Rev 29 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | pj | 1 | /* |
2 | * Project: S.Ha.R.K. |
||
3 | * |
||
4 | * Coordinators: |
||
5 | * Giorgio Buttazzo <giorgio@sssup.it> |
||
6 | * Paolo Gai <pj@gandalf.sssup.it> |
||
7 | * |
||
8 | * Authors : |
||
9 | * Paolo Gai <pj@gandalf.sssup.it> |
||
10 | * Massimiliano Giorgi <massy@gandalf.sssup.it> |
||
11 | * Luca Abeni <luca@gandalf.sssup.it> |
||
12 | * (see the web pages for full authors list) |
||
13 | * |
||
14 | * ReTiS Lab (Scuola Superiore S.Anna - Pisa - Italy) |
||
15 | * |
||
16 | * http://www.sssup.it |
||
17 | * http://retis.sssup.it |
||
18 | * http://shark.sssup.it |
||
19 | */ |
||
20 | |||
21 | /** |
||
22 | ------------ |
||
38 | pj | 23 | CVS : $Id: cbs.c,v 1.4 2003-01-07 17:07:50 pj Exp $ |
2 | pj | 24 | |
25 | File: $File$ |
||
38 | pj | 26 | Revision: $Revision: 1.4 $ |
27 | Last update: $Date: 2003-01-07 17:07:50 $ |
||
2 | pj | 28 | ------------ |
29 | |||
30 | This file contains the aperiodic server CBS (Total Bandwidth Server) |
||
31 | |||
32 | Read CBS.h for further details. |
||
33 | |||
34 | **/ |
||
35 | |||
36 | /* |
||
37 | * Copyright (C) 2000 Paolo Gai |
||
38 | * |
||
39 | * This program is free software; you can redistribute it and/or modify |
||
40 | * it under the terms of the GNU General Public License as published by |
||
41 | * the Free Software Foundation; either version 2 of the License, or |
||
42 | * (at your option) any later version. |
||
43 | * |
||
44 | * This program is distributed in the hope that it will be useful, |
||
45 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
46 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
47 | * GNU General Public License for more details. |
||
48 | * |
||
49 | * You should have received a copy of the GNU General Public License |
||
50 | * along with this program; if not, write to the Free Software |
||
51 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
||
52 | * |
||
53 | */ |
||
54 | |||
55 | |||
56 | #include <modules/cbs.h> |
||
57 | #include <ll/stdio.h> |
||
58 | #include <ll/string.h> |
||
59 | #include <kernel/model.h> |
||
60 | #include <kernel/descr.h> |
||
61 | #include <kernel/var.h> |
||
62 | #include <kernel/func.h> |
||
63 | #include <kernel/trace.h> |
||
64 | |||
65 | /*+ 4 debug purposes +*/ |
||
66 | #undef CBS_TEST |
||
67 | #undef CBS_COUNTER |
||
68 | |||
69 | #ifdef TESTG |
||
70 | #include "drivers/glib.h" |
||
71 | TIME x,oldx; |
||
72 | extern TIME starttime; |
||
73 | #endif |
||
74 | |||
75 | |||
76 | /*+ Status used in the level +*/ |
||
77 | #define CBS_IDLE APER_STATUS_BASE /*+ waiting the activation +*/ |
||
78 | #define CBS_ZOMBIE APER_STATUS_BASE+1 /*+ waiting the period end +*/ |
||
79 | |||
80 | /*+ task flags +*/ |
||
81 | #define CBS_SAVE_ARRIVALS 1 |
||
82 | #define CBS_APERIODIC 2 |
||
83 | |||
84 | /*+ the level redefinition for the Total Bandwidth Server level +*/ |
||
85 | typedef struct { |
||
86 | level_des l; /*+ the standard level descriptor +*/ |
||
87 | |||
88 | /* The wcet are stored in the task descriptor, but we need |
||
89 | an array for the deadlines. We can't use the timespec_priority |
