Subversion Repositories shark

Rev

Rev 157 | Rev 385 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 pj 1
/*
2
 * Project: S.Ha.R.K.
3
 *
4
 * Coordinators:
5
 *   Giorgio Buttazzo    <giorgio@sssup.it>
6
 *   Paolo Gai           <pj@gandalf.sssup.it>
7
 *
8
 * Authors     :
9
 *   Paolo Gai           <pj@gandalf.sssup.it>
10
 *   (see the web pages for full authors list)
11
 *
12
 * ReTiS Lab (Scuola Superiore S.Anna - Pisa - Italy)
13
 *
14
 * http://www.sssup.it
15
 * http://retis.sssup.it
16
 * http://shark.sssup.it
17
 */
18
 
19
/**
20
 ------------
353 giacomo 21
 CVS :        $Id: kern.c,v 1.6 2003-12-10 16:54:59 giacomo Exp $
2 pj 22
 
23
 File:        $File$
353 giacomo 24
 Revision:    $Revision: 1.6 $
25
 Last update: $Date: 2003-12-10 16:54:59 $
2 pj 26
 ------------
27
 
28
 This file contains:
29
 
30
 - the kernel system variables
31
 
32
 - the errno functions
33
 
34
 - the scheduler, capacity timer, and grarantee
35
 
36
 - the sys_abort, sys_end, sys_gettime
37
 
38
 
39
**/
40
 
41
/*
42
 * Copyright (C) 2000 Paolo Gai
43
 *
44
 * This program is free software; you can redistribute it and/or modify
45
 * it under the terms of the GNU General Public License as published by
46
 * the Free Software Foundation; either version 2 of the License, or
47
 * (at your option) any later version.
48
 *
49
 * This program is distributed in the hope that it will be useful,
50
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
51
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
52
 * GNU General Public License for more details.
53
 *
54
 * You should have received a copy of the GNU General Public License
55
 * along with this program; if not, write to the Free Software
56
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
57
 *
58
 */
59
 
60
#include <stdarg.h>
61
#include <ll/ll.h>
62
#include <ll/stdlib.h>
63
#include <ll/stdio.h>
64
#include <ll/string.h>
65
#include <kernel/config.h>
66
#include <kernel/model.h>
67
#include <kernel/const.h>
68
#include <sys/types.h>
69
#include <kernel/types.h>
70
#include <kernel/descr.h>
71
#include <errno.h>
72
#include <kernel/var.h>
73
#include <kernel/func.h>
74
 
353 giacomo 75
#include <tracer.h>
76
 
2 pj 77
/*----------------------------------------------------------------------*/
78
/* Kernel System variables                                              */
79
/*----------------------------------------------------------------------*/
80
 
81
int global_errnumber;   /*+ Errno used in system initialization  +*/
82
CONTEXT global_context; /*+ Context used during initialization;
83
                            It references also a safe stack      +*/
84
 
85
int task_counter;       /*+ Application task counter. It represent
86
                            the number of Application tasks in the
87
                            system. When all Application Tasks end,
88
                            also the system ends.                +*/
89
 
90
int system_counter;     /*+ System task counter. It represent
91
                            the number of System tasks in the
92
                            system with the NO_KILL flag reset.
93
                            When all Application Tasks end,
94
                            the system waits for the end of the
95
                            system tasks and then it ends.       +*/
96
 
97
PID exec;               /*+ Task advised by the scheduler        +*/
98
PID exec_shadow;        /*+ Currently executing task             +*/
99
 
29 pj 100
IQUEUE freedesc;        /*+ Free descriptor handled as a queue   +*/
2 pj 101
 
102
DWORD sys_tick;         /*+ System tick (in usec)                +*/
103
struct timespec schedule_time;
104
                        /*+ Timer read at each call to schedule()+*/
105
 
106
int   cap_timer;        /*+ the capacity event posted when the
107
                            task starts                          +*/
108
struct timespec cap_lasttime;
109
                        /*+ the time at whitch the capacity
110
                            event is posted. Normally, it is
111
                            equal to schedule_time               +*/
112
 
