1149 | |||
1150 | |||
1151 | /* |
||
1152 | * Picture represents an internal node of the reiserfs tree |
||
1153 | * ______________________________________________________ |
||
1154 | * | | Array of | Array of | Free | |
||
1155 | * |block | keys | pointers | space | |
||
1156 | * | head | N | N+1 | | |
||
1157 | * |______|_______________|___________________|___________| |
||
1158 | */ |
||
1159 | |||
1160 | /***************************************************************************/ |
||
1161 | /* DISK CHILD */ |
||
1162 | /***************************************************************************/ |
||
1163 | /* Disk child pointer: The pointer from an internal node of the tree |
||
1164 | to a node that is on disk. */ |
||
1165 | struct disk_child { |
||
1166 | __u32 dc_block_number; /* Disk child's block number. */ |
||
1167 | __u16 dc_size; /* Disk child's used space. */ |
||
1168 | __u16 dc_reserved; |
||
1169 | }; |
||
1170 | |||
1171 | #define DC_SIZE (sizeof(struct disk_child)) |
||
1172 | #define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number)) |
||
1173 | #define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size)) |
||
1174 | #define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0) |
||
1175 | #define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0) |
||
1176 | |||
1177 | /* Get disk child by buffer header and position in the tree node. */ |
||
1178 | #define B_N_CHILD(p_s_bh,n_pos) ((struct disk_child *)\ |
||
1179 | ((p_s_bh)->b_data+BLKH_SIZE+B_NR_ITEMS(p_s_bh)*KEY_SIZE+DC_SIZE*(n_pos))) |
||
1180 | |||
1181 | /* Get disk child number by buffer header and position in the tree node. */ |
||
1182 | #define B_N_CHILD_NUM(p_s_bh,n_pos) (dc_block_number(B_N_CHILD(p_s_bh,n_pos))) |
||
1183 | #define PUT_B_N_CHILD_NUM(p_s_bh,n_pos, val) (put_dc_block_number(B_N_CHILD(p_s_bh,n_pos), val )) |
||
1184 | |||
1185 | /* maximal value of field child_size in structure disk_child */ |
||
1186 | /* child size is the combined size of all items and their headers */ |
||
1187 | #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE )) |
||
1188 | |||
1189 | /* amount of used space in buffer (not including block head) */ |
||
1190 | #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur))) |
||
1191 | |||
1192 | /* max and min number of keys in internal node */ |
||
1193 | #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) ) |
||
1194 | #define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2) |
||
1195 | |||
1196 | /***************************************************************************/ |
||
1197 | /* PATH STRUCTURES AND DEFINES */ |
||
1198 | /***************************************************************************/ |
||
1199 | |||
1200 | |||
1201 | /* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the |
||
1202 | key. It uses reiserfs_bread to try to find buffers in the cache given their block number. If it |
||
1203 | does not find them in the cache it reads them from disk. For each node search_by_key finds using |
||
1204 | reiserfs_bread it then uses bin_search to look through that node. bin_search will find the |
||
1205 | position of the block_number of the next node if it is looking through an internal node. If it |
||
1206 | is looking through a leaf node bin_search will find the position of the item which has key either |
||
1207 | equal to given key, or which is the maximal key less than the given key. */ |
||
1208 | |||
1209 | struct path_element { |
||
1210 | struct buffer_head * pe_buffer; /* Pointer to the buffer at the path in the tree. */ |
||
1211 | int pe_position; /* Position in the tree node which is placed in the */ |
||
1212 | /* buffer above. */ |
||
1213 | }; |
||
1214 | |||
1215 | #define MAX_HEIGHT 5 /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */ |
||
1216 | #define EXTENDED_MAX_HEIGHT 7 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */ |
||
1217 | #define FIRST_PATH_ELEMENT_OFFSET 2 /* Must be equal to at least 2. */ |
||
1218 | |||
1219 | #define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */ |
||
1220 | #define MAX_FEB_SIZE 6 /* this MUST be MAX_HEIGHT + 1. See about FEB below */ |
||
1221 | |||
1222 | |||
1223 | |||
1224 | /* We need to keep track of who the ancestors of nodes are. When we |
||
1225 | perform a search we record which nodes were visited while |
||
1226 | descending the tree looking for the node we searched for. This list |
||
1227 | of nodes is called the path. This information is used while |
||
1228 | performing balancing. Note that this path information may become |
||
1229 | invalid, and this means we must check it when using it to see if it |
||
1230 | is still valid. You'll need to read search_by_key and the comments |
||
1231 | in it, especially about decrement_counters_in_path(), to understand |
||
1232 | this structure. |
||
1233 | |||
1234 | Paths make the code so much harder to work with and debug.... An |
||
1235 | enormous number of bugs are due to them, and trying to write or modify |
||
1236 | code that uses them just makes my head hurt. They are based on an |
||
1237 | excessive effort to avoid disturbing the precious VFS code.:-( The |
||
1238 | gods only know how we are going to SMP the code that uses them. |
||
1239 | znodes are the way! */ |
||
1240 | |||
1241 | |||
1242 | struct path { |
||
1243 | int path_length; /* Length of the array above. */ |
||
1244 | struct path_element path_elements[EXTENDED_MAX_HEIGHT]; /* Array of the path elements. */ |
||
1245 | int pos_in_item; |
||
1246 | }; |
||
1247 | |||
1248 | #define pos_in_item(path) ((path)->pos_in_item) |
||
1249 | |||
1250 | #define INITIALIZE_PATH(var) \ |
||
1251 | struct path var = {ILLEGAL_PATH_ELEMENT_OFFSET, } |
||
1252 | |||
1253 | /* Get path element by path and path position. */ |
||
1254 | #define PATH_OFFSET_PELEMENT(p_s_path,n_offset) ((p_s_path)->path_elements +(n_offset)) |
||
1255 | |||
1256 | /* Get buffer header at the path by path and path position. */ |
||
1257 | #define PATH_OFFSET_PBUFFER(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_buffer) |
||
1258 | |||
1259 | /* Get position in the element at the path by path and path position. */ |
||
1260 | #define PATH_OFFSET_POSITION(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_position) |
||
1261 | |||
1262 | |||
1263 | #define PATH_PLAST_BUFFER(p_s_path) (PATH_OFFSET_PBUFFER((p_s_path), (p_s_path)->path_length)) |
||
1264 | /* you know, to the person who didn't |
||
1265 | write this the macro name does not |
||
1266 | at first suggest what it does. |
||
1267 | Maybe POSITION_FROM_PATH_END? Or |
||
1268 | maybe we should just focus on |
||
1269 | dumping paths... -Hans */ |
||
1270 | #define PATH_LAST_POSITION(p_s_path) (PATH_OFFSET_POSITION((p_s_path), (p_s_path)->path_length)) |
||
1271 | |||
1272 | |||