||
90 | field because it is used by the master level!!!... |
||
91 | Notice that however the use of the timespec_priority field |
||
92 | does not cause any problem... */ |
||
93 | |||
94 | struct timespec cbs_dline[MAX_PROC]; /*+ CBS deadlines +*/ |
||
95 | |||
96 | TIME period[MAX_PROC]; /*+ CBS activation period +*/ |
||
97 | |||
98 | struct timespec reactivation_time[MAX_PROC]; |
||
99 | /*+ the time at witch the reactivation timer is post +*/ |
||
100 | int reactivation_timer[MAX_PROC]; |
||
101 | /*+ the recativation timer +*/ |
||
102 | |||
103 | int nact[MAX_PROC]; /*+ number of pending activations +*/ |
||
104 | |||
105 | BYTE flag[MAX_PROC]; /*+ task flags +*/ |
||
106 | |||
107 | int flags; /*+ the init flags... +*/ |
||
108 | |||
109 | bandwidth_t U; /*+ the used bandwidth by the server +*/ |
||
110 | |||
111 | LEVEL scheduling_level; |
||
112 | |||
113 | } CBS_level_des; |
||
114 | |||
115 | #ifdef CBS_COUNTER |
||
116 | int cbs_counter=0; |
||
117 | int cbs_counter2=0; |
||
118 | #endif |
||
119 | |||
120 | |||
121 | static void CBS_activation(CBS_level_des *lev, |
||
122 | PID p, |
||
123 | struct timespec *acttime) |
||
124 | { |
||
125 | JOB_TASK_MODEL job; |
||
126 | |||
127 | /* we have to check if the deadline and the wcet are correct before |
||
128 | activating a new task or an old task... */ |
||
129 | |||
130 | /* check 1: if the deadline is before than the actual scheduling time */ |
||
131 | |||
132 | /* check 2: if ( avail_time >= (cbs_dline - acttime)* (wcet/period) ) |
||
133 | (rule 7 in the CBS article!) */ |
||
134 | TIME t; |
||
135 | struct timespec t2,t3; |
||
136 | |||
137 | t = (lev->period[p] * proc_table[p].avail_time) / proc_table[p].wcet; |
||
138 | t3.tv_sec = t / 1000000; |
||
139 | t3.tv_nsec = (t % 1000000) * 1000; |
||
140 | |||
141 | SUBTIMESPEC(&lev->cbs_dline[p], acttime, &t2); |
||
142 | |||
143 | if (/* 1 */ TIMESPEC_A_LT_B(&lev->cbs_dline[p], acttime) || |
||
144 | /* 2 */ TIMESPEC_A_GT_B(&t3, &t2) ) { |
||
145 | /* if (TIMESPEC_A_LT_B(&lev->cbs_dline[p], acttime) ) |
||
146 | kern_printf("$"); |
||
147 | else |
||
148 | kern_printf("(Ûdline%d.%d act%d.%d wcet%d per%d avail%dÛ)", |
||
149 | lev->cbs_dline[p].tv_sec,lev->cbs_dline[p].tv_nsec/1000, |
||
150 | acttime->tv_sec, acttime->tv_nsec/1000, |
||
151 | proc_table[p].wcet, lev->period[p], proc_table[p].avail_time); |
||
152 | */ /* we modify the deadline ... */ |
||
153 | TIMESPEC_ASSIGN(&lev->cbs_dline[p], acttime); |
||
154 | ADDUSEC2TIMESPEC(lev->period[p], &lev->cbs_dline[p]); |
||
155 | |||
156 | /* and the capacity */ |
||
157 | proc_table[p].avail_time = proc_table[p].wcet; |
||
158 | } |
||
159 | |||
160 | #ifdef TESTG |
||
161 | if (starttime && p == 3) { |
||
162 | oldx = x; |
||
163 | x = ((lev->cbs_dline[p].tv_sec*1000000+lev->cbs_dline[p].tv_nsec/1000)/5000 - starttime) + 20; |
||
164 | // kern_printf("(a%d)",lev->cbs_dline[p].tv_sec*1000000+lev->cbs_dline[p].tv_nsec/1000); |
||
165 | if (oldx > x) sys_end(); |
||
166 | if (x<640) |
||
167 | grx_plot(x, 15, 8); |
||
168 | } |
||
169 | #endif |
||
170 | |||
171 | /* and, finally, we reinsert the task in the master level */ |