113
 
114
 
115
DWORD sched_levels;     /*+ Schedule levels active in the system +*/
116
DWORD res_levels;       /*+ Resource levels active in the system +*/
117
 
118
/*+ Process descriptor table +*/
119
proc_des proc_table[MAX_PROC];
120
 
38 pj 121
/* Scheduling modules descriptor table */
122
/* ------------------------------------------------------------------------ */
123
 
124
/* the descriptor table */
2 pj 125
level_des *level_table[MAX_SCHED_LEVEL];
38 pj 126
/* ... and the size of each descriptor */
127
size_t level_size[MAX_SCHED_LEVEL];
2 pj 128
 
38 pj 129
/* an utilization counter incremented if a level is used by another module */
130
int level_used[MAX_SCHED_LEVEL];
131
/* these data structures (first, last, free, next & prev)
132
   are used to implement a double linked list of scheduling modules.
133
   That list is used by the scheduler to call the module's schedulers. */
134
int level_first; /* first module in the list */
135
int level_last;  /* last module in the list */
136
int level_free;  /* free single linked list of free module descriptors. */
137
int level_next[MAX_SCHED_LEVEL];
138
int level_prev[MAX_SCHED_LEVEL];
139
/* ------------------------------------------------------------------------ */
140
 
2 pj 141
/*+ Resource descriptor table +*/
142
resource_des *resource_table[MAX_RES_LEVEL];
143
 
144
/*+ This variable is set by the system call sys_end() or sys_abort().
145
    When a sys_end() or sys_abort is called into an event handler,
146
    we don't have to change context in the reschedule().
147
    look at kernel/event.c +*/
148
int mustexit = 0;
149
 
150
/*+ this is the system runlevel... it may be from 0 to 4:
151
 
152
    1 - running
153
    2 - shutdown
154
    3 - before halting
155
    4 - halting
156
+*/
157
int runlevel;
158
 
159
/*+ this variable is set to 1 into call_runlevel_func (look at init.c)
160
    ad it is used because the task_activate (look at activate.c) must
161
    work in a different way when the system is in the global_context +*/
162
int calling_runlevel_func;
163
 
164
 
165
/*----------------------------------------------------------------------*/
166
/* Kernel internal functions                                            */
167
/*----------------------------------------------------------------------*/
168
 
169
/*+ errno Handling: this functions returns the correct address for errno.
170
    The address returned can be either the global errno or the errno local
171
    to the execution task */
172
static int *__errnumber()
173
{
174
  if (exec_shadow == -1)
175
    return &global_errnumber;
176
  else
177
    return &(proc_table[exec_shadow].errnumber);
178
}
179
 
180
/*+ this is the capacity timer. it fires when the running task has expired
181
    his time contained in the avail_time field. The event is tipically
182
    posted in the scheduler() after the task_dispatch. The task_dispatch
183
    can modify the avail_time field to reach his scheduling purposes.
184
    The wcet field is NOT used in the Generic kernel. it is initialized at
185
    init time to 0. +*/
186
void capacity_timer(void *arg)
187
{
188
  /* the capacity event is served, so at the epilogue we
189
     don't have to erase it */
190
  cap_timer = NIL;
191
 
192
//  kern_printf("cap%d ",exec_shadow);
193
 
194
  /* When we reschedule, the call to task_epilogue check the slice and
195
     put the task in the queue's tail */
196
  event_need_reschedule();
197
}
198
 
199
/*+
200
  Generic Scheduler:
201
  This function select the next task that should be executed.
202
  The selection is made calling the level schedulers.
203
  It assume that THERE IS a task that can be scheduled in one
204
  level.
205
 
206
  The general scheduler:
207
  - first, it checks for interrupts.
208
  - then, it calls the epilogue of the task pointed in exec_shadow
209
  - after that, it calls the level schedulers
210
  - then it sets exec and it follows the shadow chain
211
  - finally it calls task_dispatch for the new task (the shadow!!!),
212
    saying if exec != exec_shadow
213
 
