Rev 2 | Rev 14 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | pj | 1 | /* |
2 | * Project: S.Ha.R.K. |
||
3 | * |
||
4 | * Coordinators: |
||
5 | * Giorgio Buttazzo <giorgio@sssup.it> |
||
6 | * Paolo Gai <pj@gandalf.sssup.it> |
||
7 | * |
||
8 | * Authors : |
||
9 | * Paolo Gai <pj@gandalf.sssup.it> |
||
10 | * Massimiliano Giorgi <massy@gandalf.sssup.it> |
||
11 | * Luca Abeni <luca@gandalf.sssup.it> |
||
12 | * (see the web pages for full authors list) |
||
13 | * |
||
14 | * ReTiS Lab (Scuola Superiore S.Anna - Pisa - Italy) |
||
15 | * |
||
16 | * http://www.sssup.it |
||
17 | * http://retis.sssup.it |
||
18 | * http://shark.sssup.it |
||
19 | */ |
||
20 | |||
21 | /** |
||
22 | ------------ |
||
23 | CVS : $Id: cbs.c,v 1.1.1.1 2002-03-29 14:12:52 pj Exp $ |
||
24 | |||
25 | File: $File$ |
||
26 | Revision: $Revision: 1.1.1.1 $ |
||
27 | Last update: $Date: 2002-03-29 14:12:52 $ |
||
28 | ------------ |
||
29 | |||
30 | This file contains the aperiodic server CBS (Total Bandwidth Server) |
||
31 | |||
32 | Read CBS.h for further details. |
||
33 | |||
34 | **/ |
||
35 | |||
36 | /* |
||
37 | * Copyright (C) 2000 Paolo Gai |
||
38 | * |
||
39 | * This program is free software; you can redistribute it and/or modify |
||
40 | * it under the terms of the GNU General Public License as published by |
||
41 | * the Free Software Foundation; either version 2 of the License, or |
||
42 | * (at your option) any later version. |
||
43 | * |
||
44 | * This program is distributed in the hope that it will be useful, |
||
45 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
46 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
47 | * GNU General Public License for more details. |
||
48 | * |
||
49 | * You should have received a copy of the GNU General Public License |
||
50 | * along with this program; if not, write to the Free Software |
||
51 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
||
52 | * |
||
53 | */ |
||
54 | |||
55 | |||
56 | #include <modules/cbs.h> |
||
57 | #include <ll/stdio.h> |
||
58 | #include <ll/string.h> |
||
59 | #include <kernel/model.h> |
||
60 | #include <kernel/descr.h> |
||
61 | #include <kernel/var.h> |
||
62 | #include <kernel/func.h> |
||
63 | #include <kernel/trace.h> |
||
64 | |||
65 | /*+ 4 debug purposes +*/ |
||
66 | #undef CBS_TEST |
||
67 | #undef CBS_COUNTER |
||
68 | |||
69 | #ifdef TESTG |
||
70 | #include "drivers/glib.h" |
||
71 | TIME x,oldx; |
||
72 | extern TIME starttime; |
||
73 | #endif |
||
74 | |||
75 | |||
76 | /*+ Status used in the level +*/ |
||
77 | #define CBS_IDLE APER_STATUS_BASE /*+ waiting the activation +*/ |
||
78 | #define CBS_ZOMBIE APER_STATUS_BASE+1 /*+ waiting the period end +*/ |
||
79 | #define CBS_DELAY APER_STATUS_BASE+2 /*+ waiting the delay end +*/ |
||
80 | |||
81 | /*+ task flags +*/ |
||
82 | #define CBS_SAVE_ARRIVALS 1 |
||
83 | #define CBS_APERIODIC 2 |
||
84 | |||
85 | /*+ the level redefinition for the Total Bandwidth Server level +*/ |
||
86 | typedef struct { |
||
87 | level_des l; /*+ the standard level descriptor +*/ |
||
88 | |||
89 | /* The wcet are stored in the task descriptor, but we need |
||
90 | an array for the deadlines. We can't use the timespec_priority |
||
91 | field because it is used by the master level!!!... |
||
92 | Notice that however the use of the timespec_priority field |
||
93 | does not cause any problem... */ |
||
94 | |||
95 | struct timespec cbs_dline[MAX_PROC]; /*+ CBS deadlines +*/ |
||
96 | |||
97 | TIME period[MAX_PROC]; /*+ CBS activation period +*/ |
||
98 | |||
99 | struct timespec reactivation_time[MAX_PROC]; |
||
100 | /*+ the time at witch the reactivation timer is post +*/ |