1273 | #define PATH_PITEM_HEAD(p_s_path) B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_path),PATH_LAST_POSITION(p_s_path)) |
||
1274 | |||
1275 | /* in do_balance leaf has h == 0 in contrast with path structure, |
||
1276 | where root has level == 0. That is why we need these defines */ |
||
1277 | #define PATH_H_PBUFFER(p_s_path, h) PATH_OFFSET_PBUFFER (p_s_path, p_s_path->path_length - (h)) /* tb->S[h] */ |
||
1278 | #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1) /* tb->F[h] or tb->S[0]->b_parent */ |
||
1279 | #define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h)) |
||
1280 | #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) /* tb->S[h]->b_item_order */ |
||
1281 | |||
1282 | #define PATH_H_PATH_OFFSET(p_s_path, n_h) ((p_s_path)->path_length - (n_h)) |
||
1283 | |||
1284 | #define get_last_bh(path) PATH_PLAST_BUFFER(path) |
||
1285 | #define get_ih(path) PATH_PITEM_HEAD(path) |
||
1286 | #define get_item_pos(path) PATH_LAST_POSITION(path) |
||
1287 | #define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path))) |
||
1288 | #define item_moved(ih,path) comp_items(ih, path) |
||
1289 | #define path_changed(ih,path) comp_items (ih, path) |
||
1290 | |||
1291 | |||
1292 | /***************************************************************************/ |
||
1293 | /* MISC */ |
||
1294 | /***************************************************************************/ |
||
1295 | |||
1296 | /* Size of pointer to the unformatted node. */ |
||
1297 | #define UNFM_P_SIZE (sizeof(unp_t)) |
||
1298 | #define UNFM_P_SHIFT 2 |
||
1299 | |||
1300 | // in in-core inode key is stored on le form |
||
1301 | #define INODE_PKEY(inode) ((struct key *)(REISERFS_I(inode)->i_key)) |
||
1302 | |||
1303 | #define MAX_UL_INT 0xffffffff |
||
1304 | #define MAX_INT 0x7ffffff |
||
1305 | #define MAX_US_INT 0xffff |
||
1306 | |||
1307 | // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset |
||
1308 | #define U32_MAX (~(__u32)0) |
||
1309 | |||
1310 | static inline loff_t max_reiserfs_offset (struct inode * inode) |
||
1311 | { |
||
1312 | if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5) |
||
1313 | return (loff_t)U32_MAX; |
||
1314 | |||
1315 | return (loff_t)((~(__u64)0) >> 4); |
||
1316 | } |
||
1317 | |||
1318 | |||
1319 | /*#define MAX_KEY_UNIQUENESS MAX_UL_INT*/ |
||
1320 | #define MAX_KEY_OBJECTID MAX_UL_INT |
||
1321 | |||
1322 | |||
1323 | #define MAX_B_NUM MAX_UL_INT |
||
1324 | #define MAX_FC_NUM MAX_US_INT |
||
1325 | |||
1326 | |||
1327 | /* the purpose is to detect overflow of an unsigned short */ |
||
1328 | #define REISERFS_LINK_MAX (MAX_US_INT - 1000) |
||
1329 | |||
1330 | |||
1331 | /* The following defines are used in reiserfs_insert_item and reiserfs_append_item */ |
||
1332 | #define REISERFS_KERNEL_MEM 0 /* reiserfs kernel memory mode */ |
||
1333 | #define REISERFS_USER_MEM 1 /* reiserfs user memory mode */ |
||
1334 | |||
1335 | #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter) |
||
1336 | #define get_generation(s) atomic_read (&fs_generation(s)) |
||
1337 | #define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen) |
||
1338 | #define fs_changed(gen,s) (gen != get_generation (s)) |
||
1339 | |||
1340 | |||
1341 | /***************************************************************************/ |
||
1342 | /* FIXATE NODES */ |
||
1343 | /***************************************************************************/ |
||
1344 | |||
1345 | #define VI_TYPE_LEFT_MERGEABLE 1 |
||
1346 | #define VI_TYPE_RIGHT_MERGEABLE 2 |
||
1347 | |||
1348 | /* To make any changes in the tree we always first find node, that |
||
1349 | contains item to be changed/deleted or place to insert a new |
||
1350 | item. We call this node S. To do balancing we need to decide what |
||
1351 | we will shift to left/right neighbor, or to a new node, where new |
||
1352 | item will be etc. To make this analysis simpler we build virtual |
||
1353 | node. Virtual node is an array of items, that will replace items of |
||
1354 | node S. (For instance if we are going to delete an item, virtual |
||
1355 | node does not contain it). Virtual node keeps information about |
||
1356 | item sizes and types, mergeability of first and last items, sizes |
||
1357 | of all entries in directory item. We use this array of items when |
||
1358 | calculating what we can shift to neighbors and how many nodes we |
||
1359 | have to have if we do not any shiftings, if we shift to left/right |
||
1360 | neighbor or to both. */ |
||
1361 | struct virtual_item |
||
1362 | { |
||
1363 | int vi_index; // index in the array of item operations |
||
1364 | unsigned short vi_type; // left/right mergeability |
||
1365 | unsigned short vi_item_len; /* length of item that it will have after balancing */ |
||
1366 | struct item_head * vi_ih; |
||
1367 | const char * vi_item; // body of item (old or new) |
||
1368 | const void * vi_new_data; // 0 always but paste mode |
||
1369 | void * vi_uarea; // item specific area |
||
1370 | }; |
||
1371 | |||
1372 | |||
1373 | struct virtual_node |
||
1374 | { |
||
1375 | char * vn_free_ptr; /* this is a pointer to the free space in the buffer */ |
||
1376 | unsigned short vn_nr_item; /* number of items in virtual node */ |
||
1377 | short vn_size; /* size of node , that node would have if it has unlimited size and no balancing is performed */ |
||
1378 | short vn_mode; /* mode of balancing (paste, insert, delete, cut) */ |
||
1379 | short vn_affected_item_num; |
||
1380 | short vn_pos_in_item; |
||
1381 | struct item_head * vn_ins_ih; /* item header of inserted item, 0 for other modes */ |
||
1382 | const void * vn_data; |
||
1383 | struct virtual_item * vn_vi; /* array of items (including a new one, excluding item to be deleted) */ |
||
1384 | }; |
||
1385 | |||
1386 | /* used by directory items when creating virtual nodes */ |
||
1387 | struct direntry_uarea { |
||
1388 | int flags; |
||
1389 | __u16 entry_count; |
||
1390 | __u16 entry_sizes[1]; |
||
1391 | } __attribute__ ((__packed__)) ; |
||
1392 | |||
1393 | |||
1394 | /***************************************************************************/ |
||
1395 | /* TREE BALANCE */ |
||
1396 | /***************************************************************************/ |
||
1397 | |||
1398 | /* This temporary structure is used in tree balance algorithms, and |
||
1399 | constructed as we go to the extent that its various parts are |
||
1400 | needed. It contains arrays of nodes that can potentially be |
||
1401 | involved in the balancing of node S, and parameters that define how |
||
1402 | each of the nodes must be balanced. Note that in these algorithms |
||
1403 | for balancing the worst case is to need to balance the current node |
||
1404 | S and the left and right neighbors and all of their parents plus |
||
1405 | create a new node. We implement S1 balancing for the leaf nodes |
||