214
+*/
215
void scheduler(void)
216
{
217
  LEVEL l;    /* a counter                                     */
218
  struct timespec ty; /* a dummy used for time computation     */
219
 
220
  PID p;      /* p is the task chosen by the level scheduler   */
221
  int ok;     /* 1 only if the task chosen by the level scheduler
222
                 is eligible (normally, it is; but in some server
223
                 it is not always true (i.e., CBS))            */
224
 
225
  PID old_exec_shadow;
226
 
227
  if ( (exec_shadow != -1 &&
228
       (proc_table[exec_shadow].control & NO_PREEMPT) ) )
229
    return;
230
 
38 pj 231
  //  kern_printf("(!");
232
 
2 pj 233
  /*
234
  exec_shadow = exec = -1 only if the scheduler is called from:
235
   . task_endcycle
236
   . task_kill
237
   . task_extract
238
   . task_sleep
239
   . task_delay
240
  and from the system startup routines.
241
 
242
  Normally, the scheduler is called with exec & co != -1...
243
 
244
  if exec & co. is set to -1 before calling scheduler(), the following
245
  stuffs have to be executed before the call
246
  - get the schedule_time
247
  - account the capacity if necessary
248
  - call an epilogue
249
  */
250
 
38 pj 251
  /* then, we call the epilogue. the epilogue tipically checks the
252
     avail_time field... */
2 pj 253
  if (exec_shadow != -1) {
38 pj 254
    kern_epilogue_macro();
2 pj 255
 
256
    l = proc_table[exec_shadow].task_level;
38 pj 257
    level_table[l]->public_epilogue(l,exec_shadow);
2 pj 258
  }
259
 
38 pj 260
  //  kern_printf("[");
261
 
262
  l = level_first;
2 pj 263
  for(;;) {
264
    do {
38 pj 265
      p = level_table[l]->public_scheduler(l);
266
      //      kern_printf("p=%d",p);
2 pj 267
      if (p != NIL)
268
        ok = level_table[ proc_table[p].task_level ]->
38 pj 269
          public_eligible(proc_table[p].task_level,p);
2 pj 270
      else
271
        ok = 0;
38 pj 272
      //      kern_printf(" ok=%d",ok);      
2 pj 273
    } while (ok < 0); /* repeat the level scheduler if the task isn't
274
                         eligible... (ex. in the aperiodic servers...) */
275
    if (p != NIL) break;
276
 
38 pj 277
    l = level_next[l];  /* THERE MUST BE a level with a task to schedule */
278
    //    kern_printf(" l=%d",l);      
2 pj 279
  };
280
 
38 pj 281
  //  kern_printf("]");
282
 
2 pj 283
  /* we follow the shadow chain */
284
  old_exec_shadow=exec_shadow;
285
  exec_shadow = exec = p;
286
  while (exec_shadow != proc_table[exec_shadow].shadow)
287
    exec_shadow = proc_table[exec_shadow].shadow;
288
 
289
  /* tracer stuff */
290
  if (old_exec_shadow!=exec_shadow)
353 giacomo 291
    TRACER_LOGEVENT(FTrace_EVT_task_schedule,1,exec_shadow,0);
38 pj 292
  //    kern_printf("[%i->%i]",old_exec_shadow,exec_shadow);
2 pj 293
 
294
  /* we control the correctness of the shadows when we kill */
295
  proc_table[exec_shadow].status = EXE;
296
 
38 pj 297
  //  kern_printf("(d%d)",exec_shadow);
2 pj 298
  l = proc_table[exec_shadow].task_level;
38 pj 299
  level_table[l]->public_dispatch(l, exec_shadow, exec!=exec_shadow);
2 pj 300
 