||
101 | int reactivation_timer[MAX_PROC]; |
||
102 | /*+ the recativation timer +*/ |
||
103 | |||
104 | int nact[MAX_PROC]; /*+ number of pending activations +*/ |
||
105 | |||
106 | BYTE flag[MAX_PROC]; /*+ task flags +*/ |
||
107 | |||
108 | int flags; /*+ the init flags... +*/ |
||
109 | |||
110 | bandwidth_t U; /*+ the used bandwidth by the server +*/ |
||
111 | |||
112 | LEVEL scheduling_level; |
||
113 | |||
114 | } CBS_level_des; |
||
115 | |||
116 | #ifdef CBS_COUNTER |
||
117 | int cbs_counter=0; |
||
118 | int cbs_counter2=0; |
||
119 | #endif |
||
120 | |||
121 | |||
122 | static void CBS_activation(CBS_level_des *lev, |
||
123 | PID p, |
||
124 | struct timespec *acttime) |
||
125 | { |
||
126 | JOB_TASK_MODEL job; |
||
127 | |||
128 | /* we have to check if the deadline and the wcet are correct before |
||
129 | activating a new task or an old task... */ |
||
130 | |||
131 | /* check 1: if the deadline is before than the actual scheduling time */ |
||
132 | |||
133 | /* check 2: if ( avail_time >= (cbs_dline - acttime)* (wcet/period) ) |
||
134 | (rule 7 in the CBS article!) */ |
||
135 | TIME t; |
||
136 | struct timespec t2,t3; |
||
137 | |||
138 | t = (lev->period[p] * proc_table[p].avail_time) / proc_table[p].wcet; |
||
139 | t3.tv_sec = t / 1000000; |
||
140 | t3.tv_nsec = (t % 1000000) * 1000; |
||
141 | |||
142 | SUBTIMESPEC(&lev->cbs_dline[p], acttime, &t2); |
||
143 | |||
144 | if (/* 1 */ TIMESPEC_A_LT_B(&lev->cbs_dline[p], acttime) || |
||
145 | /* 2 */ TIMESPEC_A_GT_B(&t3, &t2) ) { |
||
146 | /* if (TIMESPEC_A_LT_B(&lev->cbs_dline[p], acttime) ) |
||
147 | kern_printf("$"); |
||
148 | else |
||
149 | kern_printf("(Ûdline%d.%d act%d.%d wcet%d per%d avail%dÛ)", |
||
150 | lev->cbs_dline[p].tv_sec,lev->cbs_dline[p].tv_nsec/1000, |
||
151 | acttime->tv_sec, acttime->tv_nsec/1000, |
||
152 | proc_table[p].wcet, lev->period[p], proc_table[p].avail_time); |
||
153 | */ /* we modify the deadline ... */ |
||
154 | TIMESPEC_ASSIGN(&lev->cbs_dline[p], acttime); |
||
155 | ADDUSEC2TIMESPEC(lev->period[p], &lev->cbs_dline[p]); |
||
156 | |||
157 | /* and the capacity */ |
||
158 | proc_table[p].avail_time = proc_table[p].wcet; |
||
159 | } |
||
160 | |||
161 | #ifdef TESTG |
||
162 | if (starttime && p == 3) { |
||
163 | oldx = x; |
||
164 | x = ((lev->cbs_dline[p].tv_sec*1000000+lev->cbs_dline[p].tv_nsec/1000)/5000 - starttime) + 20; |
||
165 | // kern_printf("(a%d)",lev->cbs_dline[p].tv_sec*1000000+lev->cbs_dline[p].tv_nsec/1000); |
||
166 | if (oldx > x) sys_end(); |
||
167 | if (x<640) |
||
168 | grx_plot(x, 15, 8); |
||
169 | } |
||
170 | #endif |
||
171 | |||
172 | /* and, finally, we reinsert the task in the master level */ |
||
173 | job_task_default_model(job, lev->cbs_dline[p]); |
||
174 | job_task_def_noexc(job); |
||
175 | level_table[ lev->scheduling_level ]-> |
||
176 | guest_create(lev->scheduling_level, p, (TASK_MODEL *)&job); |
||
177 | level_table[ lev->scheduling_level ]-> |
||
178 | guest_activate(lev->scheduling_level, p); |
||
179 | |||
180 | } |
||
181 | |||
182 | |||
183 | static char *CBS_status_to_a(WORD status) |
||
184 | { |
||
185 | if (status < MODULE_STATUS_BASE) |
||
186 | return status_to_a(status); |
||
187 | |||
188 | switch (status) { |
||
189 | case CBS_IDLE : return "CBS_Idle"; |
||
190 | case CBS_ZOMBIE : return "CBS_Zombie"; |
||
191 | case CBS_DELAY : return "CBS_Delay"; |
||
192 | default : return "CBS_Unknown"; |
||
193 | } |
||
194 | } |
||
195 | |||
196 | static void CBS_avail_time_check(CBS_level_des *lev, PID p) |
||
197 | { |
||
198 | /* there is a while because if the wcet is << than the system tick |
||
199 | we need to postpone the deadline many times */ |