||
172 | job_task_default_model(job, lev->cbs_dline[p]); |
||
173 | job_task_def_noexc(job); |
||
174 | level_table[ lev->scheduling_level ]-> |
||
38 | pj | 175 | private_insert(lev->scheduling_level, p, (TASK_MODEL *)&job); |
2 | pj | 176 | } |
177 | |||
178 | static void CBS_avail_time_check(CBS_level_des *lev, PID p) |
||
179 | { |
||
180 | /* there is a while because if the wcet is << than the system tick |
||
181 | we need to postpone the deadline many times */ |
||
182 | while (proc_table[p].avail_time <= 0) { |
||
183 | ADDUSEC2TIMESPEC(lev->period[p], &lev->cbs_dline[p]); |
||
184 | proc_table[p].avail_time += proc_table[p].wcet; |
||
185 | |||
186 | #ifdef TESTG |
||
187 | if (starttime && p == 3) { |
||
188 | oldx = x; |
||
189 | x = ((lev->cbs_dline[p].tv_sec*1000000+lev->cbs_dline[p].tv_nsec/1000)/5000 - starttime) + 20; |
||
190 | // kern_printf("(e%d avail%d)",lev->cbs_dline[p].tv_sec*1000000+lev->cbs_dline[p].tv_nsec/1000,proc_table[p].avail_time); |
||
191 | if (oldx > x) sys_end(); |
||
192 | if (x<640) |
||
193 | grx_plot(x, 15, 2); |
||
194 | } |
||
195 | #endif |
||
196 | } |
||
197 | } |
||
198 | |||
199 | |||
200 | /* this is the periodic reactivation of the task... it is posted only |
||
201 | if the task is a periodic task */ |
||
202 | static void CBS_timer_reactivate(void *par) |
||
203 | { |
||
204 | PID p = (PID) par; |
||
205 | CBS_level_des *lev; |
||
206 | |||
207 | lev = (CBS_level_des *)level_table[proc_table[p].task_level]; |
||
208 | |||
209 | #ifdef CBS_COUNTER |
||
210 | if (p==5) cbs_counter++; |
||
211 | #endif |
||
212 | |||
213 | if (proc_table[p].status == CBS_IDLE) { |
||
214 | /* the task has finished the current activation and must be |
||
215 | reactivated */ |
||
216 | CBS_activation(lev,p,&lev->reactivation_time[p]); |
||
217 | |||
218 | event_need_reschedule(); |
||
219 | } |
||
220 | else if (lev->flag[p] & CBS_SAVE_ARRIVALS) |
||
221 | /* the task has not completed the current activation, so we save |
||
222 | the activation incrementing nact... */ |
||
223 | lev->nact[p]++; |
||
224 | |||
225 | /* repost the event at the next period end... */ |
||
226 | ADDUSEC2TIMESPEC(lev->period[p], &lev->reactivation_time[p]); |
||
227 | lev->reactivation_timer[p] = kern_event_post(&lev->reactivation_time[p], |
||
228 | CBS_timer_reactivate, |
||
229 | (void *)p); |
||
230 | #ifdef CBS_COUNTER |
||
231 | if (p==5) cbs_counter2++; |
||
232 | #endif |
||
233 | /* tracer stuff */ |
||
234 | trc_logevent(TRC_INTACTIVATION,&p); |
||
235 | |||
236 | } |
||
237 | |||
238 | /*+ this function is called when a killed or ended task reach the |
||
239 | period end +*/ |
||
240 | static void CBS_timer_zombie(void *par) |
||
241 | { |
||
242 | PID p = (PID) par; |
||
243 | CBS_level_des *lev; |
||
244 | |||
245 | lev = (CBS_level_des *)level_table[proc_table[p].task_level]; |
||
246 | |||
247 | /* we finally put the task in the ready queue */ |
||
248 | proc_table[p].status = FREE; |
||
29 | pj | 249 | iq_insertfirst(p,&freedesc); |
2 | pj | 250 | |
251 | /* and free the allocated bandwidth */ |
||
252 | lev->U -= (MAX_BANDWIDTH/lev->period[p]) * proc_table[p].wcet; |