38 pj 301
  //  kern_printf("*");
302
 
2 pj 303
  /* Finally,we post the capacity event, BUT
304
     . only if the task require that
305
     . only if exec==exec_shadow (if a task is blocked we don't want
306
       to check the capacity!!!) */
307
  if ((proc_table[exec_shadow].control & CONTROL_CAP)
308
      && exec==exec_shadow) {
309
    TIMESPEC_ASSIGN(&ty, &schedule_time);
310
    ADDUSEC2TIMESPEC(proc_table[exec_shadow].avail_time,&ty);
38 pj 311
    //    kern_printf("³s%d ns%d sched s%d ns%d³",ty.tv_sec,ty.tv_nsec, schedule_time.tv_sec, schedule_time.tv_nsec);
2 pj 312
    cap_timer = kern_event_post(&ty, capacity_timer, NULL);
313
  }
314
  /* set the time at witch the task is scheduled */
315
  TIMESPEC_ASSIGN(&cap_lasttime, &schedule_time);
316
 
38 pj 317
  //  kern_printf("(s%d)",exec_shadow);
2 pj 318
}
319
 
320
 
321
/*+
322
  Guarantee:
323
  This function guarantees the system: it calls the
324
  level_guarantee of each level that have that function != NULL
325
 
326
  The guarantee is based on a utilization factor basis.
327
  We mantain only a DWORD. num has to be interpreted as num/MAX_DWORD
328
  free bandwidth.
329
+*/
330
int guarantee()
331
{
332
  bandwidth_t num=MAX_BANDWIDTH;
333
  int l;
334
 
38 pj 335
  for (l =0; l<MAX_SCHED_LEVEL && level_table[l]->public_guarantee; l++)
336
    if (!level_table[l]->public_guarantee(l,&num))
2 pj 337
      return -1;
338
 
339
  return 0; /* OK */
340
}
341
 
342
/*----------------------------------------------------------------------*/
343
/* Context switch handling functions                                    */
344
/*----------------------------------------------------------------------*/
345
/* this function is called every time a context change occurs,
346
   when a task is preempted by an event called into an IRQ */
347
void kern_after_dispatch()
348
{
349
  /* every time a task wakes up from an IRQ, it has to check for async
350
     cancellation */
351
  check_killed_async();
352
 
353
  /* Then, look for pending signal delivery */
354
  kern_deliver_pending_signals();
355
}
356
 
357
/*----------------------------------------------------------------------*/
157 pj 358
/* Abort strings                                                        */
359
/*----------------------------------------------------------------------*/
360
 
361
const char *const _sys_abrtlist[] = {
362
  "zero - no error",
363
  "OSLib exception",
364
  "generic unhandled signal raised",
365
  "error in signal_init",
366
  "default exception handler code",
367
  "ARP table full"
368
};
369
 
370
/*----------------------------------------------------------------------*/
2 pj 371
/* Kernel main system functions                                         */
372
/*----------------------------------------------------------------------*/
373
 
374
/*+
375
  This function initialize
376
  - the virtual machine (timer, interrupt, mem)
377
  the system's structures (queues, tables) , & the two task main &
378
  dummy, that are always present
379
+*/
45 pj 380
void __kernel_init__(/* struct multiboot_info *multiboot */ void)
2 pj 381
{
382
  int i,j;                                              /* counters */
383
 
384
  struct ll_initparms parms;                          /* for the VM */
385
 
386
//  extern void C8042_restore(void);              /* an exit function */
387
  int aborting;          /* it is set if we are aborting the system */
388
 
45 pj 389
  struct multiboot_info *multiboot=mbi_address();
2 pj 390
 
391
 
392
 
393
  /*
394
   * Runlevel 0: kernel startup
395
   *
396
   *
397
   */
398
 
38 pj 399
  runlevel = RUNLEVEL_STARTUP;
2 pj 400
 
401
  /* The kernel startup MUST proceed with int disabled!    */
402
  kern_cli();
403
 
404
  /* First we initialize the memory allocator, because it is needed by
405
     __kernel_register_levels__     */
406
  kern_mem_init(multiboot);
407
 