||
200 | while (proc_table[p].avail_time <= 0) { |
||
201 | ADDUSEC2TIMESPEC(lev->period[p], &lev->cbs_dline[p]); |
||
202 | proc_table[p].avail_time += proc_table[p].wcet; |
||
203 | |||
204 | #ifdef TESTG |
||
205 | if (starttime && p == 3) { |
||
206 | oldx = x; |
||
207 | x = ((lev->cbs_dline[p].tv_sec*1000000+lev->cbs_dline[p].tv_nsec/1000)/5000 - starttime) + 20; |
||
208 | // kern_printf("(e%d avail%d)",lev->cbs_dline[p].tv_sec*1000000+lev->cbs_dline[p].tv_nsec/1000,proc_table[p].avail_time); |
||
209 | if (oldx > x) sys_end(); |
||
210 | if (x<640) |
||
211 | grx_plot(x, 15, 2); |
||
212 | } |
||
213 | #endif |
||
214 | } |
||
215 | } |
||
216 | |||
217 | |||
218 | /* this is the periodic reactivation of the task... it is posted only |
||
219 | if the task is a periodic task */ |
||
220 | static void CBS_timer_reactivate(void *par) |
||
221 | { |
||
222 | PID p = (PID) par; |
||
223 | CBS_level_des *lev; |
||
224 | |||
225 | lev = (CBS_level_des *)level_table[proc_table[p].task_level]; |
||
226 | |||
227 | #ifdef CBS_COUNTER |
||
228 | if (p==5) cbs_counter++; |
||
229 | #endif |
||
230 | |||
231 | if (proc_table[p].status == CBS_IDLE) { |
||
232 | /* the task has finished the current activation and must be |
||
233 | reactivated */ |
||
234 | CBS_activation(lev,p,&lev->reactivation_time[p]); |
||
235 | |||
236 | event_need_reschedule(); |
||
237 | } |
||
238 | else if (lev->flag[p] & CBS_SAVE_ARRIVALS) |
||
239 | /* the task has not completed the current activation, so we save |
||
240 | the activation incrementing nact... */ |
||
241 | lev->nact[p]++; |
||
242 | |||
243 | /* repost the event at the next period end... */ |
||
244 | ADDUSEC2TIMESPEC(lev->period[p], &lev->reactivation_time[p]); |
||
245 | lev->reactivation_timer[p] = kern_event_post(&lev->reactivation_time[p], |
||
246 | CBS_timer_reactivate, |
||
247 | (void *)p); |
||
248 | #ifdef CBS_COUNTER |
||
249 | if (p==5) cbs_counter2++; |
||
250 | #endif |
||
251 | /* tracer stuff */ |
||
252 | trc_logevent(TRC_INTACTIVATION,&p); |
||
253 | |||
254 | } |
||
255 | |||
256 | /*+ this function is called when a task finish his delay +*/ |
||
257 | static void CBS_timer_delay(void *par) |
||
258 | { |
||
259 | PID p = (PID) par; |
||
260 | CBS_level_des *lev; |
||
261 | |||
262 | lev = (CBS_level_des *)level_table[proc_table[p].task_level]; |
||
263 | |||
264 | CBS_activation(lev,p,&proc_table[p].timespec_priority); |
||
265 | |||
266 | event_need_reschedule(); |
||
267 | } |
||
268 | |||
269 | |||
270 | /*+ this function is called when a killed or ended task reach the |
||
271 | period end +*/ |
||
272 | static void CBS_timer_zombie(void *par) |
||
273 | { |
||
274 | PID p = (PID) par; |
||
275 | CBS_level_des *lev; |
||
276 | |||
277 | lev = (CBS_level_des *)level_table[proc_table[p].task_level]; |
||
278 | |||
279 | /* we finally put the task in the ready queue */ |
||
280 | proc_table[p].status = FREE; |
||
281 | q_insertfirst(p,&freedesc); |
||
282 | |||
283 | /* and free the allocated bandwidth */ |
||
284 | lev->U -= (MAX_BANDWIDTH/lev->period[p]) * proc_table[p].wcet; |
||
285 | |||
286 | } |
||
287 | |||
288 | |||
289 | static int CBS_level_accept_task_model(LEVEL l, TASK_MODEL *m) |
||
290 | { |
||
291 | if (m->pclass == SOFT_PCLASS || m->pclass == (SOFT_PCLASS | l)) { |
||
292 | SOFT_TASK_MODEL *s = (SOFT_TASK_MODEL *)m; |
||
293 | if (s->met && s->period) |
||
294 | return 0; |
||
295 | } |
||
296 | |||
297 | return -1; |
||
298 | } |
||
299 | |||
300 | static int CBS_level_accept_guest_model(LEVEL l, TASK_MODEL *m) |
||
301 | { |
||
302 | return -1; |
||
303 | } |
||
304 | |||
305 | static char *onoff(int i) |
||
306 | { |