1406 | and S0 balancing for the internal nodes (S1 and S0 are defined in |
||
1407 | our papers.)*/ |
||
1408 | |||
1409 | #define MAX_FREE_BLOCK 7 /* size of the array of buffers to free at end of do_balance */ |
||
1410 | |||
1411 | /* maximum number of FEB blocknrs on a single level */ |
||
1412 | #define MAX_AMOUNT_NEEDED 2 |
||
1413 | |||
1414 | /* someday somebody will prefix every field in this struct with tb_ */ |
||
1415 | struct tree_balance |
||
1416 | { |
||
1417 | int tb_mode; |
||
1418 | int need_balance_dirty; |
||
1419 | struct super_block * tb_sb; |
||
1420 | struct reiserfs_transaction_handle *transaction_handle ; |
||
1421 | struct path * tb_path; |
||
1422 | struct buffer_head * L[MAX_HEIGHT]; /* array of left neighbors of nodes in the path */ |
||
1423 | struct buffer_head * R[MAX_HEIGHT]; /* array of right neighbors of nodes in the path*/ |
||
1424 | struct buffer_head * FL[MAX_HEIGHT]; /* array of fathers of the left neighbors */ |
||
1425 | struct buffer_head * FR[MAX_HEIGHT]; /* array of fathers of the right neighbors */ |
||
1426 | struct buffer_head * CFL[MAX_HEIGHT]; /* array of common parents of center node and its left neighbor */ |
||
1427 | struct buffer_head * CFR[MAX_HEIGHT]; /* array of common parents of center node and its right neighbor */ |
||
1428 | |||
1429 | struct buffer_head * FEB[MAX_FEB_SIZE]; /* array of empty buffers. Number of buffers in array equals |
||
1430 | cur_blknum. */ |
||
1431 | struct buffer_head * used[MAX_FEB_SIZE]; |
||
1432 | struct buffer_head * thrown[MAX_FEB_SIZE]; |
||
1433 | int lnum[MAX_HEIGHT]; /* array of number of items which must be |
||
1434 | shifted to the left in order to balance the |
||
1435 | current node; for leaves includes item that |
||
1436 | will be partially shifted; for internal |
||
1437 | nodes, it is the number of child pointers |
||
1438 | rather than items. It includes the new item |
||
1439 | being created. The code sometimes subtracts |
||
1440 | one to get the number of wholly shifted |
||
1441 | items for other purposes. */ |
||
1442 | int rnum[MAX_HEIGHT]; /* substitute right for left in comment above */ |
||
1443 | int lkey[MAX_HEIGHT]; /* array indexed by height h mapping the key delimiting L[h] and |
||
1444 | S[h] to its item number within the node CFL[h] */ |
||
1445 | int rkey[MAX_HEIGHT]; /* substitute r for l in comment above */ |
||
1446 | int insert_size[MAX_HEIGHT]; /* the number of bytes by we are trying to add or remove from |
||
1447 | S[h]. A negative value means removing. */ |
||
1448 | int blknum[MAX_HEIGHT]; /* number of nodes that will replace node S[h] after |
||
1449 | balancing on the level h of the tree. If 0 then S is |
||
1450 | being deleted, if 1 then S is remaining and no new nodes |
||
1451 | are being created, if 2 or 3 then 1 or 2 new nodes is |
||
1452 | being created */ |
||
1453 | |||
1454 | /* fields that are used only for balancing leaves of the tree */ |
||
1455 | int cur_blknum; /* number of empty blocks having been already allocated */ |
||
1456 | int s0num; /* number of items that fall into left most node when S[0] splits */ |
||
1457 | int s1num; /* number of items that fall into first new node when S[0] splits */ |
||
1458 | int s2num; /* number of items that fall into second new node when S[0] splits */ |
||
1459 | int lbytes; /* number of bytes which can flow to the left neighbor from the left */ |
||
1460 | /* most liquid item that cannot be shifted from S[0] entirely */ |
||
1461 | /* if -1 then nothing will be partially shifted */ |
||
1462 | int rbytes; /* number of bytes which will flow to the right neighbor from the right */ |
||
1463 | /* most liquid item that cannot be shifted from S[0] entirely */ |
||
1464 | /* if -1 then nothing will be partially shifted */ |
||
1465 | int s1bytes; /* number of bytes which flow to the first new node when S[0] splits */ |
||
1466 | /* note: if S[0] splits into 3 nodes, then items do not need to be cut */ |
||
1467 | int s2bytes; |
||
1468 | struct buffer_head * buf_to_free[MAX_FREE_BLOCK]; /* buffers which are to be freed after do_balance finishes by unfix_nodes */ |
||
1469 | char * vn_buf; /* kmalloced memory. Used to create |
||
1470 | virtual node and keep map of |
||
1471 | dirtied bitmap blocks */ |
||
1472 | int vn_buf_size; /* size of the vn_buf */ |
||
1473 | struct virtual_node * tb_vn; /* VN starts after bitmap of bitmap blocks */ |
||
1474 | |||
1475 | int fs_gen; /* saved value of `reiserfs_generation' counter |
||
1476 | see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */ |
||
1477 | #ifdef DISPLACE_NEW_PACKING_LOCALITIES |
||
1478 | struct key key; /* key pointer, to pass to block allocator or |
||
1479 | another low-level subsystem */ |
||
1480 | #endif |
||
1481 | } ; |
||
1482 | |||
1483 | /* These are modes of balancing */ |
||
1484 | |||
1485 | /* When inserting an item. */ |
||
1486 | #define M_INSERT 'i' |
||
1487 | /* When inserting into (directories only) or appending onto an already |
||
1488 | existant item. */ |
||
1489 | #define M_PASTE 'p' |
||
1490 | /* When deleting an item. */ |
||
1491 | #define M_DELETE 'd' |
||
1492 | /* When truncating an item or removing an entry from a (directory) item. */ |
||
1493 | #define M_CUT 'c' |
||
1494 | |||
1495 | /* used when balancing on leaf level skipped (in reiserfsck) */ |
||
1496 | #define M_INTERNAL 'n' |
||
1497 | |||
1498 | /* When further balancing is not needed, then do_balance does not need |
||
1499 | to be called. */ |
||
1500 | #define M_SKIP_BALANCING 's' |
||
1501 | #define M_CONVERT 'v' |
||
1502 | |||
1503 | /* modes of leaf_move_items */ |
||
1504 | #define LEAF_FROM_S_TO_L 0 |
||
1505 | #define LEAF_FROM_S_TO_R 1 |
||
1506 | #define LEAF_FROM_R_TO_L 2 |
||
1507 | #define LEAF_FROM_L_TO_R 3 |
||
1508 | #define LEAF_FROM_S_TO_SNEW 4 |
||
1509 | |||
1510 | #define FIRST_TO_LAST 0 |
||
1511 | #define LAST_TO_FIRST 1 |
||
1512 | |||
1513 | /* used in do_balance for passing parent of node information that has |
||
1514 | been gotten from tb struct */ |
||
1515 | struct buffer_info { |
||
1516 | struct tree_balance * tb; |
||
1517 | struct buffer_head * bi_bh; |
||
1518 | struct buffer_head * bi_parent; |
||
1519 | int bi_position; |
||
1520 | }; |
||
1521 | |||
1522 | |||
1523 | /* there are 4 types of items: stat data, directory item, indirect, direct. |
||
1524 | +-------------------+------------+--------------+------------+ |
||
1525 | | | k_offset | k_uniqueness | mergeable? | |
||
1526 | +-------------------+------------+--------------+------------+ |
||
1527 | | stat data | 0 | 0 | no | |
||
1528 | +-------------------+------------+--------------+------------+ |
||
1529 | | 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS| no | |
||
1530 | | non 1st directory | hash value | | yes | |
||
1531 | | item | | | | |
||
1532 | +-------------------+------------+--------------+------------+ |