408
  /* Clear the task descriptors */
409
  for (i = 0; i < MAX_PROC; i++) {
410
     proc_table[i].task_level   = -1;
411
     proc_table[i].stack        = NULL;
412
     proc_table[i].name[0]      = 0;
413
     proc_table[i].status       = FREE;
414
     proc_table[i].pclass       = 0;
415
     proc_table[i].group        = 0;
416
     proc_table[i].stacksize    = 0;
417
     proc_table[i].control      = 0;
418
     proc_table[i].frozen_activations = 0;
419
     proc_table[i].sigmask      = 0;
420
     proc_table[i].sigpending   = 0;
421
     proc_table[i].avail_time   = 0;
422
     proc_table[i].shadow       = i;
423
     proc_table[i].cleanup_stack= NULL;
424
     proc_table[i].errnumber    = 0;
29 pj 425
     //proc_table[i].priority     = 0;
426
     //NULL_TIMESPEC(&proc_table[i].timespec_priority);
2 pj 427
     proc_table[i].delay_timer  = -1;
428
     proc_table[i].wcet         = -1;
429
 
430
     proc_table[i].jet_tvalid   = 0;
431
     proc_table[i].jet_curr     = 0;
432
     proc_table[i].jet_max      = 0;
433
     proc_table[i].jet_sum      = 0;
434
     proc_table[i].jet_n        = 0;
435
     for (j=0; j<JET_TABLE_DIM; j++)
436
        proc_table[i].jet_table[j] = 0;
437
 
438
     proc_table[i].waiting_for_me = NIL;
439
     proc_table[i].return_value   = NULL;
440
 
441
     for (j=0; j<PTHREAD_KEYS_MAX; j++)
442
       proc_table[i].keys[j] = NULL;
443
  }
444
 
29 pj 445
  /* set up the free descriptor queue */
446
  //  for (i = 0; i < MAX_PROC-1; i++) proc_table[i].next = i+1;
447
  //  proc_table[MAX_PROC-1].next = NIL;
448
  //  for (i = MAX_PROC-1; i > 0; i--) proc_table[i].prev = i-1;
449
  //  proc_table[0].prev = NIL;
450
  //  freedesc = 0;
451
  iq_init(&freedesc, NULL, 0);
452
  for (i = 0; i < MAX_PROC; i++)
453
    iq_insertlast(i,&freedesc);
454
 
2 pj 455
  /* Set up the varius stuff */
456
  global_errnumber = 0;
457
  task_counter     = 0;
458
  system_counter   = 0;
459
  exec             = -1;
460
  exec_shadow      = -1;
461
  cap_timer        = -1;
462
  NULL_TIMESPEC(&cap_lasttime);
463
  sched_levels     = 0;  /* They are not registered yet... */
464
  res_levels       = 0;
465
  calling_runlevel_func = 0;
466
 
467
  /* Clear the key-specific data */
468
  task_specific_data_init();
469
 
470
  /* Clear exit and init functions */
471
  runlevel_init();
472
 
473
  /* Init VM layer (Interrupts, levels & memory management)           */
474
  /* for old exception handling, use excirq_init() */
475
  signals_init();
38 pj 476
  set_default_exception_handler();
2 pj 477
 
38 pj 478
  /* Clear scheduling modules registration data */
479
  levels_init();
480
 
2 pj 481
  sys_tick = __kernel_register_levels__(multiboot);
482
 
483
  /* test on system tick */
484
  if (sys_tick>=55000)  {
485
     printk("The system tick must be less than 55 mSec!");
486
     l1_exit(0);
487
  }
488
 
489
  /* OSLib initialization */
490
  if (sys_tick)
491
    parms.mode = LL_PERIODIC;
492
  else
493
    parms.mode = LL_ONESHOT; // one shot!!!
494
 
495
  parms.tick = sys_tick;
496
 
497
  /*
38 pj 498
   * Runlevel INIT: Let's go!!!!
2 pj 499
   *
500
   *
501
   */
502
 
503
  runlevel = RUNLEVEL_INIT;
504
 
505
  ll_init();
506
  event_init(&parms);
507
  seterrnumber(__errnumber);
508
  event_setprologue(event_resetepilogue);
509
  event_setlasthandler(kern_after_dispatch);
510
 
511
  /* call the init functions */
512
  call_runlevel_func(RUNLEVEL_INIT, 0);
513
 
