Subversion Repositories shark

Rev

Rev 210 | Rev 496 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 pj 1
/*
2
 * Project: S.Ha.R.K.
3
 *
4
 * Coordinators:
5
 *   Giorgio Buttazzo    <giorgio@sssup.it>
6
 *   Paolo Gai           <pj@gandalf.sssup.it>
7
 *
8
 * Authors     :
9
 *   Paolo Gai           <pj@gandalf.sssup.it>
10
 *   Massimiliano Giorgi <massy@gandalf.sssup.it>
11
 *   Luca Abeni          <luca@gandalf.sssup.it>
12
 *   (see the web pages for full authors list)
13
 *
14
 * ReTiS Lab (Scuola Superiore S.Anna - Pisa - Italy)
15
 *
16
 * http://www.sssup.it
17
 * http://retis.sssup.it
18
 * http://shark.sssup.it
19
 */
20
 
21
 
22
/**
23
 ------------
393 giacomo 24
 CVS :        $Id: func.h,v 1.10 2004-01-12 17:23:44 giacomo Exp $
2 pj 25
 
26
 File:        $File$
393 giacomo 27
 Revision:    $Revision: 1.10 $
28
 Last update: $Date: 2004-01-12 17:23:44 $
2 pj 29
 ------------
30
 
31
Kernel functions:
32
 
33
- Debug stuff
34
 
35
- Primitives called at initialization time
36
 
37
- Kernel global functions (scheduler, queues)
38
 
39
- Kernel VM hooks
40
 
41
- IRQ, errors & exception handling
42
 
43
- System management primitives
44
 
45
- Jet management primitives
46
 
47
- Task management primitives
48
 
49
- Mutex primitives
50
 
51
**/
52
 
53
/*
54
 * Copyright (C) 2000 Paolo Gai
55
 *
56
 * This program is free software; you can redistribute it and/or modify
57
 * it under the terms of the GNU General Public License as published by
58
 * the Free Software Foundation; either version 2 of the License, or
59
 * (at your option) any later version.
60
 *
61
 * This program is distributed in the hope that it will be useful,
62
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
63
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
64
 * GNU General Public License for more details.
65
 *
66
 * You should have received a copy of the GNU General Public License
67
 * along with this program; if not, write to the Free Software
68
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
69
 *
70
 */
71
 
72
#ifndef __KERNEL_FUNC_H__
73
#define __KERNEL_FUNC_H__
74
 
75
#include <ll/ll.h>
76
#include <ll/stdio.h>
77
#include <kernel/types.h>
78
#include <kernel/model.h>
79
#include <kernel/mem.h>
80
#include <signal.h>
81
#include <kernel/var.h>
82
#include <errno.h>
83
 
84
 
85
/*---------------------------------------------------------------------*/
86
/* Debug stuff                                                         */
87
/*---------------------------------------------------------------------*/
88
 
89
/* if a source use printk() it should include log.h not func.h */
90
#include <kernel/log.h>
91
 
79 pj 92
#include "ll/sys/cdefs.h"
93
 
94
__BEGIN_DECLS
95
 
2 pj 96
/*---------------------------------------------------------------------*/
97
/* Kernel global functions: initialization & termination...            */
98
/*---------------------------------------------------------------------*/
99
 
100
/*+ this function is called by __kernel_init__.
101
    It register the modules in the system at init time +*/
102
TIME __kernel_register_levels__(void *arg);
103
 
104
/*+ This function returns a level_des **. the value returned shall be
38 pj 105
    used to register a level module.
2 pj 106
 
38 pj 107
    The function is usually called at module registration time.  The
108
    function can also be called when the system is already started, to
109
    allow the implementation of dynamic module registration.  
110
 
111
    The argument must be the size of the data block that have to be allocated
112
 
113
    The function returns the number of the descriptor allocated for the module
114
    or -1 in case there are no free descriptors.
115
 
116
    The function also reserves a descriptor with size s, initialized
117
    with default function pointers.
118
 
119
+*/
120
LEVEL level_alloc_descriptor(size_t s);
121
 
122
/*+ This function release a level descriptor previously allocated using
123
  level_alloc_descriptor().
124
 