||
307 | if (i) |
||
308 | return "On "; |
||
309 | else |
||
310 | return "Off"; |
||
311 | } |
||
312 | |||
313 | static void CBS_level_status(LEVEL l) |
||
314 | { |
||
315 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
316 | PID p; |
||
317 | |||
318 | kern_printf("On-line guarantee : %s\n", |
||
319 | onoff(lev->flags & CBS_ENABLE_GUARANTEE)); |
||
320 | kern_printf("Used Bandwidth : %u/%u\n", |
||
321 | lev->U, MAX_BANDWIDTH); |
||
322 | |||
323 | for (p=0; p<MAX_PROC; p++) |
||
324 | if (proc_table[p].task_level == l && proc_table[p].status != FREE ) |
||
325 | kern_printf("Pid: %2d Name: %10s Period: %9ld Dline: %9ld.%6ld Stat: %s\n", |
||
326 | p, |
||
327 | proc_table[p].name, |
||
328 | lev->period[p], |
||
329 | lev->cbs_dline[p].tv_sec, |
||
330 | lev->cbs_dline[p].tv_nsec/1000, |
||
331 | CBS_status_to_a(proc_table[p].status)); |
||
332 | } |
||
333 | |||
334 | static PID CBS_level_scheduler(LEVEL l) |
||
335 | { |
||
336 | /* the CBS don't schedule anything... |
||
337 | it's an EDF level or similar that do it! */ |
||
338 | return NIL; |
||
339 | } |
||
340 | |||
341 | /* The on-line guarantee is enabled only if the appropriate flag is set... */ |
||
342 | static int CBS_level_guarantee(LEVEL l, bandwidth_t *freebandwidth) |
||
343 | { |
||
344 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
345 | |||
346 | if (lev->flags & CBS_FAILED_GUARANTEE) { |
||
347 | *freebandwidth = 0; |
||
348 | return 0; |
||
349 | } |
||
350 | else |
||
351 | if (*freebandwidth >= lev->U) { |
||
352 | *freebandwidth -= lev->U; |
||
353 | return 1; |
||
354 | } |
||
355 | else |
||
356 | return 0; |
||
357 | } |
||
358 | |||
359 | static int CBS_task_create(LEVEL l, PID p, TASK_MODEL *m) |
||
360 | { |
||
361 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
362 | |||
363 | /* if the CBS_task_create is called, then the pclass must be a |
||
364 | valid pclass. */ |
||
365 | SOFT_TASK_MODEL *soft = (SOFT_TASK_MODEL *)m; |
||
366 | |||
367 | /* Enable wcet check */ |
||
368 | proc_table[p].avail_time = soft->met; |
||
369 | proc_table[p].wcet = soft->met; |
||
370 | proc_table[p].control |= CONTROL_CAP; |
||
371 | |||
372 | lev->nact[p] = 0; |
||
373 | lev->period[p] = soft->period; |
||
374 | NULL_TIMESPEC(&lev->cbs_dline[p]); |
||
375 | |||
376 | if (soft->periodicity == APERIODIC) |
||
377 | lev->flag[p] = CBS_APERIODIC; |
||
378 | else |
||
379 | lev->flag[p] = 0; |
||
380 | |||
381 | if (soft->arrivals == SAVE_ARRIVALS) |
||
382 | lev->flag[p] |= CBS_SAVE_ARRIVALS; |
||
383 | |||
384 | /* update the bandwidth... */ |
||
385 | if (lev->flags & CBS_ENABLE_GUARANTEE) { |
||
386 | bandwidth_t b; |
||
387 | b = (MAX_BANDWIDTH / soft->period) * soft->met; |
||
388 | |||
389 | /* really update lev->U, checking an overflow... */ |
||
390 | if (MAX_BANDWIDTH - lev->U > b) |
||
391 | lev->U += b; |
||
392 | else |
||
393 | /* The task can NOT be guaranteed (U>MAX_BANDWIDTH)... |
||
394 | (see EDF.c) */ |
||
395 | lev->flags |= CBS_FAILED_GUARANTEE; |
||
396 | } |
||
397 | |||
398 | |||
399 | return 0; /* OK, also if the task cannot be guaranteed... */ |
||
400 | } |
||
401 | |||
402 | static void CBS_task_detach(LEVEL l, PID p) |
||
403 | { |
||
404 | /* the CBS level doesn't introduce any dinamic allocated new field. |
||
405 | we have only to reset the NO_GUARANTEE FIELD and decrement the allocated |
||
406 | bandwidth */ |
||
407 | |||
408 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
409 | |||
410 | if (lev->flags & CBS_FAILED_GUARANTEE) |
||
411 | lev->flags &= ~CBS_FAILED_GUARANTEE; |
||
412 | else |
||
413 | lev->U -= (MAX_BANDWIDTH / lev->period[p]) * proc_table[p].wcet; |
||
414 | } |
||