38 pj 514
 
515
 
516
 
517
  /*
518
   * Runlevel RUNNING: Hoping that all works fine ;-)
519
   *
520
   *
521
   */
522
 
523
  runlevel = RUNLEVEL_RUNNING;
524
 
2 pj 525
  /* reset keyboard after exit */
526
//  sys_atexit((void(*)(void *))C8042_restore,NULL,AFTER_EXIT);
527
 
528
  /* tracer stuff */
353 giacomo 529
  #ifdef __OLD_TRACER__
530
    trc_resume();
531
  #endif
2 pj 532
 
533
  /* exec and exec_shadow are already = -1 */
38 pj 534
  kern_gettime(&schedule_time);
2 pj 535
  scheduler();
536
  global_context = ll_context_from(); /* It will be used by sys_end */
537
  ll_context_to(proc_table[exec_shadow].context);
538
 
539
  /*
540
   *
541
   * Now the system starts!!!
542
   * (hoping that someone has created some task(s) )
543
   * The function returns only at system end...
544
   *
545
   */
546
 
547
 
548
  /*
38 pj 549
   * Runlevel SHUTDOWN: Shutting down the system... :-(
2 pj 550
   *
551
   *
552
   */
553
 
554
  event_setlasthandler(NULL);
555
 
556
  // ll_abort(666); 
557
  /* tracer stuff */
353 giacomo 558
  #ifdef __OLD_TRACER__
559
    trc_suspend();
560
  #endif
2 pj 561
 
562
  runlevel = RUNLEVEL_SHUTDOWN;
563
 
564
  /* 1 when the error code is != 0 */
565
  aborting = global_errnumber > 0;
566
 
38 pj 567
  //kern_printf("after  - system_counter=%d, task_counter = %d\n", system_counter,task_counter); 
2 pj 568
 
569
  call_runlevel_func(RUNLEVEL_SHUTDOWN, aborting);
570
 
38 pj 571
  //kern_printf("before - system_counter=%d, task_counter = %d\n", system_counter,task_counter);
2 pj 572
 
573
  if (system_counter) {
574
    /* To shutdown the kernel correctly, we have to wait that all the SYSTEM
575
       tasks that are killable will die...
576
 
577
       We don't mess about the user task... we only kill them and reschedule
578
       The only thing important is that the system tasks shut down correctly.
579
       We do nothing for user tasks that remain active (because, for example,
580
       they have the cancelability set to deferred) when the system goes to
581
       runlevel 3 */
38 pj 582
    //kern_printf("Û%lu",kern_gettime(NULL));
2 pj 583
    kill_user_tasks();
38 pj 584
    //kern_printf("Û%lu",kern_gettime(NULL)); 
2 pj 585
 
586
    /* we have to go again in multitasking mode!!! */
587
    mustexit = 0;
588
 
589
    /* exec and exec_shadow are already = -1 */
38 pj 590
    kern_gettime(&schedule_time);
2 pj 591
    global_context = ll_context_from(); /* It will be used by sys_end */
592
    scheduler();
593
 
594
    event_setlasthandler(kern_after_dispatch);
595
    ll_context_to(proc_table[exec_shadow].context);
596
    event_setlasthandler(NULL);
597
  }
598
 
599
 
600
 
601
 
602
  /*
38 pj 603
   * Runlevel BEFORE_EXIT: Before Halting the system
2 pj 604
   *
605
   *
606
   */
607
 
608
  runlevel = RUNLEVEL_BEFORE_EXIT;
609
 
610
 
611
  /* the field global_errnumber is
612
     =0  if the system normally ends
613
     !=0 if an abort is issued
614
  */
615
 
616
  //kern_printf("Chiamo exit Functions\n"); 
617
 
618
  call_runlevel_func(RUNLEVEL_BEFORE_EXIT, aborting);
619
 
620
  //kern_printf("Dopo exit Functions\n"); 
621
 
622
  /* Shut down the VM layer */
623
  ll_end();
624
 
625
 
626
  /*
38 pj 627
   * Runlevel AFTER_EXIT: After halting...
2 pj 628
   *
629
   *
630
   */
631
 