||
253 | |||
254 | } |
||
255 | |||
256 | |||
257 | /* The on-line guarantee is enabled only if the appropriate flag is set... */ |
||
38 | pj | 258 | static int CBS_public_guarantee(LEVEL l, bandwidth_t *freebandwidth) |
2 | pj | 259 | { |
260 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
261 | |||
262 | if (lev->flags & CBS_FAILED_GUARANTEE) { |
||
263 | *freebandwidth = 0; |
||
264 | return 0; |
||
265 | } |
||
266 | else |
||
267 | if (*freebandwidth >= lev->U) { |
||
268 | *freebandwidth -= lev->U; |
||
269 | return 1; |
||
270 | } |
||
271 | else |
||
272 | return 0; |
||
273 | } |
||
274 | |||
38 | pj | 275 | static int CBS_public_create(LEVEL l, PID p, TASK_MODEL *m) |
2 | pj | 276 | { |
277 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
38 | pj | 278 | SOFT_TASK_MODEL *soft; |
2 | pj | 279 | |
38 | pj | 280 | if (m->pclass != SOFT_PCLASS) return -1; |
281 | if (m->level != 0 && m->level != l) return -1; |
||
282 | soft = (SOFT_TASK_MODEL *)m; |
||
283 | if (!(soft->met && soft->period)) return -1; |
||
2 | pj | 284 | |
38 | pj | 285 | soft = (SOFT_TASK_MODEL *)m; |
286 | |||
2 | pj | 287 | /* Enable wcet check */ |
288 | proc_table[p].avail_time = soft->met; |
||
289 | proc_table[p].wcet = soft->met; |
||
290 | proc_table[p].control |= CONTROL_CAP; |
||
291 | |||
292 | lev->nact[p] = 0; |
||
293 | lev->period[p] = soft->period; |
||
294 | NULL_TIMESPEC(&lev->cbs_dline[p]); |
||
295 | |||
296 | if (soft->periodicity == APERIODIC) |
||
297 | lev->flag[p] = CBS_APERIODIC; |
||
298 | else |
||
299 | lev->flag[p] = 0; |
||
300 | |||
301 | if (soft->arrivals == SAVE_ARRIVALS) |
||
302 | lev->flag[p] |= CBS_SAVE_ARRIVALS; |
||
303 | |||
304 | /* update the bandwidth... */ |
||
305 | if (lev->flags & CBS_ENABLE_GUARANTEE) { |
||
306 | bandwidth_t b; |
||
307 | b = (MAX_BANDWIDTH / soft->period) * soft->met; |
||
308 | |||
309 | /* really update lev->U, checking an overflow... */ |
||
310 | if (MAX_BANDWIDTH - lev->U > b) |
||
311 | lev->U += b; |
||
312 | else |
||
313 | /* The task can NOT be guaranteed (U>MAX_BANDWIDTH)... |
||
314 | (see EDF.c) */ |
||
315 | lev->flags |= CBS_FAILED_GUARANTEE; |
||
316 | } |
||
317 | |||
318 | |||
319 | return 0; /* OK, also if the task cannot be guaranteed... */ |
||
320 | } |
||
321 | |||
38 | pj | 322 | static void CBS_public_detach(LEVEL l, PID p) |
2 | pj | 323 | { |
324 | /* the CBS level doesn't introduce any dinamic allocated new field. |
||
325 | we have only to reset the NO_GUARANTEE FIELD and decrement the allocated |
||
326 | bandwidth */ |
||
327 | |||
328 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
329 | |||
330 | if (lev->flags & CBS_FAILED_GUARANTEE) |
||
331 | lev->flags &= ~CBS_FAILED_GUARANTEE; |
||
332 | else |
||
333 | lev->U -= (MAX_BANDWIDTH / lev->period[p]) * proc_table[p].wcet; |
||
334 | } |
||
335 | |||
38 | pj | 336 | static int CBS_public_eligible(LEVEL l, PID p) |
2 | pj | 337 | { |
338 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
339 | JOB_TASK_MODEL job; |
||
340 | |||
341 | /* we have to check if the deadline and the wcet are correct... |
||