415 | |||
416 | static int CBS_task_eligible(LEVEL l, PID p) |
||
417 | { |
||
418 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
419 | JOB_TASK_MODEL job; |
||
420 | |||
421 | /* we have to check if the deadline and the wcet are correct... |
||
422 | if the CBS level schedules in background with respect to others |
||
423 | levels, there can be the case in witch a task is scheduled by |
||
424 | schedule_time > CBS_deadline; in this case (not covered in the |
||
425 | article because if there is only the standard scheduling policy |
||
426 | this never apply) we reassign the deadline */ |
||
427 | |||
428 | if ( TIMESPEC_A_LT_B(&lev->cbs_dline[p], &schedule_time) ) { |
||
429 | /* we kill the current activation */ |
||
430 | level_table[ lev->scheduling_level ]-> |
||
431 | guest_end(lev->scheduling_level, p); |
||
432 | |||
433 | /* we modify the deadline ... */ |
||
434 | TIMESPEC_ASSIGN(&lev->cbs_dline[p], &schedule_time); |
||
435 | ADDUSEC2TIMESPEC(lev->period[p], &lev->cbs_dline[p]); |
||
436 | |||
437 | /* and the capacity */ |
||
438 | proc_table[p].avail_time = proc_table[p].wcet; |
||
439 | |||
440 | /* and, finally, we reinsert the task in the master level */ |
||
441 | job_task_default_model(job, lev->cbs_dline[p]); |
||
442 | job_task_def_noexc(job); |
||
443 | level_table[ lev->scheduling_level ]-> |
||
444 | guest_create(lev->scheduling_level, p, (TASK_MODEL *)&job); |
||
445 | level_table[ lev->scheduling_level ]-> |
||
446 | guest_activate(lev->scheduling_level, p); |
||
447 | |||
448 | return -1; |
||
449 | } |
||
450 | |||
451 | return 0; |
||
452 | } |
||
453 | |||
454 | #ifdef __TEST1__ |
||
455 | extern int testactive; |
||
456 | extern struct timespec s_stime[]; |
||
457 | extern TIME s_curr[]; |
||
458 | extern TIME s_PID[]; |
||
459 | extern int useds; |
||
460 | #endif |
||
461 | |||
462 | static void CBS_task_dispatch(LEVEL l, PID p, int nostop) |
||
463 | { |
||
464 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
465 | level_table[ lev->scheduling_level ]-> |
||
466 | guest_dispatch(lev->scheduling_level,p,nostop); |
||
467 | |||
468 | #ifdef __TEST1__ |
||
469 | if (testactive) |
||
470 | { |
||
471 | TIMESPEC_ASSIGN(&s_stime[useds], &schedule_time); |
||
472 | s_curr[useds] = proc_table[p].avail_time; |
||
473 | s_PID[useds] = p; |
||
474 | useds++; |
||
475 | } |
||
476 | #endif |
||
477 | } |
||
478 | |||
479 | static void CBS_task_epilogue(LEVEL l, PID p) |
||
480 | { |
||
481 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
482 | JOB_TASK_MODEL job; |
||
483 | |||
484 | /* check if the wcet is finished... */ |
||
485 | if ( proc_table[p].avail_time <= 0) { |
||
486 | /* we kill the current activation */ |
||
487 | level_table[ lev->scheduling_level ]-> |
||
488 | guest_end(lev->scheduling_level, p); |
||
489 | |||
490 | /* we modify the deadline according to rule 4 ... */ |
||
491 | CBS_avail_time_check(lev, p); |
||
492 | |||
493 | /* and, finally, we reinsert the task in the master level */ |
||
494 | job_task_default_model(job, lev->cbs_dline[p]); |
||
495 | job_task_def_noexc(job); |
||
496 | level_table[ lev->scheduling_level ]-> |
||
497 | guest_create(lev->scheduling_level, p, (TASK_MODEL *)&job); |
||
498 | level_table[ lev->scheduling_level ]-> |
||
499 | guest_activate(lev->scheduling_level, p); |
||
500 | // kern_printf("epil : dl %d per %d p %d |\n", |
||
501 | // lev->cbs_dline[p].tv_nsec/1000,lev->period[p],p); |
||
502 | |||
503 | } |
||
504 | else |
||
505 | /* the task has been preempted. it returns into the ready queue by |
||
506 | calling the guest_epilogue... */ |
||
507 | level_table[ lev->scheduling_level ]-> |
||