||
1533 | | indirect item | offset + 1 |TYPE_INDIRECT | if this is not the first indirect item of the object |
||
1534 | +-------------------+------------+--------------+------------+ |
||
1535 | | direct item | offset + 1 |TYPE_DIRECT | if not this is not the first direct item of the object |
||
1536 | +-------------------+------------+--------------+------------+ |
||
1537 | */ |
||
1538 | |||
1539 | struct item_operations { |
||
1540 | int (*bytes_number) (struct item_head * ih, int block_size); |
||
1541 | void (*decrement_key) (struct cpu_key *); |
||
1542 | int (*is_left_mergeable) (struct key * ih, unsigned long bsize); |
||
1543 | void (*print_item) (struct item_head *, char * item); |
||
1544 | void (*check_item) (struct item_head *, char * item); |
||
1545 | |||
1546 | int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi, |
||
1547 | int is_affected, int insert_size); |
||
1548 | int (*check_left) (struct virtual_item * vi, int free, |
||
1549 | int start_skip, int end_skip); |
||
1550 | int (*check_right) (struct virtual_item * vi, int free); |
||
1551 | int (*part_size) (struct virtual_item * vi, int from, int to); |
||
1552 | int (*unit_num) (struct virtual_item * vi); |
||
1553 | void (*print_vi) (struct virtual_item * vi); |
||
1554 | }; |
||
1555 | |||
1556 | |||
1557 | extern struct item_operations stat_data_ops, indirect_ops, direct_ops, |
||
1558 | direntry_ops; |
||
1559 | extern struct item_operations * item_ops [TYPE_ANY + 1]; |
||
1560 | |||
1561 | #define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize) |
||
1562 | #define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize) |
||
1563 | #define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item) |
||
1564 | #define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item) |
||
1565 | #define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size) |
||
1566 | #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip) |
||
1567 | #define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free) |
||
1568 | #define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to) |
||
1569 | #define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi) |
||
1570 | #define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi) |
||
1571 | |||
1572 | |||
1573 | |||
1574 | |||
1575 | |||
1576 | #define COMP_KEYS comp_keys |
||
1577 | #define COMP_SHORT_KEYS comp_short_keys |
||
1578 | /*#define keys_of_same_object comp_short_keys*/ |
||
1579 | |||
1580 | /* number of blocks pointed to by the indirect item */ |
||
1581 | #define I_UNFM_NUM(p_s_ih) ( ih_item_len(p_s_ih) / UNFM_P_SIZE ) |
||
1582 | |||
1583 | /* the used space within the unformatted node corresponding to pos within the item pointed to by ih */ |
||
1584 | #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size)) |
||
1585 | |||
1586 | /* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */ |
||
1587 | |||
1588 | |||
1589 | /* get the item header */ |
||
1590 | #define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) ) |
||
1591 | |||
1592 | /* get key */ |
||
1593 | #define B_N_PDELIM_KEY(bh,item_num) ( (struct key * )((bh)->b_data + BLKH_SIZE) + (item_num) ) |
||
1594 | |||
1595 | /* get the key */ |
||
1596 | #define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) ) |
||
1597 | |||
1598 | /* get item body */ |
||
1599 | #define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num)))) |
||
1600 | |||
1601 | /* get the stat data by the buffer header and the item order */ |
||
1602 | #define B_N_STAT_DATA(bh,nr) \ |
||
1603 | ( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) ) |
||
1604 | |||
1605 | /* following defines use reiserfs buffer header and item header */ |
||
1606 | |||
1607 | /* get stat-data */ |
||
1608 | #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) ) |
||
1609 | |||
1610 | // this is 3976 for size==4096 |
||
1611 | #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE) |
||
1612 | |||
1613 | /* indirect items consist of entries which contain blocknrs, pos |
||
1614 | indicates which entry, and B_I_POS_UNFM_POINTER resolves to the |
||
1615 | blocknr contained by the entry pos points to */ |
||
1616 | #define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos))) |
||
1617 | #define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0) |
||
1618 | |||
1619 | struct reiserfs_iget_args { |
||
1620 | __u32 objectid ; |
||
1621 | __u32 dirid ; |
||
1622 | } ; |
||
1623 | |||
1624 | /***************************************************************************/ |
||
1625 | /* FUNCTION DECLARATIONS */ |
||
1626 | /***************************************************************************/ |
||
1627 | |||
1628 | /*#ifdef __KERNEL__*/ |
||
1629 | #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12) |
||
1630 | |||
1631 | #define journal_trans_half(blocksize) \ |
||
1632 | ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32)) |
||
1633 | |||
1634 | /* journal.c see journal.c for all the comments here */ |
||
1635 | |||
1636 | /* first block written in a commit. */ |
||
1637 | struct reiserfs_journal_desc { |
||
1638 | __u32 j_trans_id ; /* id of commit */ |
||
1639 | __u32 j_len ; /* length of commit. len +1 is the commit block */ |
||
1640 | __u32 j_mount_id ; /* mount id of this trans*/ |
||
1641 | __u32 j_realblock[1] ; /* real locations for each block */ |
||
1642 | } ; |
||
1643 | |||
1644 | #define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id) |
||
1645 | #define get_desc_trans_len(d) le32_to_cpu((d)->j_len) |
||
1646 | #define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id) |
||
1647 | |||
1648 | #define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0) |
||
1649 | #define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0) |
||
1650 | #define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0) |
||
1651 | |||
1652 | /* last block written in a commit */ |
||
1653 | struct reiserfs_journal_commit { |
||
1654 | __u32 j_trans_id ; /* must match j_trans_id from the desc block */ |
||
1655 | __u32 j_len ; /* ditto */ |
||
1656 | __u32 j_realblock[1] ; /* real locations for each block */ |
||
1657 | } ; |
||
1658 | |||
1659 | #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id) |
||
1660 | #define get_commit_trans_len(c) le32_to_cpu((c)->j_len) |
||
1661 | #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id) |
||
1662 | |||
1663 | #define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0) |
||
1664 | #define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0) |
||
1665 | |||
1666 | /* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the |
||
1667 | ** last fully flushed transaction. fully flushed means all the log blocks and all the real blocks are on disk, |
||
1668 | ** and this transaction does not need to be replayed. |
||
1669 | */ |
||
1670 | struct reiserfs_journal_header { |
||