342 | if the CBS level schedules in background with respect to others |
||
343 | levels, there can be the case in witch a task is scheduled by |
||
344 | schedule_time > CBS_deadline; in this case (not covered in the |
||
345 | article because if there is only the standard scheduling policy |
||
346 | this never apply) we reassign the deadline */ |
||
347 | |||
348 | if ( TIMESPEC_A_LT_B(&lev->cbs_dline[p], &schedule_time) ) { |
||
349 | /* we kill the current activation */ |
||
350 | level_table[ lev->scheduling_level ]-> |
||
38 | pj | 351 | private_extract(lev->scheduling_level, p); |
2 | pj | 352 | |
353 | /* we modify the deadline ... */ |
||
354 | TIMESPEC_ASSIGN(&lev->cbs_dline[p], &schedule_time); |
||
355 | ADDUSEC2TIMESPEC(lev->period[p], &lev->cbs_dline[p]); |
||
356 | |||
357 | /* and the capacity */ |
||
358 | proc_table[p].avail_time = proc_table[p].wcet; |
||
359 | |||
360 | /* and, finally, we reinsert the task in the master level */ |
||
361 | job_task_default_model(job, lev->cbs_dline[p]); |
||
362 | job_task_def_noexc(job); |
||
363 | level_table[ lev->scheduling_level ]-> |
||
38 | pj | 364 | private_insert(lev->scheduling_level, p, (TASK_MODEL *)&job); |
2 | pj | 365 | |
366 | return -1; |
||
367 | } |
||
368 | |||
369 | return 0; |
||
370 | } |
||
371 | |||
38 | pj | 372 | static void CBS_public_dispatch(LEVEL l, PID p, int nostop) |
2 | pj | 373 | { |
374 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
375 | level_table[ lev->scheduling_level ]-> |
||
38 | pj | 376 | private_dispatch(lev->scheduling_level,p,nostop); |
2 | pj | 377 | } |
378 | |||
38 | pj | 379 | static void CBS_public_epilogue(LEVEL l, PID p) |
2 | pj | 380 | { |
381 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
382 | JOB_TASK_MODEL job; |
||
383 | |||
384 | /* check if the wcet is finished... */ |
||
385 | if ( proc_table[p].avail_time <= 0) { |
||
386 | /* we kill the current activation */ |
||
387 | level_table[ lev->scheduling_level ]-> |
||
38 | pj | 388 | private_extract(lev->scheduling_level, p); |
2 | pj | 389 | |
390 | /* we modify the deadline according to rule 4 ... */ |
||
391 | CBS_avail_time_check(lev, p); |
||
392 | |||
393 | /* and, finally, we reinsert the task in the master level */ |
||
394 | job_task_default_model(job, lev->cbs_dline[p]); |
||
395 | job_task_def_noexc(job); |
||
396 | level_table[ lev->scheduling_level ]-> |
||
38 | pj | 397 | private_insert(lev->scheduling_level, p, (TASK_MODEL *)&job); |
2 | pj | 398 | // kern_printf("epil : dl %d per %d p %d |\n", |
399 | // lev->cbs_dline[p].tv_nsec/1000,lev->period[p],p); |
||
400 | |||
401 | } |
||
402 | else |
||
403 | /* the task has been preempted. it returns into the ready queue by |
||
404 | calling the guest_epilogue... */ |
||
405 | level_table[ lev->scheduling_level ]-> |
||
38 | pj | 406 | private_epilogue(lev->scheduling_level,p); |
2 | pj | 407 | } |
408 | |||
38 | pj | 409 | static void CBS_public_activate(LEVEL l, PID p) |
2 | pj | 410 | { |
411 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
38 | pj | 412 | struct timespec t; |
2 | pj | 413 | |
414 | /* save activation (only if needed... */ |
||