508 | guest_epilogue(lev->scheduling_level,p); |
||
509 | } |
||
510 | |||
511 | static void CBS_task_activate(LEVEL l, PID p) |
||
512 | { |
||
513 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
514 | |||
515 | /* save activation (only if needed... */ |
||
516 | if (proc_table[p].status != SLEEP) { |
||
517 | if (lev->flag[p] & CBS_SAVE_ARRIVALS) |
||
518 | lev->nact[p]++; |
||
519 | return; |
||
520 | } |
||
521 | |||
522 | ll_gettime(TIME_EXACT, &proc_table[p].request_time); |
||
523 | |||
524 | CBS_activation(lev, p, &proc_table[p].request_time); |
||
525 | |||
526 | /* Set the reactivation timer */ |
||
527 | if (!(lev->flag[p] & CBS_APERIODIC)) |
||
528 | { |
||
529 | /* we cannot use the deadline computed by CBS_activation because |
||
530 | the deadline may be != from actual_time + period |
||
531 | (if we call the task_activate after a task_sleep, and the |
||
532 | deadline was postponed a lot...) */ |
||
533 | TIMESPEC_ASSIGN(&lev->reactivation_time[p], &proc_table[p].request_time); |
||
534 | ADDUSEC2TIMESPEC(lev->period[p], &lev->reactivation_time[p]); |
||
535 | // TIMESPEC_ASSIGN(&lev->reactivation_time[p], &lev->cbs_dline[p]); |
||
536 | lev->reactivation_timer[p] = kern_event_post(&lev->reactivation_time[p], |
||
537 | CBS_timer_reactivate, |
||
538 | (void *)p); |
||
539 | #ifdef CBS_COUNTER |
||
540 | if (p==5) cbs_counter2++; |
||
541 | #endif |
||
542 | } |
||
543 | // kern_printf("act : %d %d |",lev->cbs_dline[p].tv_nsec/1000,p); |
||
544 | } |
||
545 | |||
546 | static void CBS_task_insert(LEVEL l, PID p) |
||
547 | { |
||
548 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
549 | struct timespec acttime; |
||
550 | |||
551 | ll_gettime(TIME_EXACT, &acttime); |
||
552 | |||
553 | CBS_activation(lev,p,&acttime); |
||
554 | } |
||
555 | |||
556 | static void CBS_task_extract(LEVEL l, PID p) |
||
557 | { |
||
558 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
559 | |||
560 | /* check if the wcet is finished... */ |
||
561 | CBS_avail_time_check(lev, p); |
||
562 | |||
563 | level_table[ lev->scheduling_level ]-> |
||
564 | guest_end(lev->scheduling_level,p); |
||
565 | } |
||
566 | |||
567 | static void CBS_task_endcycle(LEVEL l, PID p) |
||
568 | { |
||
569 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
570 | |||
571 | /* check if the wcet is finished... */ |
||
572 | CBS_avail_time_check(lev, p); |
||
573 | |||
574 | if (lev->nact[p]) { |
||
575 | /* continue!!!! */ |
||
576 | ll_gettime(TIME_EXACT, &proc_table[p].request_time); |
||
577 | lev->nact[p]--; |
||
578 | level_table[ lev->scheduling_level ]-> |
||
579 | guest_epilogue(lev->scheduling_level,p); |
||
580 | } |
||
581 | else { |
||
582 | level_table[ lev->scheduling_level ]-> |
||
583 | guest_end(lev->scheduling_level,p); |
||
584 | |||
585 | if (lev->flag[p] & CBS_APERIODIC) |
||
586 | proc_table[p].status = SLEEP; |
||
587 | else /* the task is soft_periodic */ |
||
588 | proc_table[p].status = CBS_IDLE; |
||
589 | |||
590 | } |
||
591 | } |
||
592 | |||
593 | static void CBS_task_end(LEVEL l, PID p) |
||
594 | { |
||
595 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
596 | |||
597 | /* check if the wcet is finished... */ |
||
598 | CBS_avail_time_check(lev, p); |
||
599 | |||
600 | level_table[ lev->scheduling_level ]-> |
||
601 | guest_end(lev->scheduling_level,p); |
||
602 | |||
603 | /* we delete the reactivation timer */ |
||
604 | if (!(lev->flag[p] & CBS_APERIODIC)) { |
||
605 | event_delete(lev->reactivation_timer[p]); |
||
606 | lev->reactivation_timer[p] = -1; |
||
607 | } |
||
608 | |||
609 | /* Finally, we post the zombie event. when the end period is reached, |
||
610 | the task descriptor and banwidth are freed */ |