1671 | __u32 j_last_flush_trans_id ; /* id of last fully flushed transaction */ |
||
1672 | __u32 j_first_unflushed_offset ; /* offset in the log of where to start replay after a crash */ |
||
1673 | __u32 j_mount_id ; |
||
1674 | /* 12 */ struct journal_params jh_journal; |
||
1675 | } ; |
||
1676 | |||
1677 | /* biggest tunable defines are right here */ |
||
1678 | #define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */ |
||
1679 | #define JOURNAL_TRANS_MAX_DEFAULT 1024 /* biggest possible single transaction, don't change for now (8/3/99) */ |
||
1680 | #define JOURNAL_TRANS_MIN_DEFAULT 256 |
||
1681 | #define JOURNAL_MAX_BATCH_DEFAULT 900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */ |
||
1682 | #define JOURNAL_MIN_RATIO 2 |
||
1683 | #define JOURNAL_MAX_COMMIT_AGE 30 |
||
1684 | #define JOURNAL_MAX_TRANS_AGE 30 |
||
1685 | #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9) |
||
1686 | |||
1687 | /* both of these can be as low as 1, or as high as you want. The min is the |
||
1688 | ** number of 4k bitmap nodes preallocated on mount. New nodes are allocated |
||
1689 | ** as needed, and released when transactions are committed. On release, if |
||
1690 | ** the current number of nodes is > max, the node is freed, otherwise, |
||
1691 | ** it is put on a free list for faster use later. |
||
1692 | */ |
||
1693 | #define REISERFS_MIN_BITMAP_NODES 10 |
||
1694 | #define REISERFS_MAX_BITMAP_NODES 100 |
||
1695 | |||
1696 | #define JBH_HASH_SHIFT 13 /* these are based on journal hash size of 8192 */ |
||
1697 | #define JBH_HASH_MASK 8191 |
||
1698 | |||
1699 | #define _jhashfn(sb,block) \ |
||
1700 | (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \ |
||
1701 | (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12)))) |
||
1702 | #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK]) |
||
1703 | |||
1704 | /* finds n'th buffer with 0 being the start of this commit. Needs to go away, j_ap_blocks has changed |
||
1705 | ** since I created this. One chunk of code in journal.c needs changing before deleting it |
||
1706 | */ |
||
1707 | #define JOURNAL_BUFFER(j,n) ((j)->j_ap_blocks[((j)->j_start + (n)) % JOURNAL_BLOCK_COUNT]) |
||
1708 | |||
1709 | // We need these to make journal.c code more readable |
||
1710 | #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) |
||
1711 | #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) |
||
1712 | #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) |
||
1713 | |||
1714 | void reiserfs_commit_for_inode(struct inode *) ; |
||
1715 | void reiserfs_update_inode_transaction(struct inode *) ; |
||
1716 | void reiserfs_wait_on_write_block(struct super_block *s) ; |
||
1717 | void reiserfs_block_writes(struct reiserfs_transaction_handle *th) ; |
||
1718 | void reiserfs_allow_writes(struct super_block *s) ; |
||
1719 | void reiserfs_check_lock_depth(char *caller) ; |
||
1720 | void reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh, int wait) ; |
||
1721 | void reiserfs_restore_prepared_buffer(struct super_block *, struct buffer_head *bh) ; |
||
1722 | int journal_init(struct super_block *, const char * j_dev_name, int old_format) ; |
||
1723 | int journal_release(struct reiserfs_transaction_handle*, struct super_block *) ; |
||
1724 | int journal_release_error(struct reiserfs_transaction_handle*, struct super_block *) ; |
||
1725 | int journal_end(struct reiserfs_transaction_handle *, struct super_block *, unsigned long) ; |
||
1726 | int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *, unsigned long) ; |
||
1727 | int journal_mark_dirty_nolog(struct reiserfs_transaction_handle *, struct super_block *, struct buffer_head *bh) ; |
||
1728 | int journal_mark_freed(struct reiserfs_transaction_handle *, struct super_block *, b_blocknr_t blocknr) ; |
||
1729 | int push_journal_writer(char *w) ; |
||
1730 | int pop_journal_writer(int windex) ; |
||
1731 | int journal_transaction_should_end(struct reiserfs_transaction_handle *, int) ; |
||
1732 | int reiserfs_in_journal(struct super_block *p_s_sb, int bmap_nr, int bit_nr, int searchall, b_blocknr_t *next) ; |
||
1733 | int journal_begin(struct reiserfs_transaction_handle *, struct super_block *p_s_sb, unsigned long) ; |
||
1734 | void flush_async_commits(struct super_block *p_s_sb) ; |
||
1735 | |||
1736 | int buffer_journaled(const struct buffer_head *bh) ; |
||
1737 | int mark_buffer_journal_new(struct buffer_head *bh) ; |
||
1738 | int reiserfs_add_page_to_flush_list(struct reiserfs_transaction_handle *, |
||
1739 | struct inode *, struct buffer_head *) ; |
||
1740 | int reiserfs_remove_page_from_flush_list(struct reiserfs_transaction_handle *, |
||
1741 | struct inode *) ; |
||
1742 | |||
1743 | int reiserfs_allocate_list_bitmaps(struct super_block *s, struct reiserfs_list_bitmap *, int) ; |
||
1744 | |||
1745 | /* why is this kerplunked right here? */ |
||
1746 | static inline int reiserfs_buffer_prepared(const struct buffer_head *bh) { |
||
1747 | if (bh && test_bit(BH_JPrepared, &bh->b_state)) |
||
1748 | return 1 ; |
||
1749 | else |
||
1750 | return 0 ; |
||
1751 | } |
||
1752 | |||
1753 | /* buffer was journaled, waiting to get to disk */ |
||
1754 | static inline int buffer_journal_dirty(const struct buffer_head *bh) { |
||
1755 | if (bh) |
||
1756 | return test_bit(BH_JDirty_wait, &bh->b_state) ; |
||
1757 | else |
||
1758 | return 0 ; |
||
1759 | } |
||
1760 | static inline int mark_buffer_notjournal_dirty(struct buffer_head *bh) { |
||
1761 | if (bh) |
||
1762 | clear_bit(BH_JDirty_wait, &bh->b_state) ; |
||
1763 | return 0 ; |
||
1764 | } |
||
1765 | static inline int mark_buffer_notjournal_new(struct buffer_head *bh) { |
||
1766 | if (bh) { |
||
1767 | clear_bit(BH_JNew, &bh->b_state) ; |
||
1768 | } |
||
1769 | return 0 ; |
||
1770 | } |
||
1771 | |||
1772 | void add_save_link (struct reiserfs_transaction_handle * th, |
||
1773 | struct inode * inode, int truncate); |
||
1774 | void remove_save_link (struct inode * inode, int truncate); |
||
1775 | |||
1776 | /* objectid.c */ |
||
1777 | __u32 reiserfs_get_unused_objectid (struct reiserfs_transaction_handle *th); |
||
1778 | void reiserfs_release_objectid (struct reiserfs_transaction_handle *th, __u32 objectid_to_release); |
||
1779 | int reiserfs_convert_objectid_map_v1(struct super_block *) ; |
||
1780 | |||
1781 | /* stree.c */ |
||
1782 | int B_IS_IN_TREE(const struct buffer_head *); |
||
1783 | extern inline void copy_short_key (void * to, const void * from); |
||
1784 | extern inline void copy_item_head(struct item_head * p_v_to, |
||
1785 | const struct item_head * p_v_from); |
||
1786 | |||
1787 | // first key is in cpu form, second - le |
||
1788 | extern inline int comp_keys (const struct key * le_key, |
||
1789 | const struct cpu_key * cpu_key); |
||
1790 | extern inline int comp_short_keys (const struct key * le_key, |
||