415 | if (proc_table[p].status != SLEEP) { |
||
416 | if (lev->flag[p] & CBS_SAVE_ARRIVALS) |
||
417 | lev->nact[p]++; |
||
418 | return; |
||
419 | } |
||
420 | |||
38 | pj | 421 | kern_gettime(&t); |
2 | pj | 422 | |
38 | pj | 423 | CBS_activation(lev, p, &t); |
2 | pj | 424 | |
425 | /* Set the reactivation timer */ |
||
426 | if (!(lev->flag[p] & CBS_APERIODIC)) |
||
427 | { |
||
428 | /* we cannot use the deadline computed by CBS_activation because |
||
429 | the deadline may be != from actual_time + period |
||
430 | (if we call the task_activate after a task_sleep, and the |
||
431 | deadline was postponed a lot...) */ |
||
38 | pj | 432 | TIMESPEC_ASSIGN(&lev->reactivation_time[p], &t); |
2 | pj | 433 | ADDUSEC2TIMESPEC(lev->period[p], &lev->reactivation_time[p]); |
434 | // TIMESPEC_ASSIGN(&lev->reactivation_time[p], &lev->cbs_dline[p]); |
||
435 | lev->reactivation_timer[p] = kern_event_post(&lev->reactivation_time[p], |
||
436 | CBS_timer_reactivate, |
||
437 | (void *)p); |
||
438 | #ifdef CBS_COUNTER |
||
439 | if (p==5) cbs_counter2++; |
||
440 | #endif |
||
441 | } |
||
442 | // kern_printf("act : %d %d |",lev->cbs_dline[p].tv_nsec/1000,p); |
||
443 | } |
||
444 | |||
38 | pj | 445 | static void CBS_public_unblock(LEVEL l, PID p) |
2 | pj | 446 | { |
447 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
448 | struct timespec acttime; |
||
449 | |||
38 | pj | 450 | kern_gettime(&acttime); |
2 | pj | 451 | |
452 | CBS_activation(lev,p,&acttime); |
||
453 | } |
||
454 | |||
38 | pj | 455 | static void CBS_public_block(LEVEL l, PID p) |
2 | pj | 456 | { |
457 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
458 | |||
459 | /* check if the wcet is finished... */ |
||
460 | CBS_avail_time_check(lev, p); |
||
461 | |||
462 | level_table[ lev->scheduling_level ]-> |
||
38 | pj | 463 | private_extract(lev->scheduling_level,p); |
2 | pj | 464 | } |
465 | |||
38 | pj | 466 | static int CBS_public_message(LEVEL l, PID p, void *m) |
2 | pj | 467 | { |
468 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
469 | |||
470 | /* check if the wcet is finished... */ |
||
471 | CBS_avail_time_check(lev, p); |
||
472 | |||
473 | if (lev->nact[p]) { |
||
474 | /* continue!!!! */ |
||
475 | lev->nact[p]--; |
||
476 | level_table[ lev->scheduling_level ]-> |
||
38 | pj | 477 | private_epilogue(lev->scheduling_level,p); |
2 | pj | 478 | } |
479 | else { |
||
480 | level_table[ lev->scheduling_level ]-> |
||
38 | pj | 481 | private_extract(lev->scheduling_level,p); |
2 | pj | 482 | |
483 | if (lev->flag[p] & CBS_APERIODIC) |
||
484 | proc_table[p].status = SLEEP; |
||
485 | else /* the task is soft_periodic */ |
||
486 | proc_table[p].status = CBS_IDLE; |
||
38 | pj | 487 | } |
2 | pj | 488 | |
38 | pj | 489 | jet_update_endcycle(); /* Update the Jet data... */ |
490 | trc_logevent(TRC_ENDCYCLE,&exec_shadow); /* tracer stuff */ |
||
491 | |||
492 | return 0; |
||
2 | pj | 493 | } |
494 | |||
38 | pj | 495 | static void CBS_public_end(LEVEL l, PID p) |
2 | pj | 496 | { |
497 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
498 | |||
499 | /* check if the wcet is finished... */ |
||