||
611 | proc_table[p].status = CBS_ZOMBIE; |
||
612 | lev->reactivation_timer[p] = kern_event_post(&lev->cbs_dline[p], |
||
613 | CBS_timer_zombie, |
||
614 | (void *)p); |
||
615 | } |
||
616 | |||
617 | static void CBS_task_sleep(LEVEL l, PID p) |
||
618 | { |
||
619 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
620 | |||
621 | /* check if the wcet is finished... */ |
||
622 | CBS_avail_time_check(lev, p); |
||
623 | |||
624 | /* a task activation is finished, but we are using a JOB_TASK_MODEL |
||
625 | that implements a single activation, so we have to call |
||
626 | the guest_end, that representsa single activation... */ |
||
627 | level_table[ lev->scheduling_level ]-> |
||
628 | guest_end(lev->scheduling_level,p); |
||
629 | |||
630 | /* we delete the reactivation timer */ |
||
631 | if (!(lev->flag[p] & CBS_APERIODIC)) { |
||
632 | event_delete(lev->reactivation_timer[p]); |
||
633 | lev->reactivation_timer[p] = -1; |
||
634 | } |
||
635 | |||
636 | proc_table[p].status = SLEEP; |
||
637 | |||
638 | /* the sleep forgets pending activations... */ |
||
639 | lev->nact[p] = 0; |
||
640 | } |
||
641 | |||
642 | static void CBS_task_delay(LEVEL l, PID p, TIME usdelay) |
||
643 | { |
||
644 | struct timespec wakeuptime; |
||
645 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
646 | |||
647 | /* check if the wcet is finished... */ |
||
648 | CBS_avail_time_check(lev, p); |
||
649 | |||
650 | level_table[ lev->scheduling_level ]-> |
||
651 | guest_end(lev->scheduling_level,p); |
||
652 | |||
653 | proc_table[p].status = CBS_DELAY; |
||
654 | |||
655 | /* we need to delete this event if we kill the task while it is sleeping */ |
||
656 | ll_gettime(TIME_EXACT, &wakeuptime); |
||
657 | ADDUSEC2TIMESPEC(usdelay, &wakeuptime); |
||
658 | |||
659 | /* the timespec_priority field is used to store the time at witch the delay |
||
660 | timer raises */ |
||
661 | TIMESPEC_ASSIGN(&proc_table[p].timespec_priority, &wakeuptime); |
||
662 | proc_table[p].delay_timer = kern_event_post(&wakeuptime, |
||
663 | CBS_timer_delay, |
||
664 | (void *)p); |
||
665 | } |
||
666 | |||
667 | |||
668 | static int CBS_guest_create(LEVEL l, PID p, TASK_MODEL *m) |
||
669 | { kern_raise(XUNVALID_GUEST,exec_shadow); return 0; } |
||
670 | |||
671 | static void CBS_guest_detach(LEVEL l, PID p) |
||
672 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
673 | |||
674 | static void CBS_guest_dispatch(LEVEL l, PID p, int nostop) |
||
675 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
676 | |||
677 | static void CBS_guest_epilogue(LEVEL l, PID p) |
||
678 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
679 | |||
680 | static void CBS_guest_activate(LEVEL l, PID p) |
||
681 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
682 | |||
683 | static void CBS_guest_insert(LEVEL l, PID p) |
||
684 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
685 | |||
686 | static void CBS_guest_extract(LEVEL l, PID p) |
||
687 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
688 | |||
689 | static void CBS_guest_endcycle(LEVEL l, PID p) |
||
690 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
691 | |||
692 | static void CBS_guest_end(LEVEL l, PID p) |
||
693 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
694 | |||
695 | static void CBS_guest_sleep(LEVEL l, PID p) |
||
696 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
697 | |||
698 | static void CBS_guest_delay(LEVEL l, PID p,DWORD tickdelay) |
||
699 | { kern_raise(XUNVALID_GUEST,exec_shadow); } |
||
700 | |||
701 | |||
702 | |||
703 | |||
704 | /* Registration functions */ |
||
705 | |||
706 | /*+ Registration function: |
||