1791 | const struct cpu_key * cpu_key); |
||
1792 | extern inline void le_key2cpu_key (struct cpu_key * to, const struct key * from); |
||
1793 | |||
1794 | // both are cpu keys |
||
1795 | extern inline int comp_cpu_keys (const struct cpu_key *, const struct cpu_key *); |
||
1796 | extern inline int comp_short_cpu_keys (const struct cpu_key *, |
||
1797 | const struct cpu_key *); |
||
1798 | extern inline void cpu_key2cpu_key (struct cpu_key *, const struct cpu_key *); |
||
1799 | |||
1800 | // both are in le form |
||
1801 | extern inline int comp_le_keys (const struct key *, const struct key *); |
||
1802 | extern inline int comp_short_le_keys (const struct key *, const struct key *); |
||
1803 | |||
1804 | // |
||
1805 | // get key version from on disk key - kludge |
||
1806 | // |
||
1807 | static inline int le_key_version (const struct key * key) |
||
1808 | { |
||
1809 | int type; |
||
1810 | |||
1811 | type = offset_v2_k_type( &(key->u.k_offset_v2)); |
||
1812 | if (type != TYPE_DIRECT && type != TYPE_INDIRECT && type != TYPE_DIRENTRY) |
||
1813 | return KEY_FORMAT_3_5; |
||
1814 | |||
1815 | return KEY_FORMAT_3_6; |
||
1816 | |||
1817 | } |
||
1818 | |||
1819 | |||
1820 | static inline void copy_key (struct key *to, const struct key *from) |
||
1821 | { |
||
1822 | memcpy (to, from, KEY_SIZE); |
||
1823 | } |
||
1824 | |||
1825 | |||
1826 | int comp_items (const struct item_head * stored_ih, const struct path * p_s_path); |
||
1827 | const struct key * get_rkey (const struct path * p_s_chk_path, |
||
1828 | const struct super_block * p_s_sb); |
||
1829 | inline int bin_search (const void * p_v_key, const void * p_v_base, |
||
1830 | int p_n_num, int p_n_width, int * p_n_pos); |
||
1831 | int search_by_key (struct super_block *, const struct cpu_key *, |
||
1832 | struct path *, int); |
||
1833 | #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL) |
||
1834 | int search_for_position_by_key (struct super_block * p_s_sb, |
||
1835 | const struct cpu_key * p_s_cpu_key, |
||
1836 | struct path * p_s_search_path); |
||
1837 | extern inline void decrement_bcount (struct buffer_head * p_s_bh); |
||
1838 | void decrement_counters_in_path (struct path * p_s_search_path); |
||
1839 | void pathrelse (struct path * p_s_search_path); |
||
1840 | int reiserfs_check_path(struct path *p) ; |
||
1841 | void pathrelse_and_restore (struct super_block *s, struct path * p_s_search_path); |
||
1842 | |||
1843 | int reiserfs_insert_item (struct reiserfs_transaction_handle *th, |
||
1844 | struct path * path, |
||
1845 | const struct cpu_key * key, |
||
1846 | struct item_head * ih, const char * body); |
||
1847 | |||
1848 | int reiserfs_paste_into_item (struct reiserfs_transaction_handle *th, |
||
1849 | struct path * path, |
||
1850 | const struct cpu_key * key, |
||
1851 | const char * body, int paste_size); |
||
1852 | |||
1853 | int reiserfs_cut_from_item (struct reiserfs_transaction_handle *th, |
||
1854 | struct path * path, |
||
1855 | struct cpu_key * key, |
||
1856 | struct inode * inode, |
||
1857 | struct page *page, |
||
1858 | loff_t new_file_size); |
||
1859 | |||
1860 | int reiserfs_delete_item (struct reiserfs_transaction_handle *th, |
||
1861 | struct path * path, |
||
1862 | const struct cpu_key * key, |
||
1863 | struct inode * inode, |
||
1864 | struct buffer_head * p_s_un_bh); |
||
1865 | |||
1866 | void reiserfs_delete_solid_item (struct reiserfs_transaction_handle *th, |
||
1867 | struct key * key); |
||
1868 | void reiserfs_delete_object (struct reiserfs_transaction_handle *th, struct inode * p_s_inode); |
||
1869 | void reiserfs_do_truncate (struct reiserfs_transaction_handle *th, |
||
1870 | struct inode * p_s_inode, struct page *, |
||
1871 | int update_timestamps); |
||
1872 | |||
1873 | #define i_block_size(inode) ((inode)->i_sb->s_blocksize) |
||
1874 | #define file_size(inode) ((inode)->i_size) |
||
1875 | #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1)) |
||
1876 | |||
1877 | #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\ |
||
1878 | !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 ) |
||
1879 | |||
1880 | void padd_item (char * item, int total_length, int length); |
||
1881 | |||
1882 | /* inode.c */ |
||
1883 | void restart_transaction(struct reiserfs_transaction_handle *th, struct inode *inode, struct path *path); |
||
1884 | void reiserfs_read_locked_inode(struct inode * inode, struct reiserfs_iget_args *args) ; |
||
1885 | int reiserfs_find_actor(struct inode * inode, void *p) ; |
||
1886 | int reiserfs_init_locked_inode(struct inode * inode, void *p) ; |
||
1887 | void reiserfs_delete_inode (struct inode * inode); |
||
1888 | void reiserfs_write_inode (struct inode * inode, int) ; |
||
1889 | struct dentry *reiserfs_get_dentry(struct super_block *, void *) ; |
||
1890 | struct dentry *reiserfs_decode_fh(struct super_block *sb, __u32 *data, |
||
1891 | int len, int fhtype, |
||
1892 | int (*acceptable)(void *contect, struct dentry *de), |
||
1893 | void *context) ; |
||
1894 | int reiserfs_encode_fh( struct dentry *dentry, __u32 *data, int *lenp, |
||
1895 | int connectable ); |
||
1896 | |||
1897 | int reiserfs_prepare_write(struct file *, struct page *, unsigned, unsigned) ; |
||
1898 | void reiserfs_truncate_file(struct inode *, int update_timestamps) ; |
||
1899 | void make_cpu_key (struct cpu_key * cpu_key, struct inode * inode, loff_t offset, |
||
1900 | int type, int key_length); |
||
1901 | void make_le_item_head (struct item_head * ih, const struct cpu_key * key, |
||
1902 | int version, |
||
1903 | loff_t offset, int type, int length, int entry_count); |
||
1904 | struct inode * reiserfs_iget (struct super_block * s, |
||
1905 | const struct cpu_key * key); |
||
1906 | |||
1907 | |||
1908 | int reiserfs_new_inode (struct reiserfs_transaction_handle *th, |
||
1909 | struct inode * dir, int mode, |
||
1910 | const char * symname, loff_t i_size, |
||
1911 | struct dentry *dentry, struct inode *inode); |
||
1912 | int reiserfs_sync_inode (struct reiserfs_transaction_handle *th, struct inode * inode); |
||
1913 | void reiserfs_update_sd (struct reiserfs_transaction_handle *th, struct inode * inode); |
||
1914 | |||
1915 | void sd_attrs_to_i_attrs( __u16 sd_attrs, struct inode *inode ); |
||
1916 | void i_attrs_to_sd_attrs( struct inode *inode, __u16 *sd_attrs ); |
||
1917 | |||
1918 | /* namei.c */ |
||
1919 | inline void set_de_name_and_namelen (struct reiserfs_dir_entry * de); |
||
1920 | int search_by_entry_key (struct super_block * sb, const struct cpu_key * key, |
||
1921 | struct path * path, |
||
1922 | struct reiserfs_dir_entry * de); |
||
1923 | struct dentry *reiserfs_get_parent(struct dentry *) ; |
||
1924 | /* procfs.c */ |
||
1925 | |||
1926 | #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO ) |
||
1927 | #define REISERFS_PROC_INFO |
||
1928 | #else |
||
1929 | #undef REISERFS_PROC_INFO |