632
  runlevel = RUNLEVEL_AFTER_EXIT;
633
 
634
  //kern_printf("prima before Functions\n"); 
635
 
636
  call_runlevel_func(RUNLEVEL_AFTER_EXIT, 0);
637
 
638
  //kern_printf("dopo before Functions\n"); 
639
  kern_cli();
640
  if (global_errnumber) {
641
    /* vm_abort called */
157 pj 642
    kern_printf("Abort detected\nCode : %u (%s)\n",global_errnumber,
643
                global_errnumber<=LAST_ABORT_NUMBER ? _sys_abrtlist[global_errnumber] : "no description" );
2 pj 644
    l1_exit(-1);
645
  }
646
 
647
  l1_exit(0); // System terminated normally
648
 
649
}
650
 
38 pj 651
/* IMPORTANT!!!
652
   I'm almost sure the shutdown procedure does not work into interrupts. */
2 pj 653
void internal_sys_end(int i)
654
{
655
  LEVEL l;    /* a counter                                     */
38 pj 656
 
657
  /* if something goes wron during the real mode */
658
  if (runlevel==RUNLEVEL_STARTUP || runlevel==RUNLEVEL_AFTER_EXIT)
659
    l1_exit(i);
2 pj 660
 
661
  //kern_printf("mustexit=%d",mustexit);
38 pj 662
  if (mustexit)
663
    return;
2 pj 664
 
38 pj 665
  mustexit = 1;
2 pj 666
 
38 pj 667
  global_errnumber = i;
668
 
669
 
670
  if (!ll_ActiveInt()) {
671
    proc_table[exec_shadow].context = kern_context_save();
672
 
2 pj 673
    if (exec_shadow != -1) {
38 pj 674
      kern_gettime(&schedule_time);
675
 
676
      kern_epilogue_macro();
677
 
2 pj 678
      /* then, we call the epilogue. the epilogue tipically checks the
38 pj 679
         avail_time field... */
2 pj 680
      l = proc_table[exec_shadow].task_level;
38 pj 681
      level_table[l]->public_epilogue(l,exec_shadow);
682
 
2 pj 683
      exec_shadow = exec = -1;
684
    }
38 pj 685
    kern_context_load(global_context);
686
  }
2 pj 687
 
38 pj 688
  if (ll_ActiveInt()) {
689
    ll_context_to(global_context);
690
    /* The context change will be done when all the interrupts end!!! */
2 pj 691
  }
38 pj 692
 
2 pj 693
  //kern_printf("fine sysend");
694
 
695
  /* the control reach this line only if we call sys_end() into an event
696
     handler (for example, if the event raises an exception with
697
     SA_USEFAST active and the exception calls sys_end() ) */
698
}
699
 
700
 
38 pj 701
/*
702
   Close the system & return to HOST OS.
703
   Can be called from tasks and from ISRS
704
 
705
 
706
*/
707
void sys_abort(int err)
2 pj 708
{
709
  SYS_FLAGS f;
710
 
711
  f = kern_fsave();
38 pj 712
  internal_sys_end(err);
2 pj 713
  kern_frestore(f);
714
}
715
 
38 pj 716
void sys_end(void)
2 pj 717
{
38 pj 718
  sys_abort(0);
2 pj 719
}
720
 
721
void _exit(int status)
722
{
38 pj 723
  sys_abort(status);
2 pj 724
}
725
 
726
 
727
 
728
/* this function is never called... used for the OSLib */
729
void sys_abort_tail(int code)
730
{
731
 //DUMMY!!!!
732
}
733
 
734
 
735
 
736
/*+ this primitive returns the time read from the system timer +*/
737
TIME sys_gettime(struct timespec *t)
738
{
739
  SYS_FLAGS f;
740
  TIME x;
741
 
742
  f = kern_fsave();
38 pj 743
  x = kern_gettime(t);
2 pj 744
  kern_frestore(f);
745
 
746
  return x;
747
}
748
 
749