707 | int flags the init flags ... see CBS.h +*/ |
||
708 | void CBS_register_level(int flags, LEVEL master) |
||
709 | { |
||
710 | LEVEL l; /* the level that we register */ |
||
711 | CBS_level_des *lev; /* for readableness only */ |
||
712 | PID i; /* a counter */ |
||
713 | |||
714 | printk("CBS_register_level\n"); |
||
715 | |||
716 | /* request an entry in the level_table */ |
||
717 | l = level_alloc_descriptor(); |
||
718 | |||
719 | printk(" alloco descrittore %d %d\n",l,(int)sizeof(CBS_level_des)); |
||
720 | |||
721 | /* alloc the space needed for the CBS_level_des */ |
||
722 | lev = (CBS_level_des *)kern_alloc(sizeof(CBS_level_des)); |
||
723 | |||
724 | printk(" lev=%d\n",(int)lev); |
||
725 | |||
726 | /* update the level_table with the new entry */ |
||
727 | level_table[l] = (level_des *)lev; |
||
728 | |||
729 | /* fill the standard descriptor */ |
||
730 | strncpy(lev->l.level_name, CBS_LEVELNAME, MAX_LEVELNAME); |
||
731 | lev->l.level_code = CBS_LEVEL_CODE; |
||
732 | lev->l.level_version = CBS_LEVEL_VERSION; |
||
733 | |||
734 | lev->l.level_accept_task_model = CBS_level_accept_task_model; |
||
735 | lev->l.level_accept_guest_model = CBS_level_accept_guest_model; |
||
736 | lev->l.level_status = CBS_level_status; |
||
737 | lev->l.level_scheduler = CBS_level_scheduler; |
||
738 | |||
739 | if (flags & CBS_ENABLE_GUARANTEE) |
||
740 | lev->l.level_guarantee = CBS_level_guarantee; |
||
741 | else |
||
742 | lev->l.level_guarantee = NULL; |
||
743 | |||
744 | lev->l.task_create = CBS_task_create; |
||
745 | lev->l.task_detach = CBS_task_detach; |
||
746 | lev->l.task_eligible = CBS_task_eligible; |
||
747 | lev->l.task_dispatch = CBS_task_dispatch; |
||
748 | lev->l.task_epilogue = CBS_task_epilogue; |
||
749 | lev->l.task_activate = CBS_task_activate; |
||
750 | lev->l.task_insert = CBS_task_insert; |
||
751 | lev->l.task_extract = CBS_task_extract; |
||
752 | lev->l.task_endcycle = CBS_task_endcycle; |
||
753 | lev->l.task_end = CBS_task_end; |
||
754 | lev->l.task_sleep = CBS_task_sleep; |
||
755 | lev->l.task_delay = CBS_task_delay; |
||
756 | |||
757 | lev->l.guest_create = CBS_guest_create; |
||
758 | lev->l.guest_detach = CBS_guest_detach; |
||
759 | lev->l.guest_dispatch = CBS_guest_dispatch; |
||
760 | lev->l.guest_epilogue = CBS_guest_epilogue; |
||
761 | lev->l.guest_activate = CBS_guest_activate; |
||
762 | lev->l.guest_insert = CBS_guest_insert; |
||
763 | lev->l.guest_extract = CBS_guest_extract; |
||
764 | lev->l.guest_endcycle = CBS_guest_endcycle; |
||
765 | lev->l.guest_end = CBS_guest_end; |
||
766 | lev->l.guest_sleep = CBS_guest_sleep; |
||
767 | lev->l.guest_delay = CBS_guest_delay; |
||
768 | |||
769 | /* fill the CBS descriptor part */ |
||
770 | for (i=0; i<MAX_PROC; i++) { |
||
771 | NULL_TIMESPEC(&lev->cbs_dline[i]); |
||
772 | lev->period[i] = 0; |
||
773 | NULL_TIMESPEC(&lev->reactivation_time[i]); |
||
774 | lev->reactivation_timer[i] = -1; |
||
775 | lev->nact[i] = 0; |
||
776 | lev->flag[i] = 0; |
||
777 | } |
||
778 | |||
779 | |||
780 | lev->U = 0; |
||
781 | |||
782 | lev->scheduling_level = master; |
||
783 | |||
784 | lev->flags = flags & 0x01; |
||
785 | } |
||
786 | |||
787 | bandwidth_t CBS_usedbandwidth(LEVEL l) |
||
788 | { |
||
789 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
790 | if (lev->l.level_code == CBS_LEVEL_CODE && |
||
791 | lev->l.level_version == CBS_LEVEL_VERSION) |
||
792 | return lev->U; |
||
793 | else |
||
794 | return 0; |
||
795 | } |
||
796 | |||
797 | int CBS_get_nact(LEVEL l, PID p) |
||
798 | { |
||
799 | CBS_level_des *lev = (CBS_level_des *)(level_table[l]); |
||
800 | |||
801 | return lev->nact[p]; |
||
802 | } |
||
803 |