125
  The function returns 0 if the level has been freed, or -1 if someone is
126
  using it, -2 if the level has never been registered.
127
 
128
+*/
129
int level_free_descriptor(LEVEL l);
130
 
131
/* Call this if you want to say that your module is using module l
132
   (e.g., for calling its private functions) */
133
int level_use_descriptor(LEVEL l);
134
 
135
/* Call this when you no more need the module l */
136
int level_unuse_descriptor(LEVEL l);
137
 
2 pj 138
/*+ This function returns a resource_des **. the value returned shall be
139
    used to register a resource module. The function shall be called only at
140
    module registration time. It assume that the system is not yet
141
    initialized, so we shall not call sys_abort...                     +*/
142
RLEVEL resource_alloc_descriptor();
143
 
144
/*+ This function compute the command line parameters from the multiboot_info
145
    NOTE: this function modify the multiboot struct, so this function and
146
    __call_main__ are mutually exclusives!!! +*/
147
void __compute_args__(struct multiboot_info *mbi, int *_argc, char **_argv);
148
 
149
/*+ This function calls the standard C main() function, with a
150
    parameter list up to 100 parameters                        +*/
151
int __call_main__(struct multiboot_info *mb);
152
 
153
/*+ This task initialize the system and calls the main() with
154
    __call_mail__ .
155
    It should be created by a level registered in the system by
156
    __kernel_register_levels__ +*/
157
TASK __init__(void *arg);
158
 
159
/*+ Use this function to post your own exit operations
160
    (when uses some defines contained in const.h) +*/
161
int sys_atrunlevel(void (*func_code)(void *),void *parm, BYTE when);
162
 
163
/*---------------------------------------------------------------------*/
29 pj 164
/* Kernel global functions: scheduler,                                 */
2 pj 165
/*---------------------------------------------------------------------*/
166
 
167
/*+ This is the generic scheduler.
168
    The scheduler calls the appropriates level schedulers and then
169
    dispatch the task chosen. +*/
170
void scheduler(void);
171
 
172
/*+ called in the events to force the system to execute the scheduler at
173
    the end of an event list +*/
174
void event_need_reschedule();
175
 
176
void task_makefree(void *ret);
177
void check_killed_async(void);
178
 
179
int guarantee();
180
 
38 pj 181
void levels_init(void); /* see init.c */
182
 
2 pj 183
void runlevel_init();
184
void call_runlevel_func(int runlevel, int aborting);
185
 
186
// in kill.c
187
void kill_user_tasks();
188
 
189
void event_resetepilogue();
190
 
191
 
192
void call_task_specific_data_destructors();
193
void task_specific_data_init();
194
 
195
// in kill.c
196
void register_cancellation_point(int (*func)(PID p, void *arg), void *arg);
197
 
198
// in signal.c
199
void register_interruptable_point(int (*func)(PID p, void *arg), void *arg);
200
 
201
 
202
/*---------------------------------------------------------------------*/
203
/* Kernel VM hooks                                                     */
204
/*---------------------------------------------------------------------*/
205
 
206
/* this hooks redefines the VM functions to use them into the kernel...
207
 
208
   the only VM functions called directly from the kernel are VM_init and
209
   VM_end
210
*/
211
 
212
/* Context management routines */
213
#define kern_context_create    ll_context_create
214
#define kern_context_delete    ll_context_delete
215
 
216
extern __inline__ CONTEXT kern_context_save()
217
{
218
  cli();
219
  return ll_context_from();
220
}
221
 
222
/*+ this functions are called every time a context is changed +*/
223
void kern_after_dispatch(void);
224
 
225
/* Warning: if modified, modify also:
226
   - task_join
227
   - cond_wait
228
   - cond_timedwait
229
   - internal_sem_wait
230
*/
82 pj 231
extern __inline__ void kern_context_load(CONTEXT c)
2 pj 232
{
233
  ll_context_to(c);
234
  kern_after_dispatch();
235
  sti();
236
}
237
 
238
 
239
/* Interrupt enabling/disabling */
240
#define kern_cli          cli
241
#define kern_sti          sti
242
 