500 | CBS_avail_time_check(lev, p); |
||
501 | |||
502 | level_table[ lev->scheduling_level ]-> |
||
38 | pj | 503 | private_extract(lev->scheduling_level,p); |
2 | pj | 504 | |
505 | /* we delete the reactivation timer */ |
||
506 | if (!(lev->flag[p] & CBS_APERIODIC)) { |
||
38 | pj | 507 | kern_event_delete(lev->reactivation_timer[p]); |
2 | pj | 508 | lev->reactivation_timer[p] = -1; |
509 | } |
||
510 | |||
511 | /* Finally, we post the zombie event. when the end period is reached, |
||
512 | the task descriptor and banwidth are freed */ |
||
513 | proc_table[p].status = CBS_ZOMBIE; |
||
514 | lev->reactivation_timer[p] = kern_event_post(&lev->cbs_dline[p], |
||
515 | CBS_timer_zombie, |
||
516 | (void *)p); |
||
517 | } |
||
518 | |||
519 | /* Registration functions */ |
||
520 | |||
521 | /*+ Registration function: |
||
522 | int flags the init flags ... see CBS.h +*/ |
||
38 | pj | 523 | LEVEL CBS_register_level(int flags, LEVEL master) |
2 | pj | 524 | { |
525 | LEVEL l; /* the level that we register */ |
||
526 | CBS_level_des *lev; /* for readableness only */ |
||
527 | PID i; /* a counter */ |
||
528 | |||
529 | printk("CBS_register_level\n"); |
||
530 | |||
531 | /* request an entry in the level_table */ |
||
38 | pj | 532 | l = level_alloc_descriptor(sizeof(CBS_level_des)); |
2 | pj | 533 | |
38 | pj | 534 | lev = (CBS_level_des *)level_table[l]; |
2 | pj | 535 | |
536 | printk(" lev=%d\n",(int)lev); |
||
537 | |||
538 | /* fill the standard descriptor */ |
||
539 | if (flags & CBS_ENABLE_GUARANTEE) |
||
38 | pj | 540 | lev->l.public_guarantee = CBS_public_guarantee; |
2 | pj | 541 | else |
38 | pj | 542 | lev->l.public_guarantee = NULL; |
543 | lev->l.public_create = CBS_public_create; |
||
544 | lev->l.public_detach = CBS_public_detach; |
||
545 | lev->l.public_end = CBS_public_end; |
||
546 | lev->l.public_eligible = CBS_public_eligible; |
||
547 | lev->l.public_dispatch = CBS_public_dispatch; |
||
548 | lev->l.public_epilogue = CBS_public_epilogue; |
||
549 | lev->l.public_activate = CBS_public_activate; |
||
550 | lev->l.public_unblock = CBS_public_unblock; |
||
551 | lev->l.public_block = CBS_public_block; |
||
552 | lev->l.public_message = CBS_public_message; |
||
2 | pj | 553 | |
554 | /* fill the CBS descriptor part */ |
||
555 | for (i=0; i<MAX_PROC; i++) { |
||
556 | NULL_TIMESPEC(&lev->cbs_dline[i]); |
||
557 | lev->period[i] = 0; |
||
558 | NULL_TIMESPEC(&lev->reactivation_time[i]); |
||
559 | lev->reactivation_timer[i] = -1; |
||
560 | lev->nact[i] = 0; |
||
561 | lev->flag[i] = 0; |
||
562 | } |
||
563 | |||
564 | |||
565 | lev->U = 0; |
||
566 | |||
567 | lev->scheduling_level = master; |
||
568 | |||
569 | lev->flags = flags & 0x01; |
||
38 | pj | 570 | |
571 | return l; |
||
2 | pj | 572 | } |
573 | |||
574 | bandwidth_t CBS_usedbandwidth(LEVEL l) |
||
575 | { |
||
576 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
38 | pj | 577 | |
578 | return lev->U; |
||
2 | pj | 579 | } |
580 | |||
581 | int CBS_get_nact(LEVEL l, PID p) |
||
582 | { |
||
583 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
584 | |||
585 | return lev->nact[p]; |
||
586 | } |
||
587 |