||
1930 | #endif |
||
1931 | |||
1932 | int reiserfs_proc_info_init( struct super_block *sb ); |
||
1933 | int reiserfs_proc_info_done( struct super_block *sb ); |
||
1934 | struct proc_dir_entry *reiserfs_proc_register_global( char *name, |
||
1935 | read_proc_t *func ); |
||
1936 | void reiserfs_proc_unregister_global( const char *name ); |
||
1937 | int reiserfs_proc_info_global_init( void ); |
||
1938 | int reiserfs_proc_info_global_done( void ); |
||
1939 | int reiserfs_global_version_in_proc( char *buffer, char **start, off_t offset, |
||
1940 | int count, int *eof, void *data ); |
||
1941 | |||
1942 | #if defined( REISERFS_PROC_INFO ) |
||
1943 | |||
1944 | #define PROC_EXP( e ) e |
||
1945 | |||
1946 | #define MAX( a, b ) ( ( ( a ) > ( b ) ) ? ( a ) : ( b ) ) |
||
1947 | #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data |
||
1948 | #define PROC_INFO_MAX( sb, field, value ) \ |
||
1949 | __PINFO( sb ).field = \ |
||
1950 | MAX( REISERFS_SB( sb ) -> s_proc_info_data.field, value ) |
||
1951 | #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) ) |
||
1952 | #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) ) |
||
1953 | #define PROC_INFO_BH_STAT( sb, bh, level ) \ |
||
1954 | PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] ); \ |
||
1955 | PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) ); \ |
||
1956 | PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) ) |
||
1957 | #else |
||
1958 | #define PROC_EXP( e ) |
||
1959 | #define VOID_V ( ( void ) 0 ) |
||
1960 | #define PROC_INFO_MAX( sb, field, value ) VOID_V |
||
1961 | #define PROC_INFO_INC( sb, field ) VOID_V |
||
1962 | #define PROC_INFO_ADD( sb, field, val ) VOID_V |
||
1963 | #define PROC_INFO_BH_STAT( p_s_sb, p_s_bh, n_node_level ) VOID_V |
||
1964 | #endif |
||
1965 | |||
1966 | /* dir.c */ |
||
1967 | extern struct inode_operations reiserfs_dir_inode_operations; |
||
1968 | extern struct file_operations reiserfs_dir_operations; |
||
1969 | |||
1970 | /* tail_conversion.c */ |
||
1971 | int direct2indirect (struct reiserfs_transaction_handle *, struct inode *, struct path *, struct buffer_head *, loff_t); |
||
1972 | int indirect2direct (struct reiserfs_transaction_handle *, struct inode *, struct page *, struct path *, const struct cpu_key *, loff_t, char *); |
||
1973 | void reiserfs_unmap_buffer(struct buffer_head *) ; |
||
1974 | |||
1975 | |||
1976 | /* file.c */ |
||
1977 | extern struct inode_operations reiserfs_file_inode_operations; |
||
1978 | extern struct file_operations reiserfs_file_operations; |
||
1979 | extern struct address_space_operations reiserfs_address_space_operations ; |
||
1980 | |||
1981 | /* fix_nodes.c */ |
||
1982 | #ifdef CONFIG_REISERFS_CHECK |
||
1983 | void * reiserfs_kmalloc (size_t size, int flags, struct super_block * s); |
||
1984 | void reiserfs_kfree (const void * vp, size_t size, struct super_block * s); |
||
1985 | #else |
||
1986 | #define reiserfs_kmalloc(x, y, z) kmalloc(x, y) |
||
1987 | #define reiserfs_kfree(x, y, z) kfree(x) |
||
1988 | #endif |
||
1989 | |||
1990 | int fix_nodes (int n_op_mode, struct tree_balance * p_s_tb, |
||
1991 | struct item_head * p_s_ins_ih, const void *); |
||
1992 | void unfix_nodes (struct tree_balance *); |
||
1993 | void free_buffers_in_tb (struct tree_balance * p_s_tb); |
||
1994 | |||
1995 | |||
1996 | /* prints.c */ |
||
1997 | void reiserfs_panic (struct super_block * s, const char * fmt, ...) |
||
1998 | __attribute__ ( ( noreturn ) );/* __attribute__( ( format ( printf, 2, 3 ) ) ) */ |
||
1999 | void reiserfs_debug (struct super_block *s, int level, const char * fmt, ...); |
||
2000 | /* __attribute__( ( format ( printf, 3, 4 ) ) ); */ |
||
2001 | void print_virtual_node (struct virtual_node * vn); |
||
2002 | void print_indirect_item (struct buffer_head * bh, int item_num); |
||
2003 | void store_print_tb (struct tree_balance * tb); |
||
2004 | void print_cur_tb (char * mes); |
||
2005 | void print_de (struct reiserfs_dir_entry * de); |
||
2006 | void print_bi (struct buffer_info * bi, char * mes); |
||
2007 | #define PRINT_LEAF_ITEMS 1 /* print all items */ |
||
2008 | #define PRINT_DIRECTORY_ITEMS 2 /* print directory items */ |
||
2009 | #define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */ |
||
2010 | void print_block (struct buffer_head * bh, ...); |
||
2011 | void print_path (struct tree_balance * tb, struct path * path); |
||
2012 | void print_bmap (struct super_block * s, int silent); |
||
2013 | void print_bmap_block (int i, char * data, int size, int silent); |
||
2014 | /*void print_super_block (struct super_block * s, char * mes);*/ |
||
2015 | void print_objectid_map (struct super_block * s); |
||
2016 | void print_block_head (struct buffer_head * bh, char * mes); |
||
2017 | void check_leaf (struct buffer_head * bh); |
||
2018 | void check_internal (struct buffer_head * bh); |
||
2019 | void print_statistics (struct super_block * s); |
||
2020 | char * reiserfs_hashname(int code); |
||
2021 | |||
2022 | /* lbalance.c */ |
||
2023 | int leaf_move_items (int shift_mode, struct tree_balance * tb, int mov_num, int mov_bytes, struct buffer_head * Snew); |
||
2024 | int leaf_shift_left (struct tree_balance * tb, int shift_num, int shift_bytes); |
||
2025 | int leaf_shift_right (struct tree_balance * tb, int shift_num, int shift_bytes); |
||
2026 | void leaf_delete_items (struct buffer_info * cur_bi, int last_first, int first, int del_num, int del_bytes); |
||
2027 | void leaf_insert_into_buf (struct buffer_info * bi, int before, |
||
2028 | struct item_head * inserted_item_ih, const char * inserted_item_body, int zeros_number); |
||
2029 | void leaf_paste_in_buffer (struct buffer_info * bi, int pasted_item_num, |
||
2030 | int pos_in_item, int paste_size, const char * body, int zeros_number); |
||
2031 | void leaf_cut_from_buffer (struct buffer_info * bi, int cut_item_num, int pos_in_item, |
||
2032 | int cut_size); |
||
2033 | void leaf_paste_entries (struct buffer_head * bh, int item_num, int before, |
||
2034 | int new_entry_count, struct reiserfs_de_head * new_dehs, const char * records, int paste_size); |
||
2035 | /* ibalance.c */ |
||
2036 | int balance_internal (struct tree_balance * , int, int, struct item_head * , |
||
2037 | struct buffer_head **); |
||
2038 | |||
2039 | /* do_balance.c */ |
||
2040 | inline void do_balance_mark_leaf_dirty (struct tree_balance * tb, |
||
2041 | struct buffer_head * bh, int flag); |
||
2042 | #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty |
||
2043 | #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty |
||
2044 | |||
2045 | void do_balance (struct tree_balance * tb, struct item_head * ih, |
||
2046 | const char * body, int flag); |
||
2047 | void reiserfs_invalidate_buffer (struct tree_balance * tb, struct buffer_head * bh); |
||
2048 | |||