243
/* Interrupt enabling/disabling with flag save */
244
#define kern_fsave        ll_fsave
245
#define kern_frestore     ll_frestore
246
 
247
/* interrupt handling */
248
#define kern_irq_unmask   VM_irq_unmask
249
#define kern_irq_mask     VM_irq_mask
250
 
251
extern __inline__ int kern_event_post(const struct timespec *time,
252
                                      void (*handler)(void *p),
253
                                      void *par)
254
{
255
  int e;
256
  e = event_post(*time,handler,par);
257
 
258
  if (e == -1)
259
    kern_raise(XNOMORE_EVENTS,exec_shadow);
260
 
261
  return e;
262
}
263
 
38 pj 264
#define kern_event_delete event_delete
265
 
2 pj 266
/*+ the default capacity timer used by the kernel... +*/
267
void capacity_timer(void *arg);
268
 
269
 
270
#define kern_printf message
271
 
38 pj 272
extern __inline__ TIME kern_gettime(struct timespec *t)
273
{
45 pj 274
  return ll_gettime(TIME_NEW, t);
38 pj 275
}
276
 
277
 
278
 
2 pj 279
/*---------------------------------------------------------------------*/
38 pj 280
/* Kernel global functions: IRQ handling                               */
2 pj 281
/*---------------------------------------------------------------------*/
282
 
283
/*+ Interrupt handler installation +*/
284
int handler_set(int no, void (*fast)(int), PID pi);
285
 
286
/*+ Interrupt handler removal      +*/
287
int handler_remove(int no);
288
 
289
 
290
/*---------------------------------------------------------------------*/
291
/* System management primitives                                        */
292
/*---------------------------------------------------------------------*/
293
 
294
/*+ Close the system & return to HOST OS.
295
    Can be called from all the tasks...
296
    The first time it is called it jumps to the global context
297
    The second time it jumps only if there are no system task remaining
298
    The error code passed is 0... (it is saved on the first call!!!) +*/
299
void sys_end(void);
300
 
301
/*+ Close the system & return to HOST OS.
302
    Can be called from all the tasks...
303
    The first time it is called it works as the sys_end
304
    The second time it jumps every time
305
    The error code passed is 0... +*/
306
void sys_abort(int err);
307
 
308
/* The system implements also exit and _exit as a redefinition of sys_end
309
   This is not the correct behaviour, and should be fixed.
310
   The definitions for these functions are in kernel/kern.c
311
*/
312
 
313
/*+ Print a message then call sys_abort(333).
314
    Can be called from all the tasks...  +*/
315
void sys_panic(const char * fmt, ...) __attribute__ ((format (printf, 1, 2)));
316
 
317
/*+ prints an error message (see perror.c) +*/
318
void perror (const char *s);
319
 
320
/*+ this primitive returns the time read from the system timer +*/
321
TIME sys_gettime(struct timespec *t);
322
 
158 pj 323
/*+ this primitive can be used to set a message that will be printed
324
    at shutdown +*/
325
int sys_shutdown_message(char *fmt,...);
326
 
2 pj 327
/*---------------------------------------------------------------------*/
328
/* Jet management primitives                                           */
329
/*---------------------------------------------------------------------*/
330
 
331
/*+ This primitive returns the maximum execution time and the total
332
    execution time from the task_create or the last jet_delstat
333
    It returns also the number of instances to use to calculate the mean
334
    time and the current job execution time.
335
    The value returned is 0 if all ok, -1 if the PID is not correct or
336
    the task doesn't have the JET_ENABLE bit set.
337
+*/
338
int jet_getstat(PID p, TIME *sum, TIME *max, int *n, TIME *curr);
339
 
340
/*+ This primitive reset to 0 the maximum execution time and the mean
341
    execution time of the task p, and reset to 0 all the entries in
342
    jet_table.
343
    The value returned is 0 if all ok, -1 if the PID is not correct or
344
    the task doesn't have the JET_ENABLE bit set.                     +*/
345
int jet_delstat(PID p);
346
 
347
/*+ This primitive returns the last n values of the task execution time
348
    recorded after the last call to jet_gettable or jet_delstat.
349
    If n is
350
    <0 it will be set only the last values inserted in the table
351
       since the last call of jet_gettable.
352
    >0 it will be set up to JET_TABLE_DIM datas.
353
 
354
    The value returned is -1 if the PID is not correct or
355
    the task doesn't have the JET_ENABLE bit set, otherwise it returns the
356
    number of values set in the parameter table.
357
    (can be from 0 to JET_TABLE_DIM-1)
358
+*/
359
int jet_gettable(PID p, TIME *table, int n);
360
 
361
/*+ This function updates the jet information. +*/
362
void jet_update_slice(TIME t);
363
 
364
/*+ This function updates the jet information at the task end period
365
    it is called in task_endcycle and task_sleep +*/
366
void jet_update_endcycle();
367
 
368
/*---------------------------------------------------------------------*/
38 pj 369
/* Internal Macros                                                     */
370
/*---------------------------------------------------------------------*/
371
 
372
extern __inline__ void kern_epilogue_macro(void)
373
{
374
  TIME tx;    /* a dummy used for time computation             */
375
  struct timespec ty; /* a dummy used for time computation     */
376
 
377
  kern_gettime(&schedule_time);
378
 
379
  /* manage the capacity event */
380
  SUBTIMESPEC(&schedule_time, &cap_lasttime, &ty);
381
  tx = TIMESPEC2USEC(&ty);
393 giacomo 382
  if (proc_table[exec_shadow].control & CONTROL_CAP) proc_table[exec_shadow].avail_time -= tx;
38 pj 383
  jet_update_slice(tx);
384
 
385
  /* if the event didn't fire before, we delete it. */
386
  if (cap_timer != NIL) {
387
    kern_event_delete(cap_timer);
388
    cap_timer = NIL;
389
  }
390
}
391
 
392
/* This function is called by the kernel into kern.c to register a default
393
   exception handler */
394
int set_default_exception_handler(void);
395
 
396
/*---------------------------------------------------------------------*/
2 pj 397
/* Task management primitives                                          */
398
/*---------------------------------------------------------------------*/
399
 
400
 
401
/*+ This primitive:
402
    - Reserve a task descriptor
403
    - Create the task based on the task model passed
404
    - Initialize the resources used by the task
405
    - Guarantees the task set
406
+*/
407
PID task_createn(char *name,      /*+ the symbolic name of the task +*/
408
                 TASK (*body)(),  /*+ a pointer to the task body    +*/
409
                 TASK_MODEL *m,   /*+ the task model                +*/
410
                                  /*+ the resources models, a list  +*/
411
                 ...);            /*+ of models terminated by NULL  +*/
412
 
413
 
414
/*+ a redefinition of task_createn +*/
415
extern __inline PID task_create(char *name, TASK (*body)(),
416
                                void *m, void *r)
417
{
418
   return task_createn(name, body, (TASK_MODEL *)m, (RES_MODEL *)r, NULL);
419
}
420
 
421
 
422
/* This function allow to create a set of tasks without guarantee.
423
   It must be called with interrupts disabled and it must be used with
424
   group_create_accept and group_create_reject.
425
 
426
   This function allocates a task descriptor and fills it.
427
   After that, the guarantee() function should be called to check for task(s)
428
   admission.
429
   Next, each task created with group_create must be accepted with a call to
430
   group_create_accept() or rejected with a call to group_create_reject.
431
 
432
   The function returns the PID of the allocated descriptor, or NIL(-1)
433
   if the descriptor cannot be allocated or some problems arises the creation.
434
   If -1 is returned, errno is set to a value that represent the error:
435
      ENO_AVAIL_TASK       -> no free descriptors available
436
      ENO_AVAIL_SCHEDLEVEL -> there were no scheduling modules that can handle
437
                              the TASK_MODEL *m passed as parameter
438
      ETASK_CREATE         -> there was an error during the creation of the
439
                              task into the scheduling module
440
      ENO_AVAIL_RESLEVEL   -> there were no resource modules that can handle
441
                              one of the RES_MODEL * passed as parameter
442
*/
443
PID group_create(char *name,
444
                 TASK (*body)(),
445
                 TASK_MODEL *m,
446
                 ...);
447
 