2049 | int get_left_neighbor_position (struct tree_balance * tb, int h); |
||
2050 | int get_right_neighbor_position (struct tree_balance * tb, int h); |
||
2051 | void replace_key (struct tree_balance * tb, struct buffer_head *, int, struct buffer_head *, int); |
||
2052 | void replace_lkey (struct tree_balance *, int, struct item_head *); |
||
2053 | void replace_rkey (struct tree_balance *, int, struct item_head *); |
||
2054 | void make_empty_node (struct buffer_info *); |
||
2055 | struct buffer_head * get_FEB (struct tree_balance *); |
||
2056 | |||
2057 | /* bitmap.c */ |
||
2058 | |||
2059 | /* structure contains hints for block allocator, and it is a container for |
||
2060 | * arguments, such as node, search path, transaction_handle, etc. */ |
||
2061 | struct __reiserfs_blocknr_hint { |
||
2062 | struct inode * inode; /* inode passed to allocator, if we allocate unf. nodes */ |
||
2063 | long block; /* file offset, in blocks */ |
||
2064 | struct key key; |
||
2065 | struct path * path; /* search path, used by allocator to deternine search_start by |
||
2066 | * various ways */ |
||
2067 | struct reiserfs_transaction_handle * th; /* transaction handle is needed to log super blocks and |
||
2068 | * bitmap blocks changes */ |
||
2069 | b_blocknr_t beg, end; |
||
2070 | b_blocknr_t search_start; /* a field used to transfer search start value (block number) |
||
2071 | * between different block allocator procedures |
||
2072 | * (determine_search_start() and others) */ |
||
2073 | int prealloc_size; /* is set in determine_prealloc_size() function, used by underlayed |
||
2074 | * function that do actual allocation */ |
||
2075 | |||
2076 | int formatted_node:1; /* the allocator uses different polices for getting disk space for |
||
2077 | * formatted/unformatted blocks with/without preallocation */ |
||
2078 | int preallocate:1; |
||
2079 | }; |
||
2080 | |||
2081 | typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t; |
||
2082 | |||
2083 | int reiserfs_parse_alloc_options (struct super_block *, char *); |
||
2084 | int is_reusable (struct super_block * s, b_blocknr_t block, int bit_value); |
||
2085 | void reiserfs_free_block (struct reiserfs_transaction_handle *th, b_blocknr_t); |
||
2086 | int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t * , int, int); |
||
2087 | extern inline int reiserfs_new_form_blocknrs (struct tree_balance * tb, |
||
2088 | b_blocknr_t *new_blocknrs, int amount_needed) |
||
2089 | { |
||
2090 | reiserfs_blocknr_hint_t hint = { |
||
2091 | .th = tb->transaction_handle, |
||
2092 | .path = tb->tb_path, |
||
2093 | .inode = NULL, |
||
2094 | .key = tb->key, |
||
2095 | .block = 0, |
||
2096 | .formatted_node = 1 |
||
2097 | }; |
||
2098 | return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed, 0); |
||
2099 | } |
||
2100 | |||
2101 | extern inline int reiserfs_new_unf_blocknrs (struct reiserfs_transaction_handle *th, |
||
2102 | struct inode *inode, |
||
2103 | b_blocknr_t *new_blocknrs, |
||
2104 | struct path * path, long block) |
||
2105 | { |
||
2106 | reiserfs_blocknr_hint_t hint = { |
||
2107 | .th = th, |
||
2108 | .path = path, |
||
2109 | .inode = inode, |
||
2110 | .block = block, |
||
2111 | .formatted_node = 0, |
||
2112 | .preallocate = 0 |
||
2113 | }; |
||
2114 | return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0); |
||
2115 | } |
||
2116 | |||
2117 | #ifdef REISERFS_PREALLOCATE |
||
2118 | extern inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle *th, |
||
2119 | struct inode * inode, |
||
2120 | b_blocknr_t *new_blocknrs, |
||
2121 | struct path * path, long block) |
||
2122 | { |
||
2123 | reiserfs_blocknr_hint_t hint = { |
||
2124 | .th = th, |
||
2125 | .path = path, |
||
2126 | .inode = inode, |
||
2127 | .block = block, |
||
2128 | .formatted_node = 0, |
||
2129 | .preallocate = 1 |
||
2130 | }; |
||
2131 | return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0); |
||
2132 | } |
||
2133 | |||
2134 | void reiserfs_discard_prealloc (struct reiserfs_transaction_handle *th, |
||
2135 | struct inode * inode); |
||
2136 | void reiserfs_discard_all_prealloc (struct reiserfs_transaction_handle *th); |
||
2137 | #endif |
||
2138 | void reiserfs_claim_blocks_to_be_allocated( struct super_block *sb, int blocks); |
||
2139 | void reiserfs_release_claimed_blocks( struct super_block *sb, int blocks); |
||
2140 | int reiserfs_can_fit_pages(struct super_block *sb); |
||
2141 | |||
2142 | /* hashes.c */ |
||
2143 | __u32 keyed_hash (const signed char *msg, int len); |
||
2144 | __u32 yura_hash (const signed char *msg, int len); |
||
2145 | __u32 r5_hash (const signed char *msg, int len); |
||
2146 | |||
2147 | /* the ext2 bit routines adjust for big or little endian as |
||
2148 | ** appropriate for the arch, so in our laziness we use them rather |
||
2149 | ** than using the bit routines they call more directly. These |
||
2150 | ** routines must be used when changing on disk bitmaps. */ |
||
2151 | #define reiserfs_test_and_set_le_bit ext2_set_bit |
||
2152 | #define reiserfs_test_and_clear_le_bit ext2_clear_bit |
||
2153 | #define reiserfs_test_le_bit ext2_test_bit |
||
2154 | #define reiserfs_find_next_zero_le_bit ext2_find_next_zero_bit |
||
2155 | |||
2156 | /* sometimes reiserfs_truncate may require to allocate few new blocks |
||
2157 | to perform indirect2direct conversion. People probably used to |
||
2158 | think, that truncate should work without problems on a filesystem |
||
2159 | without free disk space. They may complain that they can not |
||
2160 | truncate due to lack of free disk space. This spare space allows us |
||
2161 | to not worry about it. 500 is probably too much, but it should be |
||
2162 | absolutely safe */ |
||
2163 | #define SPARE_SPACE 500 |
||
2164 | |||
2165 | |||
2166 | /* prototypes from ioctl.c */ |
||
2167 | int reiserfs_ioctl (struct inode * inode, struct file * filp, |
||
2168 | unsigned int cmd, unsigned long arg); |
||
2169 | int reiserfs_unpack (struct inode * inode, struct file * filp); |
||
2170 | |||
2171 | /* ioctl's command */ |
||
2172 | #define REISERFS_IOC_UNPACK _IOW(0xCD,1,long) |
||
2173 | /* define following flags to be the same as in ext2, so that chattr(1), |
||
2174 | lsattr(1) will work with us. */ |
||
2175 | #define REISERFS_IOC_GETFLAGS EXT2_IOC_GETFLAGS |
||
2176 | #define REISERFS_IOC_SETFLAGS EXT2_IOC_SETFLAGS |
||
2177 | #define REISERFS_IOC_GETVERSION EXT2_IOC_GETVERSION |
||
2178 | #define REISERFS_IOC_SETVERSION EXT2_IOC_SETVERSION |
||
2179 | |||
2180 | /* Locking primitives */ |
||
2181 | /* Right now we are still falling back to (un)lock_kernel, but eventually that |
||
2182 | would evolve into real per-fs locks */ |
||
2183 | #define reiserfs_write_lock( sb ) lock_kernel() |
||
2184 | #define reiserfs_write_unlock( sb ) unlock_kernel() |
||
2185 | |||
2186 | #endif /* _LINUX_REISER_FS_H */ |
||
2187 | |||
2188 |