448
 
449
/*
450
  This function should be called when a task created with group_create
451
  is successfully guaranteed and accepted in the system.
452
  This function finish the creation process allocating the last resources
453
  for the task (i.e., the stack and the context).
454
  it returns:
455
 
456
  -1 if something goes wrong. In this case, THE TASK IS AUTOMATICALLY REJECTED
457
     AND THE GROUP_CREATE_REJECT MUST NOT BE CALLED.
458
     errno is set to a value that explains the problem occurred:
459
 
460
     ENO_AVAIL_STACK_MEM -> No stack memory available for the task
461
     ENO_AVAIL_TSS       -> No context available for the task (This is a
462
                            CRITICAL error, and usually never happens...)
463
*/
464
int group_create_accept(PID i, TASK_MODEL *m);
465
 
466
/*
467
  This function should be called when a task created with group_create
468
  can not be successfully guaranteed.
469
  This function reject the task from the system.
470
  You cannot use the PID of a rejected task after this call.
471
*/
472
void group_create_reject(PID i);
473
 
474
/*+
475
  It blocks all explicit activation of a task made with task_activate and
476
  group_activate. These activations are registered in an internal counter,
477
  returned by task_unblock_activation.
478
  it returns 0 if all ok, or -1 otherwise. errno is set accordingly.
479
+*/
480
int task_block_activation(PID p);
481
 
482
/*+
483
  It unblocks all explicit activations of a task, and returns the number of
484
  "frozen" activations. It not call the task_activate!!!!
485
  it returns -1 if an error occurs. errno is set accordingly.
486
+*/
487
int task_unblock_activation(PID p);
488
 
489
 
490
/*+ Activate a task specified via pid returned from task_create +*/
491
int task_activate(PID pid);
492
 
493
/*+ Kill a task specified via pid returned from task_create +*/
494
int task_kill(PID pid);
495
 
496
/*+
497
  This primitive autokills the excuting task; it was used to avoid
498
  that returning from a task cause a jmp to an unpredictable location.
499
 
500
  Now it is obsolete, the task_create_stub do all the works.
501
 
502
  It is used by the Posix layer to implement pthread_exit
503
+*/
504
void task_abort(void *returnvalue);
505
 
506
/*+ Creates a cancellation point in the calling task +*/
507
void task_testcancel(void);
508
 
509
/*+ Set the cancellation state of the task +*/
510
int task_setcancelstate(int state, int *oldstate);
511
 
512
/*+ Set the cancellation type of the task +*/
513
int task_setcanceltype(int type, int *oldtype);
514
 
515
/*+ this function suspends execution of the calling task until the target
516
    task terminates, unless the target task has already terminated.
517
    It works like the pthread_join +*/
518
int task_join(PID p, void **value);
519
 
520
/*+ this function set the detach state of a task to joinable. This function
521
    is not present in Posix standard...
522
    returns ESRCH if p is non correct +*/
523
int task_joinable(PID p);
524
 
525
/*+ this function set the detach state of a task to detached. This function
526
    works as the posix's pthread_detach
527
    returns EINVAL if p can't be joined (or currently a task has done a
528
    join on it (condition not provided in posix)
529
    ESRCH if p is not correct +*/
530
int task_unjoinable(PID p);
531
 
532
/*+ Disable the preemption mechanism on the task.
533
    This primitive is very dangerous!!!!         +*/
534
void task_nopreempt(void);
535
 
536
/*+ Enable the preemption mechanism on the task. +*/
537
void task_preempt(void);
538
 
38 pj 539
/*+ sends a message to the scheduling module that is handling the task +*/
208 giacomo 540
int task_message(void *m, PID p, int reschedule);
38 pj 541
 
2 pj 542
/*+ This function signals to the kernel that the current istance of
543
    the task (periodic or aperiodic) is ended; so the task can be
544
    suspended until it is activated again. Pending activations may be saved
545
    depending on the task model +*/
38 pj 546
extern __inline__ void task_endcycle(void)
547
{
210 giacomo 548
  task_message(NULL, NIL, 1);
38 pj 549
}
2 pj 550
 
208 giacomo 551
/*+ This function signals to the kernel that the current istance of
552
    the task (periodic or aperiodic) is ended; so the task can be
553
    suspended until it is activated again. Pending activations may be saved
554
    depending on the task model +*/
555
extern __inline__ void task_disable(PID p)
556
{
557
  task_message((void *)(1), p, 0);
558
}
559
 
2 pj 560
/*+ This primitives refers the group id which is supplied
561
    by the application, not by the kernel                 +*/
562
int group_activate(WORD g);
563
int group_kill(WORD g);
564
 
565
 
566
/*---------------------------------------------------------------------*/
567
/* Mutex primitives                                                    */
568
/*---------------------------------------------------------------------*/
569
 
570
/* This primitives manages a mutex in the system.
571
   The behavior of the functions is similar to the POSIX ones. */
572
 
573
 
574
/*+ Alloc a mutex descriptor +*/
575
int mutex_init(mutex_t *mutex, const mutexattr_t *attr);
576
 
577
/*+ Free a mutex descriptor  +*/
578
int mutex_destroy(mutex_t *mutex);
579
 
580
/*+ Block wait               +*/
581
int mutex_lock(mutex_t *mutex);
582
 
583
/*+ Non-block wait           +*/
584
int mutex_trylock(mutex_t *mutex);
585
 
586
/*+ unlock primitive +*/
587
int mutex_unlock(mutex_t *mutex);
588
 
589
/*---------------------------------------------------------------------*/
590
/* Condition variables                                                 */
591
/*---------------------------------------------------------------------*/
592
 
593
/*+ Initialization of the condition variable +*/
594
int cond_init(cond_t *cond);
595
 
596
/*+ free a condition variable descriptor +*/
597
int cond_destroy(cond_t *cond);
598
 
599
/*+ signal on a condition variable, it unlocks only one task +*/
600
int cond_signal(cond_t *cond);
601
 
602
/*+ broadcast on a condition variable, it unlocks all the blocked tasks +*/
603
int cond_broadcast(cond_t *cond);
604
 
605
/*+ wait on a condition variable +*/
606
int cond_wait(cond_t *cond, mutex_t *mutex);
607
 
608
/*+ wait on a condition variable (with timer) +*/
609
int cond_timedwait(cond_t *cond, mutex_t *mutex,
610
                   const struct timespec *abstime);
611
 
612
/*---------------------------------------------------------------------*/
613
/* Task specific data primitives                                       */
614
/*---------------------------------------------------------------------*/
615
 
616
/* they are similar to the POSIX standard */
617
 
618
int task_key_create(task_key_t *key, void (*destructor)(void *));
619
void *task_getspecific(task_key_t key);
620
int task_setspecific(task_key_t key, const void *value);
621
int task_key_delete(task_key_t key);
622
 
623
/*---------------------------------------------------------------------*/
624
/* Task cancellation handlers                                          */
625
/*---------------------------------------------------------------------*/
626
 
627
/*+ push the specified cancellation cleanup handler routine onto
628
    the cancellation cleanup stack
629
void task_cleanup_push(void (*routine)(void *), void *arg); +*/
630
#define task_cleanup_push(rtn,arg) { \
631
        struct _task_handler_rec __cleanup_handler, **__head; \
632
        __cleanup_handler.f = rtn; \
633
        __cleanup_handler.a = arg; \
634
        __head = task_getspecific(0); \
635
        __cleanup_handler.next = *__head; \
636
        *__head = &__cleanup_handler;
637
 
638
/*+
639
    removes the routine at the top of the cancellation cleanup stack
640
    of the calling thread
641
void task_cleanup_pop(int execute); +*/
642
#define task_cleanup_pop(ex) \
643
        *__head = __cleanup_handler.next; \
644
        if (ex) (*__cleanup_handler.f) (__cleanup_handler.a); \
645
}
646
 
79 pj 647
__END_DECLS
2 pj 648
#endif /* __FUNC_H__ */